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Preface

I have made some substantial changes in this new edition of Introductory Combi-
natorics, and they are summarized as follows:

In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been
added to illustrate some of the counting techniques in later chapters. Previously
the content of this section occured in Chapter 7.

The old section on cutting a cube in Chapter 1 has been deleted, but the content
appears as an exercise.

Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chap-
ter 3. Chapter 3 in the previous edition, on permutations and combinations, is
now Chapter 2. Pascal’s formula, which in the previous edition first appeared
in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use
of the term combination as it applies to a set, using the essentially equivalent
term of subset for clarity. However, in the case of multisets, we continue to use
combination instead of, to our mind, the more cumbersome term submultiset.

Chapter 2 now contains a short section (Section 3.6) on finite probability.
Chapter 3 now contains a proof of Ramsey’s theorem in the case of pairs.

Some of the biggest changes occur in Chapter 7, in which generating functions
and exponential generating functions have been moved to earlier in the chapter
(Sections 7.2 and 7.3) and have become more central.

The section on partition numbers (Section 8.3) has been expanded.

Chapter 9 in the previous edition, on matchings in bipartite graphs, has under-
gone a major change. It is now an interlude chapter (Chapter 9) on systems of
distinct representatives (SDRs)—the marriage and stable marriage problems—
and the discussion on bipartite graphs has been removed.

As a result of the change in Chapter 9, in the introductory chapter on graph
theory (Chapter 11), there is no longer the assumption that bipartite graphs
have been discussed previously.

The chapter on more topics of graph theory (Chapter 13 in the previous edition)
has been moved to Chapter 12. A new section on the matching number of a
graph (Section 12.5) has been added in which the basic SDR result of Chapter
9 is applied to bipartite graphs.
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The chapter on digraphs and networks (Chapter 12 in the previous edition) is
now Chapter 13. It contains a new section that revisits matchings in bipartite
graphs, some of which appeared in Chapter 9 in the previous edition.

In addition to the changes just outlined, for this fifth edition, I have corrected all
of the typos that were brought to my attention; included some small additions; made
some clarifying changes in exposition throughout; and added many new exercises.
There are now 700 exercises in this fifth edition.

Based on comments I have received over the years from many people, this book
seems to have passed the test of time. As a result I always hesitate to make too
many changes or to add too many new topics. I don’t like books that have “too many
words” (and this preface will not have too many words) and that try to accomodate
everyone’s personal preferences on topics. Nevertheless, I did make the substantial
changes described previously because I was convinced they would improve the book.

As with all previous editions, this book can be used for either a one— or two—
semester undergraduate course. A first semester could emphasize counting, and a
second semester could emphasize graph theory and designs. This book would also
work well for a one-semester course that does some counting and graph theory, or some
counting and design theory, or whatever combination one chooses. A brief commentary
on each of the chapters and their interrelation follows.

Chapter 1 is an introductory chapter; I usually select just one or two topics from
it and spend at most two classes on this chapter. Chapter 2, on permutations and
combinations, should be covered in its entirety. Chapter 3, on the pigeonhole principle,
should be discussed at least in abbreviated form. But note that no use is made later of
some of the more difficult applications of the pigeonhole principle and of the section on
Ramsey’s theorem. Chapters 4 to 8 are primarily concerned with counting techniques
and properties of some of the resulting counting sequences. They should be covered in
sequence. Chapter 4 is about schemes for generating permutations and combinations
and includes an introduction to partial orders and equivalence relations in Section 4.5.
I think one should at least discuss equivalence relations, since they are so ubiquitous
in mathematics. Except for the section on partially ordered sets (Section 5.7) in
Chapter 5, chapters beyond Chapter 4 are essentially independent of Chapter 4, and
so this chapter can either be omitted or abbreviated. And one can decide not to cover
partially ordered sets at all. T have split up the material on partially ordered sets into
two sections (Sections 4.5 and 5.7) in order to give students a little time to absorb
some of the concepts. Chapter 5 is on properties of the binomial coefficients, and
Chapter 6 covers the inclusion-exclusion principle. The section on Mobius inversion,
generalizing the inclusion—exclusion principle, is not used in later sections. Chapter 7
is a long chapter on generating functions and solutions of recurrence relations. Chapter
8 is concerned mainly with the Catalan numbers, the Stirling numbers of the first and
second kind, partition numbers and the large and small Schréder numbers. One could
stop at the end of any section of this chapter. The chapters that follow Chapter 8 are
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independent of it. Chapter 9 is about systems of distinct representatives (so-called
marriage problems). Chapters 12 and 13 make some use of Chapter 9, as does the
section on Latin squares in Chapter 10. Chapter 10 concerns some aspects of the
vast theory of combinatorial designs and is independent of the remainder of the book.
Chapters 11 and 12 contain an extensive discussion of graphs, with some emphasis on
graph algorithms. Chapter 13 is concerned with digraphs and network flows. Chapter
14 deals with counting in the presence of the action of a permutation group and does
make use of many of the earlier counting ideas. Except for the last example, it is
independent of the chapters on graph theory and designs.

When I teach’ a one-semester course out of this book, I like to conclude with
Burnside’s theorem, and several applications of it, in Chapter 14. This result enables
one to solve many counting problems that can’t be touched with the techniques of
earlier chapters. Usually, I don’t get to Pélya’s theorem.

Following Chapter 14, I give solutions and hints for some of the 700 exercises in
the book. A few of the exercises have a * symbol beside them, indicating that they
are quite challenging. The end of a proof and the end of an example are indicated by
writing the symbol O.

It is difficult to assess the prerequisites for this book. As with all books intended
as textbooks, having highly motivated and interested students helps, as does the en-
thusiasm of the instructor. Perhaps the prerequisites can be best described as the
mathematical maturity achieved by the successful completion of the calculus sequence
and an elementary course on linear algebra. Use of calculus is minimal, and the refer-
ences to linear algebra are few and should not cause any problem to those not familiar
with it.

It is especially gratifying to me that, after more than 30 years since the first edition
of Introductory Combinatorics was published, it continues to be well received by many
people in the professional mathematical community.

I am very grateful to many individuals who have given me comments on previous
editions and for this edition, including the discovery of typos. These individuals in-
clude, in no particular order: Russ Rowlett, James Sellers, Michael Buchner, Leroy
F. Meyers, Tom Zaslavsky, Nils Andersen, James Propp, Louis Deaett, Joel Brawley.
Walter Morris, John B. Little, Manley Perkel, Cristina Ballantine, Zixia Song, Luke
Piefer, Stephen Hartke, Evan VanderZee, Travis McBride, Ben Brookins, Doug Shaw,
Graham Denham, Sharad Chandarana, William McGovern, and Alexander Zakharin.
Those who were asked by the publisher to review the fourth edition in preparation for
this fifth edition include Christopher P. Grant who made many excellent comments.
Chris Jeuell sent me many comments on the nearly completed fifth edition and saved
me from additional typos. Mitch Keller was an excellent accuracy checker. Typos, but
I hope no mistakes, probably remain and they are my responsibility. I am grateful to
everyone who brings them to my attention. Yvonne Nagel was extremely helpful in
solving a difficult problem with fonts that was beyond my expertise.
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It has been a pleasure to work with the editorial staff at Prentice Hall, namely,
Bill Hoffman, Caroline Celano, and especially Raegan Heerema, in bringing this fifth
edition to completion. Pat Daly was a wonderful copyeditor.

The book, I hope, continues to reflect my love of the subject of combinatorics, my
enthusiasm for teaching it, and the way I teach it.

Finally, I want to thank again my dear wife, Mona, who continues to bring such
happiness, spirit, and adventure into my life.

Richard A. Brualdi
Madison, Wisconsin
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Chapter 1

What Is Combinatorics?

It would be surprising indeed if a reader of this book had never solved a combinatorial
problem. Have you ever counted the number of games n teams would play if each team
played every other team exactly once? Have you ever attempted to trace through a
network without removing your pencil from the paper and without tracing any part of
the network more than once? Have you ever counted the number of poker hands that
are full houses in order to determine the odds against a full house? More recently,
have you ever solved a Sudoku puzzle? These are all combinatorial problems. As
these examples might suggest, combinatorics has its roots in mathematical recreations
and games. Many problems that were studied in the past, either for amusement or
for their aesthetic appeal, are today of great importance in pure and applied science.
Today, combinatorics is an important branch of mathematics. One of the reasons for
the tremendous growth of combinatorics has been the major impact that computers
have had and continue to have in our society. Because of their increasing speed,
computers have been able to solve large-scale problems that previously would not
have been possible. But computers do not function independently. They need to
be programmed to perform. The bases for these programs often are combinatorial
algorithms for the solutions of problems. Analysis of these algorithms for efficiency
with regard to running time and storage requirements demands more combinatorial
thinking.

Another reason for the continued growth of combinatorics is its applicability to
disciplines that previously had little serious contact with mathematics. Thus, we
find that the ideas and techniques of combinatorics are being used not only in the
traditional area of mathematical application, namely the physical sciences, but also in
the social sciences, the biological sciences, information theory, and so on. In addition,
combinatorics and combinatorial thinking have become more and more important in
many mathematical disciplines.

Combinatorics is concerned with arrangements of the objects of a set into patterns
satisfying specified rules. Two general types of problems occur repeatedly:



2 CHAPTER 1. WHAT IS COMBINATORICS?

e Eristence of the arrangement. If one wants to arrange the objects of a set so
that certain conditions are fulfilled, it may not be at all obvious whether such an
arrangement is possible. This is the most basic of questions. If the arrangement
is not always possible, it is then appropriate to ask under what conditions, both
necessary and sufficient, the desired arrangement can be achieved.

e Enumeration or classification of the arrangements. If a specified arrangement is
possible, there may be several ways of achieving it. If so, one may want to count
or to classify them into types.

If the number of arrangements for a particular problem is small, the arrangements
can be listed. It is important to understand the distinction between listing all the
arrangements and determining their number. Once the arrangements are listed, they
can be counted by setting up a one-to-one correspondence between them and the set
of integers {1,2,3,...,n} for some n. This is the way we count: one, two, three, ... .
However, we shall be concerned primarily with techniques for determining the number
of arrangements of a particular type without first listing them. Of course the number
of arrangements may be so large as to preclude listing them all.

Two other combinatorial problems often occur.

e Study of a known arrangement. After one has done the (possibly difficult) work of
constructing an arrangement satisfying certain specified conditions, its properties
and structure can then be investigated.

e Construction of an optimal arrangement. If more than one arrangement is pos-
sible, one may want to determine an arrangement that satisfies some optimality
criterion—that is, to find a “best” or “optimal” arrangement in some prescribed
sense.

Thus, a general description of combinatorics might be that combinatorics is con-
cerned with the existence, enumeration, analysis, and optimization of discrete struc-
tures. In this book, discrete generally means “finite,” although some discrete structures
are infinite.

One of the principal tools of combinatorics for verifying discoveries is mathematical
induction. Induction is a powerful procedure, and it is especially so in combinatorics.
It is often easier to prove a stronger result than a weaker result with mathematical
induction. Although it is necessary to verify more in the inductive step, the inductive
hypothesis is stronger. Part of the art of mathematical induction is to find the right
balance of hypotheses and conclusions to carry out the induction. We assume that the
reader is familiar with induction; he or she will become more so as a result of working
through this book.

The solutions of combinatorial problems can often be obtained using ad hoc ar-
guments, possibly coupled with use of general theory. One cannot always fall back
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on application of formulas or known results. A typical solution of a combinatorial
problem might encompass the following steps: (1) Set up a mathematical model, (2)
study the model, (3) do some computation for small cases in order to develop some
confidence and insight, and (4) use careful reasoning and ingenuity to finally obtain
the solution of the problem. For counting problems, the inclusion—exclusion principle,
the so-called pigeonhole principle, the methods of recurrence relations and generating
functions, Burnside’s theorem, and Pélya’s counting formula are all examples of gen-
eral principles and methods that we will consider in later chapters. Often, however,
cleverness is required to see that a particular method or formula can be applied and
how to apply. Thus, experience in solving combinatorial problems is very important.
The implication is that with combinatorics, as with mathematics in general, the more
problems one solves, the more likely one is able to solve the next problem.

We now consider a few introductory examples of combinatorial problems. They
vary from relatively simple problems (but whose solution requires ingenuity) to prob-
lems whose solutions were a major achievement in combinatorics. Some of these
problems will be considered in more detail in subsequent chapters.

1.1 Example: Perfect Covers of Chessboards

Consider an ordinary chessboard which is divided into 64 squares in 8 rows and 8
columns. Suppose there is available a supply of identically shaped dominoes, pieces
which cover exactly two adjacent squares of the chessboard. Is it possible to arrange
32 dominoes on the chessboard so that no 2 dominoes overlap, every domino covers
2 squares, and all the squares of the chessboard are covered? We call such an ar-
rangement a perfect cover or tiling of the chessboard by dominoes. This is an easy
arrangement problem, and we can quickly construct many different perfect covers. It
is difficult, but nonetheless possible, to count the number of different perfect covers.
This number was found by Fischer! in 1961 to be 12,988,816 = 24 x 172 x 532. The
ordinary chessboard can be replaced by a more general chessboard divided into mn
squares lying in m rows and n columns. A perfect cover need not exist now. Indeed,
there is no perfect cover for the 3-by-3 board. For which values of m and n does
the m-by-n chessboard have a perfect cover? It is not difficult to see that an m-by-n
chessboard will have a perfect cover if and only if at least one of m and n is even
or, equivalently, if and only if the number of squares of the chessboard is even. Fis-
cher has derived general formulas involving trigonometric functions for the number of
different perfect covers for the m-by-n chessboard. This problem is equivalent to a
famous problem in molecular physics known as the dimer problem. It originated in the
investigation of the absorption of diatomic atoms (dimers) on surfaces. The squares of
the chessboard correspond to molecules, while the dominoes correspond to the dimers.

M. E. Fischer, Statistical Mechanics of Dimers on a Plane Lattice, Physical Review, 124 (1961),
1664-1672.
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Consider once again the 8-by-8 chessboard and, with a pair of scissors, cut out
two diagonally opposite corner squares, leaving a total of 62 squares. Is it possible to
arrange 31 dominoes to obtain a perfect cover of this “pruned” board? Although the
pruned board is very close to being the 8-by-8 chessboard, which has over 12 million
perfect covers, it has no perfect cover. The proof of this is an example of simple, but
clever, combinatorial reasoning. In an ordinary 8-by-8 chessboard, usually the squares
are alternately colored black and white, with 32 of the squares colored white and 32
of the squares colored black. If we cut out two diagonally opposite corner squares, we
have removed two squares of the same color, say white. This leaves 32 black and 30
white squares. But each domino will cover one black and one white square, so that
31 nonoverlapping dominoes on the board cover 31 black and 31 white squares. We
conclude that the pruned board has no perfect cover. The foregoing reasoning can be
summarized by

31B[W] # 32B]+ 30[W].

More generally, we can take an m-by-n chessboard whose squares are alternately
colored black and white and arbitrarily cut out some squares, leaving a pruned board
of some type or other. When does a pruned board have a perfect cover? For a perfect
cover to exist, the pruned board must have an equal number of black and white squares.
But this is not sufficient, as the example in Figure 1.1 indicates.

W|ix |W|B|W
x |W|B|x|B
WIB|x|B|W
B|{W|B|W|B
Figure 1.1

Thus, we ask: What are necessary and sufficient conditions for a pruned board to
have a perfect cover? We will return to this problem in Chapter 9 and will obtain a
complete solution. There, a practical formulation of this problem is given in terms of
assigning applicants to jobs for which they qualify.

There is another way to generalize the problem of a perfect cover of an m-by-n
board by dominoes. Let b be a positive integer. In place of dominoes we now consider
1-by-b pieces that consist of b 1-by-1 squares joined side by side in a consecutive
manner. These pieces are called b-ominoes. and they can cover b consecutive squares
in a row or b consecutive squares in a column. In Figure 1.2, a 5-omino is illustrated.
A 2-omino is simply a domino. A 1-omino is also called a monomino.

LTI

Figure 1.2 A 5-omino
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A perfect cover of an m-by-n board by b-ominoes is an arrangement of b-ominoes on
the board so that (1) no two b-ominoes overlap, (2) every b-omino covers b squares of
the board, and (3) all the squares of the board are covered. When does an m-by-n
board have a perfect cover by b-ominoes? Since each square of the board is covered
by exactly one b-omino, in order for there to be a perfect cover, b must be a factor
of mn. Surely, a sufficient condition for the existence of a perfect cover is that b be
a factor of m or b be a factor of n. For if b is a factor of m, we may perfectly cover
the m-by-n board by arranging m /b b-ominoes in each of the n columns, while if b is
a factor of n we may perfectly cover the board by arranging n/b b-ominoes in each of
the m rows. Is this sufficient condition also necessary for there to be a perfect cover?
Suppose for the moment that b is a prime number and that there is a perfect cover
of the m-by-n board by b-ominoes. Then b is a factor of mn and, by a fundamental
property of prime numbers, b is a factor of m or b is a factor of n. We conclude that,
at least for the case of a prime number b, an m-by-n board can be perfectly covered
by b-ominoes if and only if b is a factor of m or b is a factor of n.

In case b is not a prime number, we have to argue differently. So suppose we have
the m-by-n board perfectly covered with b-ominoes. We want to show that either m
or n has a remainder of 0 when divided by b. We divide m and n by b obtaining
quotients p and q and remainders r and s, respectively:

pb+r, where 0<r<b-1,
gb+ s, where 0<s<b-1.

n

If r = 0, then b is a factor of m. If s = 0, then b is a factor of n. By interchanging the
two dimensions of the board, if necessary, we may assume that r < s. We then want
to show that r = 0.

1 3 b—1 b

b 112 b—2|b—-1
b-1 1 b—3|b-2

2 3|4 b 1

Figure 1.3 Coloring of a b-by-b board with b colors

We now generalize the alternate black-white coloring used in the case of dominoes
(b = 2) to b colors. We choose b colors, which we label as 1, 2, ... , b. We color a
b-by-b board in the manner indicated in Figure 1.3, and we extend this coloring to an
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m-by-n board in the manner illustrated in Figure 1.4 for the case m = 10, n = 11,
and b = 4. .

Each b-omino of the perfect covering covers one square of each of the b colors. It
follows that there must be the same number of squares of each color on the board. We
consider the board to be divided into three parts: the upper pb-by-n part, the lower
left r-by-gb part, and the lower right r-by-s part. (For the 10-by-11 board in Figure
1.4, we would have the upper 8-by-11 part, the 2-by-8 part in the lower left, and the
2-by-3 part in the lower right.) In the upper part, each color occurs p times in each
column and hence pn times all together. In the lower left part, each color occurs ¢
times in each row and hence rg times overall. Since each color occurs the same number
of times on the whole board, it now follows that each color occurs the same number
of times in the lower right r-by-s part.

W= N Qo ] = DN ol | =
N ] Dol i =] N[

Do eoff | = o] wof x| =] pof o
Qo il =l bof cof il = o] Co) s
= ol cof x| = poff col s =] o
| il = of o) il =] ro] wof i
= o] cof x| =] poff wof x| =] 0o
DO o] | = pof wolf x| =] pof

W DN QO W] =] DN QO W =

W =N QO | = DO COf | =
N QO =] DN OO ] = DD

Figure 1.4 Coloring of a 10-by-11 board with four colors

How many times does color 1 (and, hence, each color) occur in the r-by-s part?
Since r < s, the nature of the coloring is such that color 1 occurs once in each row of
the r-by-s part and hence r times in the r-by-s part. Let us now count the number of
squares in the r-by-s part. On the one hand, there are rs squares; on the other hand,
there are r squares of each of the b colors and so rb squares overall. Equating, we get
rs =rb. If r # 0, we cancel to get s = b, contradicting s < b—1. So r = 0, as desired.
We summarize as follows:

An m-by-n board has a perfect cover by b-ominoes if and only if b is a factor of m
or b is a factor of n.

A striking reformulation of the preceding statement is the following: Call a perfect
cover trivial if all the b-ominoes are horizontal or all the b-ominoes are vertical. Then
an m-by-n board has a perfect cover by b-ominoes if and only if it has a trivial perfect
cover. Note that this does not mean that the only perfect covers are the trivial ones.
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It does mean that if a perfect cover is possible, then a trivial perfect cover is also
possible.

We conclude this section with a domino-covering problem with an added feature.

Consider a 4-by-4 chessboard that is perfectly covered with 8 dominoes. Show
that it is always possible to cut the board into two nonempty horizontal pieces or
two nonempty vertical pieces without cutting through one of the 8 dominoes. The
horizontal or vertical line of such a cut is called a fault line of the perfect cover. Thus
a horizontal fault line implies that the perfect cover of the 4-by-4 chessboard consists
of a perfect cover of a k-by-4 board and a perfect cover of a (4 — k)-by-4 board for some
k =1,2, or 3. Suppose there is a perfect cover of a 4-by-4 board such that none of the
three horizontal lines and three vertical lines that cut the board into two nonempty
pieces is a fault line. Let z1, 22, z3 be, respectively, the number of dominoes that are
cut by the horizontal lines (see Figure 1.5).

z1
z2
Z3

Figure 1.5

Because there is no fault line, each of z;, z2, and z3 is positive. A horizontal domino
covers two squares in a row, while a vertical domino covers one square in each of two
rows. From these facts we conclude successively that z; is even, x5 is even, and z3 is
even. Hence,

r1+z0+23>22+24+2=06,

and there are at least 6 vertical dominoes in the perfect cover. In a similar way,
we conclude that there are at least 6 horizontal dominoes. Since 12 > 8, we have a
contradiction. Thus, it is impossible to cover perfectly a 4-by-4 board with dominoes
without creating a fault line.

1.2 Example: Magic Squares

Among the oldest and most popular forms of mathematical recreations are magic
squares, which have intrigued many important historical people. A magic square of
order n is an n-by-n array constructed out of the integers 1,2,3,...,n2 in such a way
that the sum of the integers in each row, in each column, and in each of the two
diagonals is the same number s. The number s is called the magic sum of the magic
square. Examples of magic squares of orders 3 and 4 are
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16 3 2 13
8 1 6
35 7| ana| 5101 &1 (1.1)
N 9 6 7 12

4 15 14 1

with magic sums 15 and 34, respectively. In medieval times there was a certain mys-

ticism associated with magic squares; they were worn for protection against evils.

Benjamin Franklin constructed many magic squares with additional properties.?
The sum of all the integers in a magic square of order n is

2 ni(n?+1)

14+2+3+--+n 5

using the formula for the sum of numbers in an arithmetic progression (see Section
7.1). Since a magic square of order n has n rows each with magic sum s, we obtain
the relation ns = n%(n%+1)/2. Thus, any two magic squares of order n have the same
magic sum, namely,

_n(n?+1)

==

The combinatorial problem is to determine for which values of n there is a magic
square of order n and to find general methods of construction. It is not difficult to
verify that there can be no magic square of order 2 (the magic sum would have to
be 5). But, for all other values of n, a magic square of order n can be constructed.
There are many special methods of construction. We describe here a method found
by de la Loubére in the seventeenth century for constructing magic squares of order n
when n is odd. First a 1 is placed in the middle square of the top row. The successive
integers are then placed in their natural order along a diagonal line that slopes upward
and to the right, with the following modifications:

(1) When the top row is reached, the next integer is put in the bottom row as if it
came immediately above the top row.

(2) When the right-hand column is reached, the next integer is put in the left-hand
column as if it had immediately succeeded the right-hand column.

(3) When a square that has already been filled is reached or when the top right-hand
square is reached, the next integer is placed in the square immediately below the
last square that was filled.

2See P. C. Pasles, The Lost Squares of Dr. Franklin: Ben Franklin’s Missing squares and the Secret
of the Magic Circle, Amer. Math. Monthly, 108 (2001), 489-511. Also see P. C. Pasles, Benjamin
Franklin’s Numbers: An Unsung Mathematical Odyssey, Princeton University Press, Princeton, NJ,
2008.
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The magic square of order 3 in (1.1), as well as the magic square

17 24 1 8 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
1 18 26 2 9

of order 5, was constructed by using de la Loubére’s method. Methods for constructing
magic squares of even orders different from 2 and other methods for constructing magic
squares of odd order can be found in a book by Rouse Ball.> Two of the magic squares
of order 8 constructed by Franklin are as follows:

( 52 61 4 13 20 29 36 457 [ 17 47 30 36 21 43 26 40 ]
14 3 62 51 46 35 30 19 32 34 19 45 28 38 23 41
53 60 5 12 21 28 37 44 | 33 31 46 20 37 27 42 24
11 6 59 54 43 38 27 22 48 18 35 29 44 22 39 25
55 58 7 10 23 26 39 42 |'| 49 15 62 4 53 11 58 8
9 8 57 56 41 40 25 24 64 2 51 13 60 6 55 9
50 63 2 15 18 31 34 47 1 63 14 52 5 59 10 56

116 1 64 49 48 33 32 17 ] [ 16 50 3 61 12 54 7 57 ]

These magic squares have some interesting properties. Can you see what they are?

Three-dimensional analogs of magic squares have been considered. A magic cube
of order n is an n-by-n-by-n cubical array constructed out of the integers 1,2,...,n%
in such a way that the sum s of the integers in the n cells of each of the following
straight lines is the same:

(1) lines parallel to an edge of the cube;
(2) the two diagonals of each plane cross section;
(3) the four space diagonals.

The number s is called the magic sum of the magic cube and has the value (n*+n)/2.
We leave it as an easy exercise to show that there is no magic cube of order 2, and we
verify that there is no magic cube of order 3.

Suppose that there is a magic cube of order 3. Its magic sum would then be 42.
Consider any 3-by-3 plane cross section

a b ¢
Ty z|,

d e f

3W. W. Rouse Ball, Mathematical Recreations and Essays; revised by H. S. M. Coxeter. Macmillan,
New York (1962), 193-221.
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with numbers as shown. Since the cube is magic,

a+y+f = 42
b+y+e = 42
ct+y+d = 42
a+b+c = 42
d+e+f = 42.

Subtracting the sum of the last two equations from the sum of the first three, we get
3y = 42 and, hence, y = 14. But this means that 14 has to be the center of each
plane cross section of the magic cube and, thus, would have to occupy seven different
places. But it can occupy only one place, and we conclude that there is no magic cube
of order 3. It is more difficult to show that there is no magic cube of order 4. A magic
cube of order 8 is given in an article by Gardner.*

Although magic squares continue to interest mathematicians, we will not study
them further in this book.

1.3 Example: The Four-Color Problem

Consider a map on a plane or on the surface of a sphere where the countries are con-
nected regions.> To differentiate countries quickly, we must color them so that two
countries that have a common boundary receive different colors (a corner does not
count as a common boundary). What is the smallest number of colors necessary to
guarantee that every map can be so colored? Until fairly recently, this was one of the
famous unsolved problems in mathematics. Its appeal to the layperson is due to the
fact that it can be simply stated and understood. More than any other mathemati-
cal problem, except possibly the well-known angle-trisection problem, the four-color
problem has intrigued more amateur mathematicians, many of whom came up with
faulty solutions. First posed by Francis Guthrie about 1850 when he was a graduate
student, it has also stimulated a large body of mathematical research. Some maps
require four colors. That’s easy to see. An example is the map in Figure 1.6. Since
each pair of the four countries of this map has a common boundary, it is clear that
four colors are necessary to color the map. It was proven by Heawood® in 1890 that
five colors are always enough to color any map. We give a proof of this fact in Chapter
12. Tt is not too difficult to show that it is impossible to have a map in the plane which

*M. Gardner, Mathematical Games, Scientific American, January (1976), 118-123.

5Thus, the state of Michigan would not be allowed as a country for such a map, unless we take into
account that the upper and lower peninsulas of Michigan are connected by the Straits of Mackinac
Bridge. Kentucky would also not be allowed, since its westernmost tip of Fulton County is completely
surrounded by Missouri and Tennessee.

SP. J. Heawood, Map-Colour Theorems, Quarterly J. Mathematics, Oxford ser., 24 (1890), 332-338.
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has five countries, every pair of which has a boundary in common. Such a map, if it
had existed, would have required five colors. But not having five countries every two
of which have a common boundary does not mean that four colors suffice. It might
be that some map in the plane requires five colors for other more subtle reasons.

1

A

Figure 1.6

Now there are proofs that every planar map can be colored using only four colors,
but they require extensive computer calculation.”

1.4 Example: The Problem of the 36 Officers

Given 36 officers of 6 ranks and from 6 regiments, can they be arranged in a 6-by-
6 formation so that in each row and column there is one officer of each rank and
one officer from each regiment? This problem, which was posed in the eighteenth
century by the Swiss mathematician L. Euler as a problem in recreational mathematics,
has important repercussions in statistics, especially in the design of experiments (see
Chapter 10). An officer can be designated by an ordered pair (i, j), where 7 denotes his
rank (i = 1,2,...,6) and j denotes his regiment (j = 1,2,...,6). Thus, the problem
asks the following question:

Can the 36 ordered pairs (i,7) (i =1,2,...,6;5 =1,2,...,6) be arranged
in a 6-by-6 array so that in each row and each column the integers 1,2,...,6
occur in some order in the first positions and in some order in the second
positions of the ordered pairs?

Such an array can be split into two 6-by-6 arrays, one corresponding to the first
positions of the ordered pairs (the rank array) and the other to the second positions
(the regiment array). Thus, the problem can be stated as follows:

Do there exist two 6-by-6 arrays whose entries are taken from the integers
1,2,...,6 such that

K. Appel and W. Haken, Every Planar Map is Four Colorable, Bulletin of the American Mathe-
matical Society, 82 (1976), 711-712; K. Appel and W. Haken, Every Planar Map is Four Colorable,
American Math. Society, Providence, RI (1989); and N. Robertson, D. P. Sanders, P. D. Seymour,
and R. Thomas, The Four-Colour Theorem, J. Combin. Theory Ser. B, 70 (1997), 2-44.
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(1) in each row and in each column of these arrays the integers 1,2,...,6
occur in some order, and

(2) when the two arrays are juxtaposed, all of the 36 ordered pairs (3, 7)
(i=1,2,...,6;7=1,2,...,6) occur?

To make this concrete, suppose instead that there are 9 officers of 3 ranks and
from 3 different regiments. Then a solution for the problem in this case is

1 2 3 1 2 3 (1,1) (2,2) (3,3

31 24, 2 31 — (3,2) (1,3) (2,1) (1.2)

2 31 31 2 (2,3) (3,1) (1,2) ’
rank array  regiment array juxtaposed array

The preceding rank and regiment arrays are examples of Latin squares of order 3; each
of the integers 1, 2, and 3 occurs once in each row and once in each column. The
following are Latin squares of orders 2 and 4:

12
12 41
[21]‘"““i 3 4

2 3

The two Latin squares of order 3 in (1.2) are called orthogonal because when they are
juxtaposed, all of the 9 possible ordered pairs (%, ), with ¢ = 1,2,3 and j = 1,2,3,
result. We can thus rephrase Euler’s question:

(1.3)

W =N o
N W

Do there exist two orthogonal Latin squares of order 67

Euler investigated the more general problem of orthogonal Latin squares of order n.
It is easy to see that there is no pair of orthogonal Latin squares of order 2, since,
besides the Latin square of order 2 given in (1.3), the only other one is

2 1
12
and these are not orthogonal. Euler showed how to construct a pair of orthogonal Latin
squares of order n whenever 7 is odd or has 4 as a factor. Notice that this does not
include n = 6. On the basis of many trials he concluded, but did not prove, that there
is no pair of orthogonal Latin squares of order 6, and he conjectured that no such pair

existed for any of integers 6,10,14,18,...,4k + 2,... . By exhaustive enumeration,
Tarry® in 1901 proved that Euler’s conjecture was true for n = 6. Around 1960,

8G. Tarry, Le Probléme de 36 officiers, Compte Rendu de |’Association Francaise pour I’Avancement
de Science Naturel, 1 (1900), 122-123; 2 (1901), 170-203.



1.4. EXAMPLE: THE PROBLEM OF THE 36 OFFICERS 13

three mathematician-statisticians, R. C. Bose, E. T. Parker, and S. S. Shrikhande,®
succeeded in proving that Euler’s conjecture was false for all n > 6. That is, they
showed how to construct a pair of orthogonal Latin squares of order n for every n of the
form 4k+2, k = 2,3,4,... . This was a major achievement and put Euler’s conjecture
to rest. Later we shall explore how to construct orthogonal Latin squares using finite
number systems called finite fields and how they can be applied in experimental design.

As a concluding remark to this section, we observe that in the number placement
puzzle called Sudoku, which became an international success in 2005, one is asked to
construct a special Latin square of order 9 that has been partitioned into nine 3-by-3
squares as follows:

In each Sudoku puzzle, some of the entries of a 9-by-9 square have been filled in
such a way that there is a unique and logical way to complete it to a Latin square of
order 9 with the additional constraint that each of the nine 3-by-3 squares contains the
integers 1,2,3,4,5,6,7,8,9. Thus each of the nine rows, columns, and 3-by-3 squares
is to contain one each of the numbers 1,2,...,9. The level of difficulty of a Sudoku
puzzle depends on the depth of the logic needed to determine how to fill the empty
boxes and in what order.

An example of a Sudoku puzzle is

3 5 2 7
': 7 3
46 5]8
3 1 9 6
7
8 4 5 9
2]1 63
8 6
6 4 8| |1

°R. C. Bose, E. T. Parker and S. S. Shrikhande, Further Results on the Construction of Mutually
Orthogonal Latin squares and the Falsity of Euler’s conjecture, Canadian Journal of Mathematics, 12
(1960), 189-203.
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whose solution is

319(5(6(4|8|2({1]|7
2118 715[3[9({4]|6
714(6(9{2(1(5|8|3
513[2(18]9)|716]|4
416(9(2|3|7)1|5]|8
1181746153192
812|1|5|7]|4]6]3]|9
9|713(18|1(6/4]2]5
61543192871

The solution to a Sudoku puzzle is an instance of a Latin square called a gerechte
design, where an n-by-n square is partitioned into n regions each containing n squares
and each of the integers 1,2,...,n occurs once in each row and columns (so we get a
Latin square) and once in each of the n regions.!®

We give a simple example of a gerechte design coming from a partitioning of a
4-by-4 square into four L-shaped regions containing four squares each. We use the
symbols #, {, &, and © to denote the different regions, as shown below.

L I I IR 112134
A0 413[2]1
QO[O0 [2[1]4]3
& H KO 3[4[1]2

1.5 Example: Shortest-Route Problem

Consider a system of streets and intersections. A person wishes to travel from one
intersection A to another intersection B. In general, there are many available routes
from A to B. The problem is to determine a route for which the distance traveled is as
small as possible, a shortest route. This is an example of a combinatorial optimization
problem. One possible way to solve this problem is to list in a systematic way all
possible routes from A to B. It is not necessary to travel over any street more than
once; thus, there is only a finite number of such routes. Then compute the distance
traveled for each and select a shortest route. This is not a very efficient procedure and,
when the system is large, the amount of work may be too great to permit a solution
in a reasonable amount of time. What is needed is an algorithm for determining
a shortest route in which the work involved in carrying out the algorithm does not
increase too rapidly as the system increases in size. In other words, the amount of
work should be bounded by a polynomial function (as opposed to, say, an exponential
function) of the size of the problem. In Section 11.7 we describe such an algorithm.

%R, A. Bailey, P.- J. Cameron, and R. Connelly, Sudoku, Gerechte Designs, Resolutions, Affine
Spaces, Spreads, Reguli, and Hamming Codes, Amer. Math. Monthly, 115 (2008), 383-404.
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This algorithm will actually find a shortest route from A to every other intersection
in the system.

X 2 c
1 1 2
b
1 1 y
1 1
1
a 2 d
Figure 1.7

The problem of finding a shortest route between two intersections can be viewed
abstractly. Let V be a finite set of objects called vertices (which correspond to the
intersections and the ends of dead-end streets), and let E be a set of unordered pairs
of vertices called edges (which correspond to the streets). Thus, some pairs of vertices
are joined by edges, while others are not. The pair (V, E) is called a graph. A walk in
the graph joining vertices z and y is a sequence of vertices such that the first vertex
is  and the last vertex is y, and any two consecutive vertices are joined by an edge.
Now associate with each edge a nonnegative real number, the length of the edge. The
length of a walk is the sum of the lengths of the edges that join consecutive vertices
of the walk. Given two vertices z and y, the shortest-route problem is to find a walk
from z to y that has the smallest length. In the graph depicted in Figure 1.7, there
are 6 vertices and 10 edges. The numbers on the edges denote their lengths. One
walk joining z and y is z, a, b, d,y, and it has length 4. Another is z,b,d, y, and it has
length 3. It is not difficult to see that the latter walk gives a shortest route joining x
and y.

A graph is an example of a discrete structure which has been and continues to be
extensively studied in combinatorics. The generality of the notion allows for its wide
applicability in such diverse fields as psychology, sociology, chemistry, genetics, and
communications science. Thus, the vertices of a graph might correspond to people,
with two vertices joined by an edge if the corresponding people distrust each other; or
the vertices might represent atoms, and the edges represent the bonds between atoms.
You can probably imagine other ways in which graphs can be used to model phenom-
ena. Some important concepts and properties of graphs are studied in Chapters 9, 11,
and 12.

1.6 Example: Mutually Overlappiﬁg Circles

Consider n mutually overlapping circles 71,72, .. ., ¥n in general position in the plane.
By mutually overlapping we mean that each pair of the circles intersects in two distinct
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points (thus nonintersecting or tangent circles are not allowed). By general position,
we mean that there do not exist three circles with a common point.!! The n circles
create a number of regions in the plane. The problem is to determine how many
regions are so created.

Let hy, equal the number of regions created. We easily compute that h; = 2 (the
inside and outside of the circle 71), ho = 4 (the usual Venn diagram for two sets),
and hg = 8 (the usual Venn diagram for three sets). Since the numbers seem to be
doubling, it is tempting now to think that hy = 16. However, a picture quickly reveals
that hy = 14 (see Figure 1.8).

Figure 1.8 Four mutually overlapping circles in general position

One way to solve counting problems of this sort is to try to determine the change

in the number of regions that occurs when we go from n — 1 circles 741,...,Vp-1 to
n circles 71, ..., Yn—1,Yn- In more formal language, we try to determine a recurrence
relation for h,; that is, express h,, in terms of previous values.

So assume that n > 2 and that the n — 1 mutually overlapping circles v, ...,Vn_1

have been drawn in the plane in general position creating h,_; regions. Then put in the
nth circle vy, so that there are now n mutually overlapping circles in general position.
Each of the first n — 1 circles intersects the nth circle v, in two points, and since the
circles are in general position we obtain 2(n — 1) distinct points P, Py, ..., Py,_1).
These 2(n — 1) points divide 7y, into 2(n — 1) arcs: the arc between P; and P;, the arc
between P2 and P, ..., the arc between Py,_1)_; and Py(,_1), and the arc between
Py(n_1) and Py. Each of these 2(n — 1) arcs divides a region formed by the first n — 1
circles 71,...,7n—1 into two, creating 2(n — 1) more regions. Thus, h, satisfies the
relation

hp = hp-1+2(n—1), (n>2). (1.4)

We can use the recurrence relation (1.4) to obtain a formula for A, in terms of the
parameter n. By iterating (1.4),'2 we obtain

hn = hp_1+2(n-1)

"1t is not necessary that the “circles” be round. Closed convex curves are sufficient.
12That is, applying (1.4) over and over again until finally we get to hy which we know to be 2.
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hn = hp_g+2(n—2)+2(n-1)
hn3+2n—-3)+2(n—2)+2(n-1)

>
3
Il

hp = h1+2(1)+22)+---+2(n—-2)+2(n-1).
Since h1 =2,and 1 +2+--- + (n — 1) = n(n — 1)/2, we get

n(n—1)

hn=2+2 5

=n?-n+2, (n>2).
This formula is also valid for n = 1, since h; = 2. A formal proof of this formula can
now be given using mathematical induction.

1.7 Example: The Game of Nim

We close this introductory chapter by returning to the roots of combinatorics in recre-
ational mathematics and investigating the ancient game of Nim.!3 Its solution depends
on parity, an important problem-solving concept in combinatorics. We used a simple
parity argument in investigating perfect covers of chessboards when we showed that a
board had to have an even number of squares to have a perfect cover with dominoes.

Nim is a game played by two players with heaps of coins (or stones or beans).
Suppose that there are k > 1 heaps of coins that contain, respectively, ny, ng,..., ng
coins. The object of the game is to select the last coin. The rules of the game are as
follows:

(1) The players alternate turns (let us call the player who makes the first move 1
and then call the other player II).

(2) Each player, when it is his or her turn, selects one of the heaps and removes at
least one of the coins from the selected heap. (The player may take all of the
coins from the selected heap, thereby leaving an empty heap, which is now “out
of play.”)

The game ends when all the heaps are empty. The last player to make a move—that
is, the player who takes the last coin(s)—is the winner.

The variables in this game are the number k& of heaps and the numbers ny, ng, ..., ng
of coins in the heaps. The combinatorial problem is to determine whether the first or
second player wins!4 and how that player should move in order to guarantee a win—a
winning strategy.

13 Nim derives from the German Nimm/, meaning Take!.
4 With intelligent play.
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To develop some understanding of Nim, we consider some special cases.’® If there
is initially only one heap, then player I wins by removing all the coins. Now suppose
that there are k = 2 heaps, with n; and ng coins, respectively. Whether or not player
I can win depends not on the actual values of n; and ns but on whether or not they
are equal. Suppose that n; # no. Player I can remove enough coins from the larger
heap in order to leave two heaps of equal size for player II. Now player I, when it is
her turn, can mimic player II’s moves. Thus if player II takes ¢ coins from one of the
heaps, then player I takes the same number ¢ of coins from the other heap. Such a
strategy guarantees a win for player I. If n; = ng, then player II can win by mimicking
player I's moves. Thus, we have completely solved 2-heap Nim. An example of play
in the 2-heap game of Nim with heaps of sizes 8 and 5, respectively, is

8555585259202 L00.

The preceding idea in solving 2-heap Nim, namely, moving in such a way as to
leave two equal heaps, can be generalized to any number k of heaps. The insight one
needs is provided by the concept of the base 2 numeral of an integer. Recall that each
positive integer n can be expressed as a base 2 numeral by repeatedly removing the
largest power of 2 which does not exceed the number. For instance, to express the
decimal number 57 in base 2, we observe that

25 <57 <28, 57-25=25
2 <25<2% 25-2¢4=9
2 <9<2t 9-28=1
<1<2, 1-20=0.

Thus,
57 = 2% + 2% + 2% 4 20,

and the base 2 numeral for 57 is
111001.

Each digit in a base 2 numeral is either 0 or 1. The digit in the ith position, the one
corresponding to 2¢, is called the ith bit!6 (i > 0). We can think of each heap of coins
as consisting of subheaps of powers of 2, according to its base numeral. Thus a heap of
size 53 consists of subheaps of sizes 2°,24,22, and 2°. In the case of 2-heap Nim, the
total number of subheaps of each size is either 0, 1, or 2. There is exactly one subheap
of a particular size if and only if the two heaps have different sizes. Put another way,
the total number of subheaps of each size is even if and only if the two heaps have the
same size—that is, if and only if player II can win the Nim game.

15This is an important principle to follow in general: Consider small or special cases to develop
understanding and intuition. Then try to extend your ideas to solve the problem in general.
¥The word bit is short for binary digit.
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Now consider a general Nim game with heaps of sizes ni,ng,...,ng. Express each
of the numbers n; as base 2 numerals:

ni = AQag-**a1ap
ng = bg---bibg
N = €g---€1€0.

(By including leading Os, we can assume that all of the heap sizes have base 2 numerals
with the same number of digits.) We call a Nim game balanced, provided that the
number of subheaps of each size is even. Thus, a Nim game is balanced if and only if

as+bs+ -+ es is even,
a; +b; +--- +e; is even,

ag+bg+ -+ eg is even.

A Nim game that is not balanced is called unbalanced. We say that the ith bit is
balanced provided that the sum a; + b; + - - - +¢€; is even, and is unbalanced otherwise.
Thus, a balanced game is one in which all bits are balanced, while an unbalanced game
is one in which there is at least one unbalanced bit.

We then have the following:

Player I can win in unbalanced Nim games, and player II can win in bal-
anced Nim games.

To see this, we generalize the strategies used in 2-heap Nim. Suppose the Nim game
is unbalanced. Let the largest unbalanced bit be the jth bit. Then player I moves in
such a way as to leave a balanced game for player II. She does this by selecting a heap
whose jth bit is 1 and removing a number of coins from it so that the resulting game
is balanced (see also Exercise 32). No matter what player II does, she leaves for player
I an unbalanced game again, and player I once again balances it. Continuing like this
ensures player I a win. If the game starts out balanced, then player I's first move
unbalances it, and now player II adopts the strategy of balancing the game whenever
it is her move.

For example, consider a 4-heap Nim game with heaps of sizes 7, 9, 12, and 15. The
base 2 numerals for these heap sizes are, respectively, 0111, 1001, 1100, and 1111. In
terms of subheaps of powers of 2, we have:

P=8|22=4|2!=2]2°=1]|
Heap of size 7 0
Heap of size 9

Heap of size 12
Heap of size 15

| = O

o e
OO
O =] =
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This game is unbalanced with the 3rd, 2nd and Oth bits unbalanced. Player I can
remove 11 coins from the pile of size 12, leaving 1 coin. Since the base 2 numeral of
1 is 0001, the game is now balanced. Alternatively, player I can remove 5 coins from
the pile of size 9, leaving 4 coins, or player I can remove 13 coins from the pile of size
15, leaving 2 coins.

-

1.8 Exercises

1.

Show that an m-by-n chessboard has a perfect cover by dominoes if and only if
at least one of m and n is even.

. Consider an m-by-n chessboard with m and n both odd. To fix the notation,

suppose that the square in the upper left-hand corner is colored white. Show
that if a white square is cut out anywhere on the board, the resulting pruned
board has a perfect cover by dominoes.

. Imagine a prison consisting of 64 cells arranged like the squares of an 8-by-8

chessboard. There are doors between all adjoining cells. A prisoner in one of
the corner cells is told that he will be released, provided he can get into the
diagonally opposite corner cell after passing through every other cell exactly
once. Can the prisoner obtain his freedom?

. (a) Let f(n) count the number of different perfect covers of a 2-by-n chessboard

by dominoes. Evaluate f(1), f(2), f(3), f(4), and f(5). Try to find (and verify)
a simple relation that the counting function f satisfies. Use this relation to
compute f(12).

(b) * Let g(n) be the number of different perfect covers of a 3-by-n chessboard
by dominoes. Evaluate g(1),g(2),...,g(6).

. Find the number of different perfect covers of a 3-by-4 chessboard by dominoes.

. Consider the following three-dimensional version of the chessboard problem: A

three-dimensional domino is defined to be the geometric figure that results when
two cubes, one unit on an edge, are joined along a face. Show that it is possible
to construct a cube n units on an edge from dominoes if and only if n is even. If
n is odd, is it possible to construct a cube n units on an edge with a 1-by-1 hole
in the middle? (Hint: Think of a cube n units on an edge as being composed of
n3 cubes, one unit on an edge. Color the cubes alternately black and white.)

. Let a and b be positive integers with a a factor of b. Show that an m-by-n board

has a perfect cover by a-by-b pieces if and only if a is a factor of both m and
n and b is a factor of either m or n. (Hint: Partition the a-by-b pieces into a
1-by-b pieces.)
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. Use Exercise 7 to conclude that when a is a factor of b, an m-by-n board has a

perfect cover by a-by-b pieces if and only if it has a trivial perfect cover in which
all the pieces are oriented the same way.

. Show that the conclusion of Exercise 8 need not hold when a is not a factor of b.

Verify that there is no magic square of order 2.

Use de la Loubeére’s method to construct a magic square of order 7.
Use de la Loubeére’s method to construct a magic square of order 9.
Construct a magic square of order 6.

Show that a magic square of order 3 must have a 5 in the middle position.
Deduce that there are exactly 8 magic squares of order 3.

Can the following partial square be completed to obtain a magic square of order
47

2 3

4

Show that the result of replacing every integer a in a magic square of order n
with n? + 1 — a is a magic square of order n.

Let n be a positive integer divisible by 4, say n = 4m. Consider the following
construction of an n-by-n array:

(1) Proceeding from left to right and from first row to nth row, fill in the places
of the array with the integers 1,2,...,n? in order.

(2) Partition the resulting square array into m? 4-by-4 smaller arrays. Replace
each number a on the two diagonals of each of the 4-by-4 arrays with its
“complement” n? +1 — a.

Verify that this construction produces a magic square of order n when n = 4
and n = 8. (Actually it produces a magic square for each n divisible by 4.)

Show that there is no magic cube of order 2.
* Show that there is no magic cube of order 4.

Show that the following map of 10 countries {1,2,...,10} can be colored with
three but no fewer colors. If the colors used are red, white, and blue, determine
the number of different colorings.
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(a) Does there exist a magic hezagon of order 2?7 That is, is it possible to arrange
the numbers 1,2,...,7 in the following hexagonal array so that all of the nine
“line” sums (the sum of the numbers in the hexagonal boxes penetrated by a

line through midpoints of opposite sides) are the same?

(b) * Construct a magic hexagon of order 3; that is, arrange the integers
1,2,...,19 in a hexagonal array (three integers on a side) in such a way that all
of the fifteen “line” sums are the same (namely, 38).

Construct a pair of orthogonal Latin squares of order 4.

Construct Latin squares of orders 5 and 6.

Find a general method for constructing a Latin square of 6rder n.

A 6-by-6 chessboard is perfectly covered with 18 dominoes. Prove that it is pos-
sible to cut it either horizontally or vertically into two nonempty pieces without

cutting through a domino; that is, prove that there must be a fault line.

Construct a perfect cover of an 8-by-8 chessboard with dominoes having no
fault-line.

Determine all shortest routes from A to B in the system of intersections and
streets (graph) in the following diagram. The numbers on the streets represent
the lengths of the streets measured in terms of some unit.
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28.

29.

30.

31.

32.

33.

34.

35.

Consider 3-heap Nim with heaps of sizes 1, 2, and 4. Show that this game is
unbalanced and determine a first move for player I.

Is 4-heap Nim with heaps of sizes 22, 19, 14, and 11 balanced or unbalanced?
Player Is first move is to remove 6 coins from the heap of size 19. What should
player II's first move be?

Consider 5-heap Nim with heaps of sizes 10, 20, 30, 40, and 50. Is this game
balanced? Determine a first move for player I.

Show that player I can always win a Nim game in which the number of heaps
with an odd number of coins is odd.

Show that in an unbalanced game of Nim in which the largest unbalanced bit is
the jth bit, player I can always balance the game by removing coins from any
heap the base 2 numeral of whose number has a 1 in the jth bit.

Suppose we change the object of Nim so that the player who takes the last coin
loses (the misére version). Show that the following is a winning strategy: Play
as in ordinary Nim until all but exactly one heap contains a single coin. Then
remove either all or all but one of the coins of the exceptional heap so as to leave
an odd number of heaps of size 1.

A game is played between two players, alternating turns as follows: The game
starts with an empty pile. When it is his turn, a player may add either 1, 2,
3, or 4 coins to the pile. The person who adds the 100th coin to the pile is the
winner. Determine whether it is the first or second player who can guarantee a
win in this game. What is the winning strategy?

Suppose that in Exercise 34, the player who adds the 100th coin loses. Now who
wins, and how?
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Eight people are at a party and pair off to form four teams of two. In how many
ways can this be done? (This is sort of an “unstructured” domino-covering
problem.)

A Latin square of order n is idempotent provided the integers {1,2,...,n} occur
in the diagonal positions (1,1),(2,2),...,(n,n) in the order 1,2,...,n, and is
symmetric provided the integer in position (¢, j) equals the integer in position
(4,%) whenever ¢ # j. There is no symmetric, idempotent Latin square of order
2. Construct a symmetric, idempotent Latin square of order 3. Show that there
is no symmetric, idempotent Latin square of order 4. What about order n in
general, where n is even?

Take any set of 2n points in the plane with no three collinear, and then arbitrarily
color each point red or blue. Prove that it is always possible to pair up the red
points with the blue points by drawing line segments connecting them so that
no two of the line segments intersect.

Consider an n-by-n board and L-tetrominoes (4 squares joined in the shape of an
L). Show that if there is a perfect cover of the n-by-n board with L-tetrominoes,
then n is divisible by 4. What about m-by-n-boards?

Solve the following Sudoku puzzle,

5 6
8 7
715 6|4 '
3|6 8 21415
2 3 9 6
5[1|7 2 8|3
214 7|8
3
1 3
Solve the following Sudoku puzzle,

7 1{5/4 8
2 509 8 6
67 34
3 2
7|2 9|6
8 3|4 219 5
5 81716 2
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42.

43.

44.

Let Sy, denote the staircase board with 1+2+---+n = n(n+1)/2 squares. For
example, Sy is
| x| x|x
X | x
X

Prove that S, does not have a perfect cover with dominoes for any n > 1.

Consider a block of wood in the shape of a cube, 3 feet on an edge. It is desired
to cut the cube into 27 smaller cubes, 1 foot on an edge. One way to do this is
to make 6 cuts, 2 in each direction, while keeping the cube in one block. Is it
possible to use fewer cuts if the pieces can be rearranged between cuts?

Show how to cut a cube, 3 feet on an edge, into 27 cubes, 1 foot on an edge, using
exactly 6 cuts but making a nontrivial rearrangement of the pieces between two
of the cuts.






Chapter 2

Permutations and Combinations

Most readers of this book will have had some experience with simple counting prob-
lems, so the concepts “permutation” and “combination” are probably familiar. But
the experienced counter knows that even rather simple-looking problems can pose dif-
ficulties in their solutions. While it is generally true that in order to learn mathematics
one must do mathematics, it is especially so here—the serious student should attempt
to solve a large number of problems.

In this chapter, we explore four general principles and some of the counting formu-
las that they imply. Each of these principles gives a complementary principle, which
we also discuss. We conclude with an application of counting to finite probability.

2.1 Four Basic Counting Principles

The first principle! is very basic. It is one formulation of the principle that the whole
is equal to the sum of its parts.

Let S be a set. A partition of S is a collection Sy, So,..., Sy of subsets of S such
that each element of S is in exactly one of those subsets:

S=S5USU---USn,,

SiNS; =0, (i 7).

Thus, the sets S1,Ss,...,Sn are pairwise disjoint sets, and their union is S. The
subsets S1,S9,...,S, are called the parts of the partition. We note that by this
definition a part of a partition may be empty, but usually there is no advantage in

! According to the The Random House College Dictionary, Revised Edition, 1997, a principle is (1)
an accepted or professed rule of action or conduct, (2) a basic law, axiom, or doctrine. Our principles in
this section are basic laws of mathematics and important rules of action for solving counting problems.
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considering partitions with one or more empty parts. The number of objects of a set
S is denoted by |S| and is sometimes called the size of S.

Addition Principle. Suppose that a set S is partitioned into pairwise disjoint parts
S1,82,...,Sm. The number of objects in S can be determined by finding the number
of objects in each of the parts, and adding the numbers so obtained:

IS] = [S1] +|S2| + - - - + |Sml.

If the sets Sy, Sa,...,Sm are allowed to overlap, then a more profound principle, the
inclusion-exclusion principle of Chapter 6, can be used to count the number of objects
inS.

In applying the addition principle, we usually define the parts descriptively. In
other words, we break up the problem into mutually exclusive cases that exhaust all
possibilities. The art of applying the addition principle is to partition the set S to be
counted into “manageable parts”—that is, parts which we can readily count. But this
statement needs to be qualified. If we partition S into too many parts, then we may
have defeated ourselves. For instance, if we partition S into parts each containing only
one element, then applying the addition principle is the same as counting the number
of parts, and this is basically the same as listing all the objects of S. Thus, a more
appropriate description is that the art of applying the addition principle is to partition
the set S into not too many manageable parts.

Example. Suppose we wish to find the number of different courses offered by the
University of Wisconsin-Madison. We partition the courses according to the depart-
ment in which they are listed. Provided there is no cross-listing (cross-listing occurs
when the same course is listed by more than one department), the number of courses
offered by the University equals the sum of the number of courses offered by each
department. a

Another formulation of the addition principle in terms of choices is the following:
If an object can be selected from one pile in p ways and an object can be selected from
a separate pile in q ways, then the selection of one object chosen from either of the
two piles can be made in p + q ways. This formulation has an obvious generalization
to more than two piles.

Example. A student wishes to take either a mathematics course or a biology course,
but not both. If there are four mathematics courses and three biology courses for which
the student has the necessary prerequisites, then the student can choose a course to
take in 4 + 3 = 7 ways. m]

The second principle is a little more complicated. We state it for two sets, but it
can also be generalized to any finite number of sets.

Multiplication Principle. Let S be a set of ordered pairs (a,b) of objects, where the
first object a comes from a set of size p, and for each choice of object a there are q
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choices for object b. Then the size of S is p X ¢:
[S|=pxgq.

The multiplication principle is actually a consequence of the addition principle.
Let a1,a9,...,a, be the p different choices for the object a. We partition S into
parts S1,8S2,...,Sp where S; is the set of ordered pairs in S with first object a;,
(i=1,2,...,p). The size of each S; is ¢; hence, by the addition principle,

IS| = |S1| +|S2| +--- +|Sp|
= qg+q+--+q (pg¥s)
= pXxgq.

Note how the basic fact—multiplication of whole numbers is just repeated addition—
enters into the preceding derivation.

A second useful formulation of the multiplication principle is as follows: If a first
task has p outcomes and, no matter what the outcome of the first task, a second task
has g outcomes, then the two tasks performed consecutively have p X g outcomes.

Example. A student is to take two courses. The first meets at any one of 3 hours in
the morning, and the second at any one of 4 hours in the afternoon. The number of
schedules that are possible for the student is 3 x 4 = 12. a

As already remarked, the multiplication principle can be generalized to three,
four, or any finite number of sets. Rather than formulate it in terms of n sets, we give
examples for n = 3 and n = 4.

Example. Chalk comes in three different lengths, eight different colors, and four
different diameters. How many different kinds of chalk are there?

To determine a piece of chalk of a specific type, we carry out three different tasks
(it does not matter in which order we take these tasks): Choose a length, Choose a
color, Choose a diameter. By the multiplication principle, there are 3 x 8 x 4 = 96
different kinds of chalk. m]

Example. The number of ways a man, woman, boy, and girl can be selected from
five men, six women, two boys, and four girls is 5 X 6 x 2 x 4 = 240.

The reason is that we have four different tasks to carry out: select a man (five
ways), select a woman (six ways), select a boy (two ways), select a girl (four ways).
If, in addition, we ask for the number of ways one person can be selected, the answer
is 5+ 6 +2 44 = 17. This follows from the addition principle for four piles. a

Example. Determine the number of positive integers that are factors of the number

3% x 52 x 117 x 138.



30 CHAPTER 2. PERMUTATIONS AND COMBINATIONS

The numbers 3,5,11, and 13 are prime numbers. By the fundamental theorem of
arithmetic, each factor is of the form

3 x 5 x 11F x 13},

where 0 <1<4,0<3j<2,0<k<7 and 0 <! < 8. There are five choices for 1,
three for j, eight for k, and nine for I. By the multiplication principle, the number of
factors is

5x 3 x8x9=1080.

a

In the multiplication principle the ¢ choices for object b may vary with the choice of
a. The only requirement is that there be the same number ¢ of choices, not necessarily
the same choices.

Example. How many two-digit numbers have distinct and nonzero digits?

A two-digit number ab can be regarded as an ordered pair (a,b), where a is the
tens digit and b is the units digit. Neither of these digits is allowed to be 0 in the
problem, and the two digits are to be different. There are nine choices for a, namely
1,2,...,9. Once a is chosen, there are eight choices for b. If a = 1, these eight choices
are 2,3,...,9, if a = 2, the eight choices are 1,3,...,9, and so on. What is important
for application of the multiplication principle is that the number of choices is always
8. The answer to the questions is, by the multiplication principle, 9 x 8 = 72.

We can arrive at the answer 72 in another way. There are 90 two-digit numbers,
10,11,12,...,99. Of these numbers, nine have a 0, (namely, 10,20,..., 90) and nine
have identical digits (namely, 11,22,...,99). Thus the number of two-digit numbers
with distinct and nonzero digits equals 90 — 9 — 9 = 72. a

The preceding example illustrates two ideas. One is that there may be more than
one way to arrive at the answer to a counting question. The other idea is that to find
the number of objects in a set A (in this case the set of two-digit numbers with distinct
and nonzero digits) it may be easier to find the number of objects in a larger set U
containing S (the set of all two-digit numbers in the preceding example) and then
subtract the number of objects of U that do not belong to A (the two-digit numbers
containing a 0 or identical digits). We formulate this idea as our third principle.

Subtraction Principle. Let A be a set and let U be a larger set containing A. Let
A=U\A={zecU:z¢ A}

be the complement of A in U. Then the number | A} of objects in A is given by the
rule .
|1A| = |U| - |A].

In applying the subtraction principle, the set U is usually some natural set con-
sisting of all the objects under discussion (the so-called universal set). Using the
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subtraction principle makes sense only if it is easier to count the number of objects in
U and in A than to count the number of objects in A.

Example. Computer passwords are to consist of a string of six symbols taken from
the digits 0,1,2,...,9 and the lowercase letters a,b,c,...,2. How many computer
passwords have a repeated symbol?

We want to count the number of objects in the set A of computer passwords with a
repeated symbol. Let U be the set of all computer passwords, Taking the complement
of Ain U we get the set A of computer passwords with no repeated symbol. By two
applications of the multiplication principle, we get

|U| = 36 = 2,176,782, 336

and
|A| = 36-35-34-33-32- 31 = 1,402, 410, 240.

Therefore,

|A] = |U| - |A] = 2,176,782, 336 — 1,402,410, 240 = 774, 372, 096.

We now formulate the final principle of this section.

Division Principle. Let S be a finite set that is partitioned into k parts in such a
way that each part contains the same number of objects. Then the number of parts
in the partition is given by the rule

5]

~ Tumber of objects in a part’

Thus, we can determine the number of parts if we know the number of objects in S
and the common value of the number of objects in the parts.

Example. There are 740 pigeons in a collection of pigeonholes. If each pigeonhole
contains 5 pigeons, the number of pigeonholes equals
740

— =148,
5 8

(]

More profound applications of the division principle will occur later in this book.
Now consider the next example.

Example. You wish to give your Aunt Mollie a basket of fruit. In your refrigerator
you have six oranges and nine apples. The only requirement is that there must be at
least one piece of fruit in the basket (that is, an empty basket of fruit is not allowed).
How many different baskets of fruit are possible?
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One way to count the number of baskets is the following: First, ignore the re-
quirement that the basket cannot be empty. We can compensate for that later. What
distinguishes one basket of fruit from another is the number of oranges and number
of apples in the basket. There are 7 choices for the number of oranges (0,1,...,6)
and 10 choices for the number of apples (0,1,...,9). By the multiplication principle,
the number of different baskets is 7 x 10 = 70. Subtracting the empty basket, the
answer is 69. Notice that if we had not (temporarily) ignored the requirement that
the basket be nonempty, then there would have been 9 or 10 choices for the number
of apples depending on whether or not the number of oranges was 0, and we could
not have applied the multiplication principle directly. But an alternative solution is
the following. Partition the nonempty baskets into two parts, S; and S, where S;
consists of those baskets with no oranges and Sy consists of those baskets with at least
one orange. The size of S7is9 (1,2,...,9 apples) and the size of Sz by the foregoing
reasoning is 6 X 10 = 60. The number of possible baskets of fruit is, by the addition
principle, 9 + 60 = 69. m]

We made an implicit assumption in the preceding example which we should now
bring into the open. It was assumed in the solution that the oranges were indistin-
guishable from one another (an orange is an orange is an orange is ...) and that the
apples were indistinguishable from one another. Thus, what mattered in making up
a basket of fruit was not which apples and which oranges went into it but only the
number of each type of fruit. If we distinguished among the various oranges and the
various apples (oné orange is perfectly round, another is bruised, a third very juicy,
and so on), then the number of baskets would be larger. We will return to this example
in Section 3.5.

Before continuing with more examples, we discuss some general ideas.
A great many counting problems can be classified as one of the following types:

(1) Count the number of ordered arrangements or ordered selections of objects

(a) without repeating any object,
(b) with repetition of objects permitted (but perhaps limited).

(2) Count the number of unordered arrangements or unordered selections of objects
(a) without repeating any object,

(b) with repetition of objects permitted (but perhaps limited).

Instead of distinguishing between nonrepetition and repetition of objects, it is some-
times more convenient to distinguish between selections from a set and a multiset.
A multiset is like a set except that its members need not be distinct.? For example,

2Thus a multiset breaks one of the cardinal rules of sets, namely, elements are not repeated in sets;
they are either in the set or not in the set. The set {a,a,b} is the same as the set {a, b} but not so
for multisets.
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we might have a multiset M with three a’s, one b, two ¢’s, and four d’s, that is, 10
elements of 4 different types: 3 of type a, 1 of type b, 2 of type ¢, and 4 of type d. We
shall usually indicate a multiset by specifying the number of times different types of
elements occur in it. Thus, M shall be denoted by {3-a,1-b,2-¢,4-d}.> The numbers
3,1,2, and 4 are the repetition numbers of the multiset M. A set is a multiset that has
all repetition numbers equal to 1. To include the listed case (b) when there is no limit
on the number of times an object of each type can occur (except for that imposed by
the size of the arrangement), we allow infinite repetition numbers.? Thus, a multiset
in which a and c each have an infinite repetition number and b and d have repetition
numbers 2 and 4, respectively, is denoted by {00 -a,2-b,00 - ¢,4-d}. Arrangements
or selections in (1) in which order is taken into consideration are generally called per-
mutations, whereas arrangements or selections in (2) in which order is irrelevant are
generally called combinations. In the next two sections we will develop some general
formulas for the number of permutations and combinations of sets and multisets. But
not all permutation and combination problems can be solved by using these formulas.
It is often necessary to return to the basic addition, multiplication, subtraction, and
division principles.

Example. How many odd numbers between 1000 and 9999 have distinct digits?

A number between 1000 and 9999 is an ordered arrangement of four digits. Thus
we are asked to count a certain collection of permutations. We have four choices to
make: a units, a tens, a hundreds, and a thousands digit. Since the numbers we want
to count are odd, the units digit can be any one of 1,3,5,7,9. The tens and the
hundreds digit can be any one of 0,1,...,9, while the thousands digit can be any one
of 1,2,...,9. Thus, there are five choices for the units digit. Since the digits are to
be distinct, we have eight choices for the thousands digit, whatever the choice of the
units digit. Then, there are eight choices for the hundreds digit, whatever the first two
choices were, and seven choices for the tens digit, whatever the first three choices were.
Thus, by the multiplication principle, the answer to the question is 5x8x 8x 7 = 2240.
]

Suppose in the previous example we made the choices in a different order: First
choose the thousands digit, then the hundreds, tens, and units. There are nine choices
for the thousands digit, then nine choices for the hundreds digit (since we are allowed
to use 0), eight choices for the tens digit, but now the number of choices for the units
digit (which has to be odd) depends on the previous choices. If we had chosen no
odd digits, the number of choices for the units digit would be 5; if we had chosen one
odd digit, the number of choices for the units digit would be 4; and so on. Thus, we
cannot invoke the multiplication principle if we carry out our choices in the reverse
order. There are two lessons to learn from this example. One is that as soon as your

31f we wanted to follow standard set-theoretic notation, we could designate the multiset M using
ordered pairs as {(a,3), (b,1), (¢, 2), (d,4)}.
4There are no circumstances in which we will have to worry about different sizes of infinity.
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answer for the number of choices of one of the tasks is “it depends” (or some such
words), the multiplication principle cannot be applied. The second is that there may
not be a fixed order in which the tasks have to be taken, and by changing the order a
problem may be more readily solved by the multiplication principle. A rule of thumb
to keep in mind is to make the most restrictive choice first.

Example. How many integers between 0 and 10,000 have only one digit equal to 57

Let S be the set of integers between 0 and 10,000 with only one digit equal to 5.

First solution: We partition S into the set S; of one-digit numbers in S, the set S
of two-digit numbers in S, the set S3 of three-digit numbers in S, and the set Sy of
four-digit numbers in S. There are no five-digit numbers in S. We clearly have

S| = 1.

The numbers in Sy naturally fall into two types: (1) the units digit is 5, and (2) the
tens digit is 5. The number of the first type is 8 (the tens digit cannot be 0 nor can
it be 5). The number of the second type is 9 (the units digit cannot be 5). Hence,

[S2] =8 +9=17.
Reasoning in a similar way, we obtain
|S3] =8x9+8x9+9x9=225 and

[Se| =8x9x9+8x9Ix9+8x9x9+9x9x9=2673.

Thus,
|S| =1+ 17 + 225 + 2673 = 2916.

Second solution: By including leading zeros (e.g., think of 6 as 0006, 25 as 0025, 352
as 0352), we can regard each number in S as a four-digit number. Now we partition
S into the sets S7,.55,.5%,5; according to whether the 5 is in the first, second, third,
or fourth position. Each of the four sets in the partition contains 9 x 9 x 9 = 729
integers, and so the number of integers in S equals

4 x 729 = 2916.

O

Example. How many different five-digit numbers can be constructed out of the digits
1,1,1,3 8

Here we are asked to count permutations of a multiset with three objects of one
type, one of another, and one of a third. We really have only two choices to make:
which position is to be occupied by the 3 (five choices) and then which position is to
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be occupied by the 8 (four choices). The remaining three places are occupied by 1s.
By the multiplication principle, the answer is 5 x 4 = 20.
If the five digits are 1, 1, 1, 3, 3, the answer is 10, half as many. [}

These examples clearly demonstrate that mastery of the addition and multiplica-
tion principles is essential for becoming an expert counter.

2.2 Permutations of Sets

Let 7 be a positive integer. By an r-permutation of a set S of n elements, we understand
an ordered arrangement of 7 of the n elements. If S = {a,b,c}, then the three 1-
permutations of S are

a b c,
the six 2-permutations of S are
ab ac ba be ca cb,
and the six 3-permutations of S are
abc ach bac bea cab cba.

There are no 4-permutations of S since S has fewer than four elements.

We denote by P(n,r) the number of 7-permutations of an n-element set. If 7 > n,
then P(n,r) = 0. Clearly P(n,1) = n for each positive integer n. An n-permutation
of an n-element set S will be more simply called a permutation of S or a permutation
of n elements. Thus, a permutation of a set S can be thought of as a listing of the
elements of S in some order. Previously we saw that P(3,1) = 3,P(3,2) = 6, and
P(3,3) =6.

Theorem 2.2.1 For n and r positive integers with r < n,
Pn,ry=nx(n—1)x---x(n—7r+1).

Proof. In constructing an r-permutation of an n-element set, we can choose the first
item in n ways, the second item in n— 1 ways, whatever the choice of the first item, . .
., and the rth item in n—(r — 1) ways, whatever the choice of the first 7 — 1 items. By
the multiplication principle the 7 items can be choseninnx (n—1)x--- x (n—7+1)
ways. . a

For a nonnegative integer n, we define n! (read n factorial) by

nl=nxn-1)x---x2x1,
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with the convention that 0! = 1. We may then write

n!

P(n,r) = m

For n > 0, we define P(n,0) to be 1, and this agrees with the formula when r = 0.
The number of permutations of n elements is

!
P(n,n) = % =nl.

Example. The number of four-letter “words” that can be formed by using each of
the letters a, b, c,d,e at most once is P(5,4), and this equals 5!/(5 — 4)! = 120. The
number of five-letter words equals P(5,5), which is also 120. a

Example. The so-called “15 puzzle” consists of 15 sliding unit squares labeled with
the numbers 1 through 15 and mounted in a 4-by-4 square frame as shown in Figure
2.1. The challenge of the puzzle is to move from the initial position shown to any
specified position. (That challenge is not the subject of this problem.) By a position,
we mean an arrangement of the 15 numbered squares in the frame with one empty
unit square. What is the number of positions in the puzzle (ignoring whether it is
possible to move to the position from the initial one)?

11 2| 3| 4
5| 6| 7] 8
9|10 1112
13|14 |15
Figure 2.1

The problem is equivalent to determining the number of ways to assign the numbers
1,2,...,15 to the 16 squares of a 4-by-4 grid, leaving one square empty. Since we
can assign the number 16 to the empty square, the problem is also equivalent to
determining the number of assignments of the numbers 1,2,...,16 to the 16 squares,
and this is P(16,16) = 16!.

What is the number of ways to assign the numbers 1,2,...,15 to the squares
of a 6-by-6 grid, leaving 21 squares empty? These assignments correspond to the 15-
permutations of the 36 squares as follows: To an assignment of the numbers 1,2,...,15
to 15 of the squares, we associate the 15-permutation of the 36 squares obtained by
putting the square labeled 1 first, the square labeled 2 second, and so on. Hence the
total number of assignments is P(36,15) = 36!/21!. O

Example. What is the number of ways to order the 26 letters of the alphabet so that
no two of the vowels a, €, 1,0, and u occur consecutively?
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The solution to this problem (like so many counting problems) is straightforward
once we see how to do it. We think of two main tasks to be accomplished. The
first task is to decide how to order the consonants among themselves. There are 21
consonants, and so 21! permutations of the consonants. Since we cannot have two
consecutive vowels in our final arrangement, the vowels must be in 5 of the 22 spaces
before, between, and after the consonants. Our second task is to put the vowels in
these places. There are 22 places for the a, then 21 for the e, 20 for the i, 19 for the
o, and 18 for the u. That is, the second task can be accomplished in

22!
P(22,5) = —
(22,5) = 1
ways. By the multiplication principle, we determine that the number of ordered ar-
rangements of the letters of the alphabet with no two vowels consecutive is
22!
21 x —.
17
' ]

Example. How many seven-digit numbers are there such that the digits are dis-
tinct integers taken from {1,2,...,9} and such that the digits 5 and 6 do not appear
consecutively in either order?

We want to count certain 7-permutations of the set {1,2,...,9}, and we partition
these 7-permutations into four types: (1) neither 5 nor 6 appears as a digit; (2)
5, but not 6, appears as a digit; (3) 6, but not 5, appears as a digit; (4) both 5
and 6 appear as digits. The permutations of type (1) are the 7-permutations of
{1,2,3,4,7,8,9}, and hence their number is P(7,7) = 7! = 5040. The permutations
of type (2) can be counted as follows: The digit equal to 5 can be any one of the seven
digits. The remaining six digits are a 6-permutation of {1,2,3,4,7,8,9}. Hence there
are 7TP(7,6) = 7(7!) = 35,280 numbers of type (2). In a similar way we see that there
are 35,280 numbers of type (3). To count the number of permutations of type (4), we
partition the permutations of type (4) into three parts:

First digit equal to 5, and so second digit not equal to 6:

There are five places for the 6. The other five digits constitute a 5-permutation of the
7 digits {1,2,3,4,7,8,9}. Hence, there are

5xT!

5x P(7,5) = 51

= 12,600

numbers in this part.
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Last digit equal to 5, and so next to last digit not equal to 6:

£6 5.

By an argument similar to the preceding, we conclude that there are also 12,600
numbers in this part.

A digit other than the first or last is equal to 5:

The place occupied by 5 is any one of the five interior places. The place for the 6 can
then be chosen in four ways. The remaining five digits constitute a 5-permutation of
the seven digits {1,2,3,4,7,8,9}. Hence, there are 5 x 4 x P(7,5) = 50,400 numbers
in this category. Thus, there are

2(12,600) +50,400="75,600
numbers of types (4). By the addition principle, the answer to the problem posed is
5040 +2(35,280) +75,600 =151,200.

The solution just given was arrived at by partitioning the set of objects we wanted
to count into manageable parts, parts the number of whose objects we could calculate,
and then using the addition principle. An alternative, and computationally easier,
solution is to use the subtraction principle as follows. Let us consider the entire
collection T of seven-digit numbers that can be formed by using distinct integers from
{1,2,...,9}. The set T then contains

P(9,7) = % = 181,440

numbers. Let S consist of those numbers in 7" in which 5 and 6 do not occur consecu-
tively; so the complement S consists of those numbers in 7" in which 5 and 6 do occur
consecutively. We wish to determine the size of S. If we can find the size of S, then
our problem is solved by the subtraction principle. How many numbers are there in
57 In S, the digits 5 and 6 occur consecutively. There are six ways to position a 5
followed by a 6, and six ways to position a 6 followed by a 5. The remaining digits
constitute a 5-permutation of {1,2,3,4,7,8,9}. So the number of numbers in S is

2 x 6 x P(7,5) = 30, 240.
But then S contains 181,440 — 30,240 = 151, 200 numbers.

The permutations that we have just considered are more properly called linear
permutations. We think of the objects as being arranged in a line. If instead of
arranging objects in a line, we arrange them in a circle, the number of permutations
is smaller. Think of it this way: Suppose six children are marching in a circle. In how
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many different ways can they form their circle? Since the children are moving, what
matters are their positions relative to each other and not to their environment. Thus,
it is natural to regard two circular permutations as being the same provided one can
be brought to the other by a rotation, that is, by a circular shift. There are six linear
permutations for each circular permutation. For example, the circular permutation

arises from each of the linear permutations
123456 234561 345612

456123 561234 612345

by regarding the last digit as coming before the first digit. Thus, there is a 6-to-1
correspondence between the linear permutations of six children and the circular per-
mutations of the six children. Therefore, to find the number of circular permutations,
we divide the number of linear permutations by 6. Hence, the number of circular
permutations of the six children equals 6!/6 = 5!.

Theorem 2.2.2 The number of circular r-permutations of a set of n elements is given

by
P(n,r) n!

r r-(n-nr)

In particular, the number of circular permutations of n elements is (n — 1)!.

Proof. A proof is essentially contained in the preceding paragraph and uses the divi-
sion principle. The set of linear r-permutations can be partitioned into parts in such
a way that two linear r-permutations correspond to the same circular r-permutation
if and only if they are in the same part. Thus, the number of circular r-permutations
equals the number of parts. Since each part contains r linear r-permutations, the
number of parts is given by

P(n,r) _ n!
r r-(n—r)

) a

For emphasis, we remark that the preceding argument worked because each part
contained the same number of r-permutations so that we could apply the division
principle to determine the number of parts. If, for example, we partition a set of 10
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objects into parts of sizes 2,4, and 4, respectively, the number of parts cannot be
obtained by dividing 10 by 2 or 4.

Another way to view the counting of circular permutations is the following: Sup-
pose we wish to count the number of circular permutations of A, B,C,D, E, and F
(the number of ways to seat A, B,C, D, E, and F around a table). Since we are free
to rotate the people, any circular permutation can be rotated so that A is in a fixed
position; think of it as the “head” of the table:

A

E

Now that A is fixed, the circular permutations of A, B,C, D, F, and F can be identified
with the linear permutations of B,C, D, E, and F. (The preceding circular permuta-
tion is identified with the linear permutation DFEBC'.) There are 5! linear permuta-
tions of B,C, D, E, and F, and hence 5! circular permutations of A, B,C, D, E, and
F.

This way of looking at circular permutations is also useful when the formula for
circular permutations cannot be applied directly.

Example. Ten people, including two who do not wish to sit next to one another, are
to be seated at a round table. How many circular seating arrangements are there?

We solve this problem using the subtraction principle. Let the 10 people be
Py, P, Ps,..., Py, where P; and P, are the two who do not wish to sit together.
Consider seating arrangements for 9 people X, Ps, ..., Pjp at a round table. There are
8! such arrangements. If we replace X by either P;, P, or by Ps, P; in each of these
arrangements, we obtain a seating arrangement for the 10 people in which P; and
P, are next to one another. Hence using the subtraction principle, we see that the
number of arrangements in which P, and P, are not together is 9! — 2 x 8! =7 x 8!.

Another way to analyze this problem is the following: First seat P; at the “head”
of the table. Then P, cannot be on either side of P;. There are 8 choices for the
person on P;’s left, 7 choices for the person on P;’s right, and the remaining seats can
be filled in 7! ways. Thus, the number of seating arrangements in which P; and P,
are not together is

8xTxT=T7x8l

a

As we did before we discussed circular permutations, we will continue to use per-
mutation to mean “linear permutation.”

Example. The number of ways to have 12 different markings on a rotating drum is
P(12,12)/12 = 111 O
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Example. What is the number of necklaces that can be made from 20 beads, each of
a different color?

There are 20! permutations of the 20 beads. Since each necklace can be rotated
without changing the arrangement of the beads, the number of necklaces is at most
20!/20 = 19!. Since a necklace can also be turned over without changing the arrange-
ment of the beads, the total number of necklaces, by the division principle, is 19!/2.
O

Circular permutations and necklaces are counted again in Chapter 14, in a more
general context.

2.3 Combinations (Subsets) of Sets

Let S be a set of n elements. A combination of a set S is a term usually used to denote
an unordered selection of the elements of S. The result of such a selection is a subset
A of the elements of S: A C S. Thus a combination of S is a choice of a subset of
S. As a result, the terms combination and subset are essentially interchangeable, and
we shall generally use the more familiar subset rather than perhaps the more awkward
combination, unless we want to emphasize the selection process.

Now let r be a nonnegative integer. By an r-combination of a set S of n elements,
we understand an unordered selection of r of the n objects of S. The result of an
r-combination is an 7-subset of S, a subset of S consisting of r of the n objects of S.
Again, we generally use “r-subset” rather than “r-combination.”

If S = {a,b,c,d}, then

{a,b,¢},{a,b,d}, {a,c,d}, {b,¢c,d}

are the four 3-subsets of S. We denote by ('r’) the number of r-subsets of an n-element

set.® Obviously,
(n) =0 ifr > n.
T

<O)=0 ifr > 0.
r

The following facts are readily seen to be true for each nonnegative integer n:

()= ()= ()=

Also,

In particular, (8) = 1. The basic formula for the number of r-subsets is given in the
next theorem.

®Other common notations for these numbers are C(n,r) and »Cy.



42 CHAPTER 2. PERMUTATIONS AND COMBINATIONS

P(n,r) =r! (’:)

() = ey

Proof. Let S be an n-element set. Each r-permutation of S arises in exactly one way
as a result of carrying out the following two tasks:

Theorem 2.3.1 For0<r <n,

Hence,

(1) Choose 7 elements from S.
(2) Arrange the chosen r elements in some order.

The number of ways to carry out the first task is, by definition, the number (7). The
number of ways to carry out the second task is P(r,7) = r!. By the multiplication

principle, we have P(n,r) = r! (';) We now use our formula P(n,r) = nﬁ!” and
obtain
n P(n,r) n!
= = . [m]
r 7! ri(n—r)!

Example. Twenty-five points are chosen in the plane so that no three of them are
collinear. How many straight lines do they determine? How many triangles do they
determine?

Since no three of the points lie on a line, every pair of points determines a unique
straight line. Thus, the number of straight lines determined equals the number of
2-subsets of a 25-element set, and this is given by

25 25!
(2) = 231 — 300

Similarly, every three points determines a unique triangle, so that the number of
triangles determined is given by

25\ 28!

3/ 3n2r

Example. There are 15 people enrolled in a mathematics course, but exactly 12
attend on any given day. The number of different ways that 12 students can be chosen

is
15\ _ 15!
12/ 7 1213

O
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If there are 25 seats in the classroom, the 12 students could seat themselves in
P(25,12) = 25!/13! ways. Thus, there are

15 15!25!
P(25,12) = ———
(12) (25,12) 1213113!
ways in which an instructor might see the 12 students in the classroom. a

Example. How many eight-letter words can be constructed by using the 26 letters of
the alphabet if each word contains three, four, or five vowels? It is understood that
there is no restriction on the number of times a letter can be used in a word.

We count the number of words according to the number of vowels they contain
and then use the addition principle.
First, consider words with three vowels. The three positions occupied by the vowels

can be chosen in ( g ) ways; the other five positions are occupied by. consonants. The

vowel positions can then be completed in 5% ways and the consonant positions in 21°
ways. Thus, the number of words with three vowels is

8\ 3515 _ 8! 355
= —5v21°.
(3>5 28 = 5021

In a similar way, we see that the number of words with four vowels is

8\ paga _ 8 44
1 = —5%2
(4)5 =g

and the number of words with five vowels is

8\ 5043 _ 8! 1503
(5)5 21 —5!3!5 21°.

Hence, the total number of words is

8 355, 8 paga ., 8 5008
3—!5?5 21 +M5 21 +ﬁ5 21°.
The following important property is immediate from Theorem 2.3.1:

Corollary 2.3.2 For0<r <n,
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The numbers ('r‘) have many important and fascinating properties, and Chapter 5
is devoted to some of these. For the moment, we discuss only two basic properties.

Theorem 2.3.3 (Pascal’s formula) For all integers n and k with 1 <k <n-—1,

ny (n-1 n—1
) -=Ce)+G)
Proof. One way to prove this identity is to substitute the values of these numbers
as given in Theorem 2.3.1 and then check that both sides are equal. We leave this
straightforward verification to the reader.

A combinatorial proof can be obtained as follows: Let S be a set of n elements.
We distinguish one of the elements of S and denote it by z. Let S\ {z} be the set
obtained from S by removing the element . We partition the set X of k-subsets of S
into two parts, A and B. In A we put all those k-subsets which do not contain z. In
B we put all the k-subsets which do contain z. The size of X is |X| = (2), hence, by

the addition principle,
n
=|A| +|B|.
(3) =1ai+15

The k-subsets in A are exactly the k-subsets of the set S\ {z} of n— 1 elements; thus,
the size of A is )
n p—
Al = .
= (")

A k-subset in B can always be obtained by adjoining the element z to a (k — 1)-subset
of S\ {z}. Hence, the size of B satisfies

o= (i)
Combining these facts, we obtain
n n-1 n—1
()= (e)=Go)
[m]

To illustrate the proof, let n =5, k = 3, and S = {z, a, b, c,d}. Then the 3-subsets
of S'in A are

{a,b,¢},{a,b,d},{a,c,d},{b,c,d}.
These are the 3-subsets of the set {a,b,c,d}. The 3-subsets S in B are
{zy a? b}’ {$7 a? c}? {x, a7 d}7 {$7 b7 C}’ {m7 b! d}’ {$7 C7 d}'

Upon deletion of the element z in these 3-subsets, we obtain

{a,b},{a,c}, {a,d},{b,c}, {b,d}, {c, d},
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the 2-subsets of {a, b, c,d}. Thus,

() --see- () ()

Theorem 2.3.4 Forn >0,

n n n n
DI = 2”
(6)+ () )+ ()=
and the common value equals the number of subsets of an n-element set.

Proof. We prove this theorem by showing that both sides of the preceding equation
count the number of subsets of an n-element set S, but in different ways. First we
observe that every subset of S is an r-subset of S for some 7 =0, 1,2,...,n. Since (’r‘)
equals the number of r-subsets of S, it follows from the addition principle that

(6)+()+ () =+ ()

equals the number of subsets of S.

We can also count the number of subsets of S by breaking down the choice of a
subset into n tasks: Let the elements of S be z1,22,...,2,. In choosing a subset of S,
we have two choices to make for each of the n elements: z; either goes into the subset
or it doesn’t, x5 either goes into the subset or it doesn’t, . . . |, z, either goes into the
subset or it doesn’t. Thus, by the multiplication principle, there are 2" ways we can
form a subset of S. We now equate the two counts and complete the proof. O

The proof of Theorem 2.3.4 is an instance of obtaining an identity by counting the
objects of a set (in this case the subsets of a set of n elements) in two different ways
and setting the results equal to one another. This technique of “double counting” is a,
powerful one in combinatorics, and we will see several other applications of it.

Example. The number of 2-subsets of the set {1,2,...,n} of the first n positive
integers is (’2‘) Partition the 2-subsets according to the largest integer they contain.
For each i = 1,2,...,n, the number of 2-subsets in which ¢ is the largest integer is
i — 1 (the other integer can be any of 1,2,...,7 — 1). Equating the two counts, we
obtain the identity

0+1424-+(n—1)= (g) =§(—n§—i).
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2.4 Permutations of Multisets

If S is a multiset, an r-permutation of S is an ordered arrangement of  of the objects
of S. If the total number of objects of S is n (counting repetitions), then an n-
permutation of S will also be called a permutation of S. For example, if S = {2-a,1-
b,3 - c}, then

ache chee

are 4-permutations of S, while
abceca

is a permutation of S. The multiset S has no 7-permutations since 7 > 2+ 143 =6,
the number of objects of S. We first count the number of r-permutations of a multiset
S, each of whose repetition number is infinite.

Theorem 2.4.1 Let S be a multiset with objects of k different types, where each object
has an infinite repetition number. Then the number of r-permutations of S is k.

Proof. In constructing an r-permutation of S, we can choose the first item to be an
object of any one of the k types. Similarly, the second item can be an object of any one
of the k types, and so on. Since all repetition numbers of S are infinite, the number
of different choices for any item is always k and it does not depend on the choices of
any previous items. By the multiplication principle, the 7 items can be chosen in k"
ways. [m]

An alternative phrasing of the theorem is: The number of r-permutations of k
distinct objects, each available in unlimited supply, equals k". We also note that the
conclusion of the theorem remains true if the repetition numbers of the k different
types of objects of S are all at least r. The assumption that the repetition numbers
are infinite is a simple way of ensuring that we never run out of objects of any type.

Example. What is the number of ternary numerals® with at most four digits?

The answer to this question is the number of 4-permutations of the multiset {co -
0,00 - 1,00 - 2} or of the multiset {4-0,4-1,4-2}. By Theorem 2.4.1, this number
equals 3¢ = 81. O

We now count permutations of a multiset with objects of k different types, each
with a finite repetition number.

Theorem 2.4.2 Let S be a multiset with objects of k different types with finite repe-
tition numbers ni,ng, ..., Nk, respectively. Let the size of S ben =n; +ng+--- +ng.
Then the number of permutations of S equals
n!
nllng! s nk!'

SA ternary numeral, or base 3 numeral, is one arrived at by representing a number in terms of
powers of 3. For instance, 46 = 1 x 3% + 2 x 32 + 0 x 3' +1 x 3°, and so its ternary numeral is 1201.
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Proof. We are given a multiset S having objects of k types, say a1,as,...,a;, with
repetition numbers nj,na, ..., ng, respectively, for a total of n = ny +ng +--- + ng
objects. We want to determine the number of permutations of these n objects. We
can think of it this way. There are n places, and we want to put exactly one of the
objects of S in each of the places. We first decide which places are to be occupied
by the a1’s. Since there are n; a1’s in S, we must choose a subset of n; places from
the set of n places. We can do this in (:1 ) ways. We next decide which places are
to be occupied by the ay’s. There are n — ny places left, and we must choose ng of
them. This can be done in (";:1) ways. We next find that there are (”_'::3""2) ways
to choose the places for the az’s. We continue like this, and invoke the multiplication
principle and find that the number of permutations of S equals

n n-—ng n—niy—ng n—mp —ng—--+—Ng_1
n1 ng ns Nk '

Using Theorem 2.3.1, we see that this number equals

n! (n—mn)! (n—n1 —ng)!
- nil(n — n1)! nal(n — n1 — na)! ngl(n — ny — ng — ng)!
L (n—mi-mng - —myy)!
nk!(n—nl —MNg—--- —nk)!’

which, after cancellation, reduces to

n! n!
ninglng! - nglo! T nylnglng! - ng!

a
Example. The number of permutations of the letters in the word MISSISSIPPI is

11!
11414121’
since this number equals the number of permutations of the multiset {1- M,4.1,4-
S,2- P}. a

If the multiset S has only two types, a; and a3, of objects with repetition numbers
n1 and ng, respectively, where n = n; + ng, then according to Theorem 2.4.2, the
number of permutations of S is

nl n! _(n
nmlng! ~ nil(n—m)! ~ \ny)’

Thus we may regard (:1) as the number of ni-subsets of a set of n objects, and also
as the number of permutations of a multiset with two types of objects with repetition
numbers n; and n — ny, respectively.




48 CHAPTER 2. PERMUTATIONS AND COMBINATIONS

There is another interpretation of the numbers #,’nkl that occur in Theorem
2.4.2. This concerns the problem of partitioning a set of objects into parts of prescribed
sizes where the parts now have labels assigned to them. To understand the implications

of the last phrase, we offer the next example.

Example. Consider a set of the four objects {a, b, ¢,d} that is to be partitioned into
two sets, each of size 2. If the parts are not labeled, then there are three different
partitions:

{a,0},{c,d}; {a,c},{b,d}; {a,d},{b,c}.
Now suppose that the parts are labeled with different labels ( e.g,. the colors red and
blue). Then the number of partitions is greater; indeed, there are six, since we can
assign the labels red and blue to each part of a partition in two ways. For instance,
for the particular partition {a, b}, {c,d} we have

red box{a, b}, blue box{c, d}

and
blue box{a, b}, red box{c, d}.

a

In the general case, we can label the parts By, Bs, ..., By (thinking of color 1, color
2, ..., color k), and we also think of the parts as boxes. We then have the following
result.

Theorem 2.4.3 Let n be a positive integer and let ni,na, ..., ng be positive integers
with n =ny +ng + -+ +ng. The number of ways to partition a set of n objects into k
labeled bozes in which Box 1 contains ny objects, Box 2 contains ny objects, ..., Box
k contains ny objects equals \
n!
n1!n2! tee nk! ’
If the bozes are not labeled, and ny = ng = --- = ny, then the number of partitions
equals
n!
k!m!ng! s nk! )

Proof. The proof is a direct application of the multiplication principle. We have to
choose which objects go into which boxes, subject to the size restrictions. We first
choose n; objects for the first box, then ng of the remaining n — n; objects for the
second box, then n3 of the remaining n — n; — ng objects for the third box, ..., and
finally n—nj —- - - —ng_1 = ng objects for the kth box. By the multiplication principle,
the number of ways to make these choices is

n n—na n—ny—ng n—mp—ng —- > —Ng_1
m ny n3 ng ‘
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As in the proof of Theorem 2.4.2, this gives

n!
nylng!--- nk!'

If boxes are not labeled and n; = ny = --- = ng, then the result has to be divided
by k!. This is so because, as in the preceding example, for each way of distributing
the objects into the k unlabeled boxes there are k! ways in which we can now attach
the labels 1,2,..., k. Hence, using the division principle, we find that the number of
partitions with unlabeled boxes is

n!
k'nl'nQ' cee nk! '
a

The more difficult problem of counting partitions in which the sizes of the parts
are not prescribed is studied in Section 8.2.

We conclude this section with an example of a kind that we shall refer to many
times in the remainder of the text.” The example concerns nonattacking rooks on a
chessboard. Lest the reader be concerned that knowledge of chess is a prerequisite for
the rest of the book, let us say at the outset that the only fact needed about the game
of chess is that two rooks can attack one another if and only if they lie in the same
row or the same column of the chessboard. No other knowledge of chess is necessary
(nor does it help!). Thus, a set of nonattacking rooks on a chessboard simply means
a collection of “pieces” called rooks that occupy certain squares of the board, and no
two of the rooks lie in the same row or in the same column.

Example. How many possibilities are there for eight nonattacking rooks on an 8-by-8
chessboard?

An example of eight nonattacking rooks on an 8-by-8 board is the following:

®

®

®

®

We give each square on the board a pair (3, 7) of coordinates. The integer 7 desig-
nates the row number of the square, and the integer j designates the column number

"It is the author’s favorite kind of example to illustrate many ideas.
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of the square. Thus, i and j are integers between 1 and 8. Since the board is 8-by-8
and there are to be eight rooks on the board that cannot attack one another, there
must be exactly one rook in each row. Thus, the rooks must occupy eight squares
with coordinates

(le); (27j2)) ceey (8aj8)’

But there must also be exactly one rook in each column so that no two of the numbers
J1,72,---,J8 can be equal. More precisely,

jl’j27" . 7j8

must be a permutation of {1,2,...,8}. Conversely, if ji, j2,...,js is a permutation of

{1,2,...,8}, then putting rooks in the squares with coordinates (1, j1), (2, j2), ..., (8, 78)
we arrive at eight nonattacking rooks on the board. Thus, we have a one-to-one corre-

spondence between sets of 8 nonattacking rooks on the 8-by-8 board and permutations

of {1,2,...,8}. Since there are 8! permutations of {1,2,...,8}, there are 8! ways to

place eight rooks on an 8-by-8 board so that they are nonattacking.

We implicitly assumed in the preceding argument that the rooks were indistin-
guishable from one another, that is, they form a multiset of eight objects all of one
type. Therefore, the only thing that mattered was which squares were occupied by
rooks. If we have eight distinct rooks, say eight rooks each colored with one of eight
different colors, then we have also to take into account which rook is in each of the
eight occupied squares. Let us thus suppose that we have eight rooks of eight differ-
ent colors. Having decided which eight squares are to be occupied by the rooks (8!
possibilities), we now have also to decide what the color is of the rook in each of the
occupied squares. As we look at the rooks from row 1 to row 8, we see a permutation
of the eight colors. Hence, having decided which eight squares are to be occupied (8!
possibilities), we then have to decide which permutation of the eight colors (8! permu-
tations) we shall assign. Thus, the number of ways to have eight nonattacking rooks
of eight different colors on an 8-by-8 board equals

818! = (8)2.

Now suppose that, instead of rooks of eight different colors, we have one red (R)
rook, three blue (B) rooks, and four (Y) yellow rooks. It is assumed that rooks of
the same color are indistinguishable from one another.2 Now, as we look at the rooks
from row 1 to row 8, we see a permutation of the colors of the multiset

{1-R,3-B,4-Y}.
The number of permutations of this multiset equals, by Theorem 2.4.2,

8!
113141

8Put another way, the only way we can tell one rook from another is by color.
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Thus, the number of ways to place one red, three blue, and four yellow rooks on an
8-by-8 board so that no rook can attack another equals
. 8 (8H2
11314 T 113141
a
The reasoning in the preceding example is quite general and leads immediately to
the next theorem.

Theorem 2.4.4 There are n rooks of k colors with ny rooks of the first color, ny rooks

of the second color, . . . , and ny rooks of the kth color. The number of ways to
arrange these rooks on an n-by-n board so that no rook can attack another equals
n! _ (nh)?

n! = .
n1!n2!"~nk! nl!n2!~~-nk!
a

Note that if the rooks all have different colors (k =n and all n, = 1), the formula
gives (n!)? as an answer. If the rooks are all colored the same (k = 1 and n; = n), the
formula gives n! as an answer.

Let S be an n-element multiset with repetition numbers equal to ny,ns,...,ng, so
that n = n; +ng + -+ +ng. Theorem 2.4.2 furnishes a simple formula for the number
of n-permutations of S. If r < n, there is, in general, no simple formula for the number
of r-permutations of S.- Nonetheless a solution can be obtained by the technique of
generating functions, and we discuss this in Chapter 7. In certain cases, we can argue
as in the next example.

Example. Consider the multiset S = {3 -a,2-b,4 - c} of nine objects of three types.
Find the number of 8-permutations of S.

The 8-permutations of S can be partitioned into three parts:
(i) 8-permutations of {2-a,2-b,4 - c}, of which there are

8!

oo — 420

(ii) 8-permutations of {3:a,1:b,4-c}, of which there are

(iii) 8-permutations of {3-a,2-b,3-c}, of which there are

8!

3nm1 — 060
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Thus, the number of 8-permutations of S is

420 + 280 + 560 = 1260.

2.5 Combinations of Multisets

If S is a multiset, then an r-combination of S is an unordered selection of r of the
objects of S. Thus, an r-combination of S (more precisely, the result of the selection)
is itself a multiset, a submultiset of S of size r, or, for short, an r-submultiset. If
S has n objects, then there is only one n-combination of S, namely, S itself. If S
contains objects of k different types, then there are k 1-combinations of S. Unlike when
discussing combinations of sets, we generally use combination rather than submultiset.

Example. Let S = {2-4a,1-b,3-c}. Then the 3-combinations of S are
{2-a,1-b}, {2-a,1:¢}, {l:q,1:b,1-¢},
{1-a,2-¢}, {1-b,2-¢}, {3-c}.
a

We first count the number of r-combinations of a multiset all of whose repetition
numbers are infinite (or at least 7).

Theorem 2.5.1 Let S be a multiset with objects of k types, each with an infinite
repetition number. Then the number of r-combinations of S equals

()=

Proof. Let the k types of objects of S be aj,as,...,a so that
S ={0-a1,00-a,...,00" a}.

Any r-combination of S is of the form {z;-a1,%2-a,...,Zk-ax}, where 21,29, ..., 2k
are nonnegative integers with z; + o + -+- + zx = r. Conversely, every sequence
Z1,%2,...,Zk of nonnegative integers with =7 + 2 + - -+ + zx = r corresponds to an
r-combination of S. Thus, the number of r-combinations of S equals the number of
solutions of the equation

Tytx2t TR =T,
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where z1,z9,...,ZTr are nonnegative integers. We show that the number of these
solutions equals the number of permutations of the multiset

T={r-1,(k—-1) %}

of 7 + k — 1 objects of two different types.® Given a permutation of T, the k — 1 *s
divide the r 1s into k groups. Let there be 1 1s to the left of the first %, zo 1s between
the first and the second , ..., and z 1s to the right of the last *. Then z1,z9,...,zk
are nonnegative integers with z; + 2 + - -+ + zx = r. Conversely, given nonnegative
integers 1,9, . .., Tk with 1 +zo+- - -+ = 7, we can reverse the preceding steps and
construct a permutation of 7.1° Thus, the number of r-combinations of the multiset
S equals the number of permutations of the multiset 7', which by Theorem 2.4.2 is

(r+k=-1)! (r+k-1
ri(k — 1)! —( r )
O

Another way of phrasing Theorem 2.5.1 is as follows: The number of r-combinations
of k distinct objects, each available in unlimited supply, equals

r+k—-1
, .
We note that Theorem 2.5.1 remains true if the repetition numbers of the & distinct
objects of S are all at least 7.

Example. A bakery boasts eight varieties of doughnuts. If a box of doughnuts
contains one dozen, how many different options are there for a box of doughnuts?

It is assumed that the bakery has on hand a large number (at least 12) of each
variety. This is a combination problem, since we assume the order of the doughnuts
in a box is irrelevant for the purchaser’s purpose. The number of different options for
boxes equals the number of 12-combinations of a multiset with objects of 8 types, each
having an infinite repetition number. By Theorem 2.5.1, this number equals

4= ()

Example. What is the number of nondecreasing sequences of length r whose terms
are taken from 1,2,...,k?

[m]

9Equivalently, the number of sequences of 0s and 1s of length r + k — 1 in which there are r 1s and
k—1 0s.

For example, if k = 4 and 7 = 5, then the permutation of T' = {5 1,3 - *} given by *111 * %11
corresponds to the solution of z; + z2 + 23 + x4 = 5 given by £, = 0,22 = 3,23 = 0,24 = 2.
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The nondecreasing sequences to be counted can be obtained by first choosing an
r-combination of the multiset

S={c0-1,00-2,...,00-k}

and then arranging the elements in increasing order. Thus, the number of such se-
quences equals the number of r-combinations of S, and hence, by Theorem 2.5.1,

equals
r+k—1
, .

In the proof of Theorem 2.5.1, we defined a one-to-one correspondence between
r-combinations of a multiset S with objects of k different types and the nonnegative
integral solutions of the equation

O

1+ T2+ -+ =11

In this correspondence, z; represents the number of objects of the ith type that are
used in the r-combination. Putting restrictions on the number of times each type of
object is to occur in the r-combination can be accomplished by putting restrictions on
the z;. We give a first illustration of this in the next example.

Example. Let S be the multiset {10-a,10-b,10-¢, 10 - d} with objects of four types,
a,b,c, and d. What is the number of 10-combinations of S that have the property that
each of the four types of objects occurs at least once?

The answer is the number of positive integral solutions of
1+ 22 + 23 + 24 = 10,

where z; represents the number of a’s in a 10-combination, z2 the number of b’s, z3
the number of ¢’s, and x4 the number of d’s. Since the repetition numbers all equal
10, and 10 is the size of the combinations being counted, we can ignore the repetition
numbers of S. We then perform the changes of variable:

nn=z1— L y2=x2— 1, y3=x23—-1, yg=1z4—1

to get
y1+y2+ys+ys =6,

where the y;’s are to be nonnegative. The number of nonnegative integral solutions of
the new equation is, by Theorem 2.5.1,

GHVEOEE



2.5. COMBINATIONS OF MULTISETS 55

Example. Continuing with the doughnut example following Theorem 2.5.1, we see
that the number of different options for boxes of doughnuts containing at least one
doughnut of each of the eight varieties equals

(457 (3) -

. General lower bounds on the number of times each type of object occurs in the
combination also can be handled by a change of variable. We illustrate this in the
next example. )

[m]

Example. What is the number of integral solutions of the equation
T1 + 29 + T3 + x4 = 20,
in which
1 >3, 29>1, z3 >0 and x4 > 57
We introduce the new variables
n=z1-3, y2=22—1, y3 =23, ya =14 — 5,

and our equation becomes
) yi+y2+ys+ys=1L
The lower bounds on the z;’s are satisfied if and only if the y;’s are nonnegative. The

number of nonnegative integral solutions of the new equation, and hence the number
of nonnegative solutions of the original equation, is

11+4-1 14
= = 364.
( 11 ) (11) 36

a
It is more difficult to count the number of r-combinations of a multiset
S = {n'l + a1, N2 '02,~..,nk’ak}
with k types of objects and general repetition numbers ni,ng,...,ng. The number of

r-combinations of S is the same as the number of integral solutions of
TitT2+ -t T =T

where )
0<z1<m, 0<z2<ng ..., 0Lz <y

We now have upper bounds on the z;’s, and these cannot be handled in the same way
as lower bounds. In Chapter 6 we show how the inclusion—exclusion principle provides
a satisfactory method for this case.
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2.6 Finite Probability

In this section we give a brief and informal introduction to finite probability.!! As we
will see, it all reduces to counting, and so the counting techniques discussed in this
chapter can be used to calculate probabilities.

The setting for finite probability is this: There is an experiment € which when
carried out results in one of a finite set of outcomes. We assume that each outcome is
equally likely (that is, no outcome is more likely to occur than any other); we say that
the experiment is carried out randomly. The set of all possible outcomes is called the
sample space of the experiment and is denoted by S. Thus S is a finite set with, say,
n elements:

S ={51,52,..-,5n}

When € is carried out, each s; has a 1 in n chance of occuring, and so we say that the
probability of the outcome s; is 1/n, written

Prob(s;) = %, (i=1,2,...,n).

An event is just a subset F of the sample space S, but it is usually given descriptively
and not by actually listing all the outcomes in E.

Example. Consider the experiment £ of tossing three coins, where each of the coins
lands showing either Heads (H) or Tails (T"). Since each coin can come up either H or
T, the sample space of this experiment is the set S of consisting of the eight ordered
pairs

(H,H,H),(H,H,T),(H,T,H),(H1TT),

(T,H,H),(T,H,T),(T,T,H),(T,T,T),
where, for instance, (H,T, H) means that the first coin comes up as H, the second

coin comes up as T, and the third coin comes up as H. Let E be the event that at
least two coins come up H. Then

E= {(H,H,H),(H,H,T),(H,T,H),(T,H,H)},

Since E consists of four outcomes out of a possible eight outcomes, it is natural to
assign to E the probability 4/8 = 1/2. This is made more precise in the next definition.
[m]

The probability of an event E in an experiment with a sample space S is defined
to be the proportion of outcomes in S that belong to E; thus,
|E|

Prob(E) = Gk

1 As opposed to the continuous probability that is calculus based.
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By this definition, the probability of an event E satisfies
0 < Prob(E) < i,

where Prob(E) = 0 if and only if E is the empty event @ (the impossible event) and
Prob(E) = 1 if and only if E is the entire sample space S (the guaranteed event).
Thus to compute the probability of an event E, we have to make two counts: count
the number of outcomes in the sample space S and count the number of outcomes in
the event E.

Example. We consider an ordinary deck of 52 cards with each card having one of 13
ranks 1,2,...,10,11,12,13 and four suits Clubs (C), Diamonds (D), Hearts (H), and
Spades (S). Usually, 11 is denoted as a Jack, 12 as a Queen, and 13 as a King. In
addition, 1 has two roles: either as a 1 (low; below the 2) or as an Ace (high; above the
King).1? Consider the experiment £ of drawing a card at random. Thus the sample
space S is the set of 52 cards, each of which is assigned a probability of 1/52. Let
be the event that the card drawn is a 5. Thus

E ={(C,5),(D,5), (H,5),(S,5)}.
Since |E| = 4 and |S| = 52, Prob(E) = 4/52 = 1/13. O

Example. Let n be a positive integer. Suppose we choose a sequence iy,12,...,1p
of integers between 1 and n at random. (1) What is the probability that the chosen
sequence is a permutation of 1,2,...,n? (2) What is the probability that the sequence
contains exactly n — 1 different integers?

The sample space S is the set of all possible sequences of length n each of whose
terms is one of the integers 1,2,...,n. Hence |S| = n™ because there are n choices for
each of the n terms.

(1) The event E that the sequence is a permutation satisfies |E| = n!. Hence

!
Prob(E) = :7

(2) Let F be the event that the sequence contains exactly n—1 different integers. A
sequence in F' contains one repeated integer, and exactly one of the integers 1,2,...,n
is missing in the sequence (so n — 2 other integers occur in the sequence). There are
n choices for the repeated integer, and then n — 1 choices for the missing integer. The

12For those who are either unfamiliar with card games or don’t like them, here is a more abstract
description: An ordinary deck of 52 cards is, abstractly, just the collection of the 52 ordered pairs
(z,y), where z is one of four “suits” C, D, H, and S, and y is one of the thirteen ranks 1,2,...,13,
where the smallest rank 1 can also be used as the largest rank (so we can think of a circle with 1
following 13).
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places for the repeated integer can be chosen in (’2’) ways; the other n — 2 integers can
be put in the remaining n — 2 places in (n — 2)! ways. Hence

nl?

|F| =n(n-1) (g) (=2 = am—ar

2

and
Prob(F) = =
ro T 2l(n - 2)lnn”
[}

Example. Five identical rooks are placed at random in nonattacking positions on an
8-by-8 board. What is the probability that the rooks are both in rows 1,2,3,4,5 and
in celumns 4, 5,6, 7, 87

Our sample space S consist of all placements of five nonattacking rooks on the

Board and so
8\ 2 ,_ 8P
151 = (5) T

Let E be the event that the five rooks are in the rows and columns prescribed above.
Then E has size 5!, since there are 5! ways to place five nonattacking rooks on a 5-by-5

board. Hence we have
Prob(E 512312 1
1ob(E) = —g7~ = 3135°
]

Example. This is a multipart example relating to the card game Poker played with
an ordinary deck of 52 cards. A poker hand consists of § cards. Our experiment

€ is to select a poker hand at random. Thus the sample space S consists of the
('?) = 2,598,960 possible poker hands and each has the same chance as being selected,

namely 1/2,598, 960.

(1) Let E be the event that the poker hand is a full house; that is, three cards of one
rank and two cards of a different rank (suit doesn’t matter). To compute the
probability of E, we need to calculate |E|. How do we determine the number of
full houses? We use the multiplication principle thinking of four tasks:

(a) Choose the rank with three cards.

(b) Choose the three cards of that rank i.e., their 3 suits.
(c) Choose the rank with two cards.

(d) Choose the two cards of that rank i.e., their 2 suits.

The number of ways of carrying these tasks out is as follows:

(a) 13
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(2)

®3)
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(b) (5) =4
(c) 12 (after choice (a), 12 ranks remain)
@ () =6

Thus |E| =13-4-12-6 = 3,744 and

3,744

Pr(E) = 2,598, 960

~ 0.0014.

Let E be the event that the poker-hand is a straight; that is, five cards of
consecutive ranks (suit doesn’t matter), keeping in mind that the 1 is also the
Ace. To compute |E|, we think of two tasks:

(a) Choose the five consecutive ranks.
(b) Choose the suit of each of the ranks.

The number of ways of carrying out these two tasks is as follows:

(a) 10 (the straights can begin with any of 1,2....,10)

(b) 4° (four possible suits for each rank)

Thus |E| = 10 - 45 = 10,240 and

10,240
Pr(E) = 2,598, 960

~ 0.0039.

Let E be the event that the poker hand is a straight flush; that is, five cards of
consecutive ranks, all of the same suit. Using the reasoning in (b), we see that
|E] =10-4 =40 and

0 0.0000154.

Pr(B) = 3 595,960
Let E be the event that the poker hand consists of exactly two pairs; that is, two
cards of one rank, two cards of a different rank, and one card of an additionally
different rank. Here we have to be a little careful since the first two mentioned
ranks appear in the same way (as opposed to the full house, where there were
three cards of one rank and two cards of a different rank). To compute |E| in
this case, we think of three tasks (not six if we had imitated (1)): -

(a) Choose the two ranks occuring in the two pairs.
(b) Choose the two suits for each of these two ranks.

(c) Choose the remaining card.
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The number of ways of carrying out these three tasks is as follows:

(@ (5) =78
(b) (5)(;) =6-6=236
(c) 44

Thus |E| = 78 - 36 - 44 = 123,552, and

123,552

Pr(E) = 2,598, 960

~ 0.048,

almost a 1 in 20 chance.

(5) Let E be the event that the poker hand contains at least one Ace. Here we
use our subtraction principle. Let E = S\ E be the complementary event of a
poker hand with no aces. Then |E| = (%) = 1,712,304. Thus |E| = |S| - |E| =
2,598,960 — 1,712,304 = 886,656, and

2,598,960 — 1,712,304
2,598, 960
1,712,304
2,598, 960

886, 656
2,598,960

Pr(E)

~ 0.34.
(]

As we see in the calculation in (5), our subtraction principle in terms of probability
becomes . .
Pr(E) = 1 — Pr(E), equivalently, Pr(E) = 1 — Pr(E).

More probability calculations are given in the Exercises.

2.7 Exercises
1. For each of the four subsets of the two properties (a) and (b), count the number
of four-digit numbers whose digits are either 1,2, 3,4, or 5:

(a) The digits are distinct.

(b) The number is even.
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10.

11.
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Note that there are four problems here: § (no further restriction), {a} (property
(a) holds), {b} (property (b) holds), {a,b} (both properties (a) and (b) hold).

. How many orderings are there for a deck of 52 cards if all the cards of the same

suit are together?

. In how many ways can a poker hand (five cards) be dealt? How many different

poker hands are there?

. How many distinct positive divisors does each of the following numbers have?

(a) 3* x 52 x 70 x11
(b) 620
(c) 10%

. Determine the largest power of 10 that is a factor of the following numbers

(equivalently, the number of terminal 0s, using ordinary base 10 representation):

(a) 50!
(b) 1000!

. How many integers greater than 5400 have both of the following properties?

(a) The digits are distinct.
(b) The digits 2 and 7 do not occur.

. In how many ways can four men and eight women be seated at a round table if

there are to be two women between consecutive men around the table?

. In how many ways can six men and six women be seated at a round table if the

men and women are to sit in alternate seats?

. In how many ways can 15 people be seated at a round table if B refuses to sit

next to A? What if B only refuses to sit on A’s right?

A committee of five people is to be chosen from a club that boasts a membership
of 10 men and 12 women. How many ways can the committee be formed if it is
to contain at least two women? How many ways if, in addition, one particular
man and one particular woman who are members of the club refuse to serve
together on the committee?

How many sets of three integers between 1 and 20 are possible if no two consec-
utive integers are to be in a set?



62

13.

14.

15.

16.

17.

18.

19.

CHAPTER 2. PERMUTATIONS AND COMBINATIONS

. A football team of 11 players is to be selected from a set of 15 players, 5 of
whom can play only in the backfield, 8 of whom can play only on the line, and
2 of whom can play either in the backfield or on the line. Assuming a football
team has 7 men on the line and 4 men in the backfield, determine the number
of football teams possible.

There are 100 students at a school and three dormitories, A, B, and C, with
capacities 25, 35 and 40, respectively.
(a) How many ways are there to fill the dormitories?

(b) Suppose that, of the 100 students, 50 are men and 50 are women and that
A is an all-men’s dorm, B is an all-women’s dorm, and C is co-ed. How
many ways are there to fill the dormitories?

A classroom has two rows of eight seats each. There are 14 students, 5 of whom
always sit in the front row and 4 of whom always sit in the back row. In how
many ways can the students be seated?

At a party there are 15 men and 20 women.

(a) How many ways are there to form 15 couples consisting of one man and
one woman?

(b) How many ways are there to form 10 couples consisting of one man and

one woman?
n n
r) \n-r

by using a combinatorial argument and not the values of these numbers as given
in Theorem 3.3.1.

Prove that

In how many ways can six indistinguishable rooks be placed on a 6-by-6 board
so that no two rooks can attack one another? In how many ways if there are
two red and four blue rooks?

In how many ways can two red and four blue rooks be placed on an 8-by-8 board
so that no two rooks can attack one another?

We are given eight rooks, five of which are red and three of which are blue.

(a) In how many ways can the eight rooks be placed on an 8-by-8 chessboard
so that no two rooks can attack one another?

(b) In how many ways can the eight rooks be placed on a 12-by-12 chessboard
so that no two rooks can attack one another?
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Determine the number of circular permutations of {0,1,2,...,9} in which 0 and
9 are not opposite. (Hint: Count those in which 0 and 9 are opposite.)

How many permutations are there of the letters of the word ADDRESSES? How
many 8-permutations are there of these nine letters?

A footrace takes place among four runners. If ties are allowed (even all four

runners finishing at the same time), how many ways are there for the race to
finish?

Bridge is played with four players and an ordinary deck of 52 cards. Each player
begins with a hand of 13 cards. In how many ways can a bridge game start?
(Ignore the fact that bridge is played in partnerships.)

A roller coaster has five cars, each containing four seats, two in front and two
in back. There are 20 people ready for a ride. In how many ways can the ride
begin? What if a certain two people want to sit in different cars?

A ferris wheel has five cars, each containing four seats in a row. There are 20
people ready for a ride. In how many ways can the ride begin? What if a certain
two people want to sit in different cars?

A group of mn people are to be arranged into m teams each with n players.

(a) Determine the number of ways if each team has a different name.

(b) Determine the number of ways if the teams don’t have names.

In how many ways can five indistinguishable rooks be placed on an 8-by-8 chess-
board so that no rook can attack another and neither the first row nor the first
column is empty?

A secretary works in a building located nine blocks east and eight blocks north
of his home. Every day he walks 17 blocks to work. (See the map that follows.)

(a) How many different routes are possible for him?

(b) How many different routes are possible if the one block in the easterly
direction, which begins four blocks east and three blocks north of his home,
is under water (and he can’t swim)? (Hint: Count the routes that use the
block under water.)
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Let S be a multiset with repetition numbers ni,ns,...,ni, where ny = 1. Let
n =ng + -+ + ng. Prove that the number of circular permutations of S equals

n!
nz! . --nk!‘

We are to seat five boys, five girls, and one parent in a circular arrangement
around a table. In how many ways can this be done if no boy is to sit next to a
boy and no girl is to sit next to a girl? What if there are two parents?

In a soccer tournament of 15 teams, the top three teams are awarded gold, silver,
and bronze cups, and the last three teams are dropped to a lower league. We
regard two outcomes of the tournament as the same if the teams that receive
the gold, silver, and bronze cups, respectively, are identical and the teams which
drop to a lower league are also identical. How many different possible outcomes
are there for the tournament?

Determine the number of 11-permutations of the multiset

S={3-a,4-b,5-c}.
Determine the number of 10-permutations of the multiset

S={3:a,4-b,5-c}.
Determine the number of 11-permutations of the multiset

S={3-4,3-b,3-¢,3-d}.

List all 3-combinations and 4-combinations of the multiset

{2-a,1-5,3-¢c}.
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Determine the total number of combinations (of any size) of a multiset of objects
of k different types with finite repetition numbers nj, no, ..., ng, respectively.

A bakery sells six different kinds of pastry. If the bakery has at least a dozen of
each kind, how many different options for a dozen of pastries are there? What
if a box is to contain at least one of each kind of pastry?

How many integral solutions of
Ty + T2+ 234+ 74 = 30
satisfy 21 > 2, 22 > 0, 23 > —5, and 74 > 87

There are 20 identical sticks lined up in a row occupying 20 distinct places as

follows:
NERERRRRRRARARARARRE

Six of them are to be chosen.

(a) How many choices are there?

(b) How many choices are there if no two of the chosen sticks can be consecu-
tive?

(c) How many choices are there if there must be at least two sticks between
each pair of chosen sticks?

There are n sticks lined up in a row, and k of them are to be chosen.

(a) How many choices are there?

(b) How many choices are there if no two of the chosen sticks can be consecu-
tive?

(c¢) How many choices are there if there must be at least [ sticks between each
pair of chosen sticks?

In how many ways can 12 indistinguishable apples and 1 orange be distributed
among three children in such a way that each child gets at least one piece of
fruit?

Determine the number of ways to distribute 10 orange drinks, 1 lemon drink,
and 1 lime drink to four thirsty students so that each student gets at least one
drink, and the lemon and lime drinks go to different students.

Determine the number of r-combinations of the multiset

{1-a1,00"-az,...,00-ag}.
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Prove that the number of ways to distribute n different objects among k children
equals k™.

Twenty different books are to be put on five book shelves, each of which holds
at least twenty books.

(a) How many different arrangements are there if you only care about the
number of books on the shelves (and not which book is where)?

(b) How many different arrangements are there if you care about which books
are where, but the order of the books on the shelves doesn’t matter?

(c) How many different arrangements are there if the order on the shelves does
matter?

(a) There is an even number 2n of people at a party, and they talk together
in pairs, with everyone talking with someone (so n pairs). In how many
different ways can the 2n people be talking like this?

(b) Now suppose that there is an odd number 2n + 1 of people at the party
with everyone but one person talking with someone. How many different
pairings are there?

There are 2n + 1 identical books to be put in a bookcase with three shelves. In
how many ways can this be done if each pair of shelves together contains more
books than the other shelf?

Prove that the number of permutations of m A’s and at most n B’s equals
m+n+1
m+1 J
Prove that the number of permutations of at most m A’s and at most n B’s

equals
m+n+2\ 1
m+1 '
In how many ways can five identical rooks be placed on the squares of an 8-by-8

board so that four of them form the corners of a rectangle with sides parallel to
the sides of the board?

Consider the multiset {n -a,1,2,3,...,n} of size 2n. Determine the number of
its n-combinations.

Consider the multiset {n-a,n-b,1,2,3,...,n+ 1} of size 3n + 1. Determine the
number of its n-combinations.
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Find a one-to-one correspondence between the permutations of the set {1,2,...,n}
and the towers Ag C A) C Ay C -+ C A, where |Ag| =k for k=0,1,2,...,n.

Determine the number of towers of the form § C AC B C {1,2,...,n}.

How many permutations are there of the letters in the words

(a) TRISKAIDEKAPHOBIA (fear of the number 13)?

(b) FLOCCINAUCINIHILIPILIFICATION (estimating something as worth-
less)?

(c) PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS (a lung disease
caused by inhaling fine particles of silica)? (This word is, by some accounts,
the longest word in the English language.)

(d) DERMATOGLYPHICS (skin patterns or the study of them)? (This word
is the (current) longest word in the English language that doesn’t repeat a
letter; another word of the same length is UNCOPYRIGHTABLE.!3)

What is the probability that a poker hand contains a flush (that is, five cards of
the same suit)?

What is the probability that a poker hand contains exactly one pair (that is, a
poker hand with exactly four different ranks)?

What is the probability that a poker hand contains cards of five different ranks
but does not contain a flush or a straight?

Consider the deck of 40 cards obtained from an ordinary deck of 52 cards by
removing the jacks (11s), queens (12s), and kings (13s), where now the 1 (ace)
can be used to follow a 10. Compute the probabilities for the various poker
hands described in the example in Section 3.6.

A bagel store sells six different kinds of bagels. Suppose you choose 15 bagels at
random. What is the probability that your choice contains at least one bagel of
each kind? If one of the kinds of bagels is Sesame, what is the probability that
your choice contains at least three Sesame bagels?

Consider an 9-by-9 board and nine rooks of which five are red and four are blue.
Suppose you place the rooks on the board in nonattacking positions at random.
What is the probability that the red rooks are in rows 1,3,5,7,97 What is
the probability that the red rooks are both in rows 1,2,3,4,5 and in columns
1,2,3,4,57

13Anu Garg: The Dord, the Diglot, and An Avocado or Two, Plume, Penguin Group, New York
(2007).
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62. Suppose a poker hand contains seven cards rather than five. Compute the prob-
abilities of the following poker hands:
(a) a seven-card straight
(b) four cards of one rank and three of a different rank
(c) three cards of one rank and two cards of each of two different ranks
(d) two cards of each of three different ranks, and a card of a fourth rank
(€) three cards of one rank and four cards of each of four different ranks
(f) seven cards each of different rank
63. Four (standard) dice (cubes with 1, 2, 3, 4, 5, 6, respectively, dots on their six
faces), each of a different color, are tossed, each landing with one of its faces up,
thereby showing a number of dots. Determine the following probabilities:
(a) The probability that the total number of dots shown is 6
(b) The probability that at most two of the dice show exactly one dot
(c) The probability that each die shows at least two dots
(d) The probability that the four numbers of dots shown are all different
(e) The probability that there are exactly two different numbers of dots shown

64. Let n be a positive integer. Suppose we choose a sequence 71, 79, . . . , iy, of integers
between 1 and n at random.

(a) What is the probability that the sequence contains exactly n — 2 different
integers?

(b) What is the probability that the sequence contains exactly n — 3 different
integers?



Chapter 3

The Pigeonhole Principle

We consider in this chapter an important, but elementary, combinatorial principle
that can be used to solve a variety of interesting problems, often with surprising
conclusions. This principle is known under a variety of names, the most common of
which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox
principle.! Formulated as a principle about pigeonholes, it says roughly that if a lot
of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be
occupied by two or more pigeons. A more precise statement is given below.

3.1 Pigeonhole Principle: Simple Form

The simplest form of the pigeonhole principle is the following fairly obvious assertion.

Theorem 3.1.1 If n + 1 objects are distributed into n bozes, then at least one box
contains two or more of the objects.

Proof. The proof is by contradiction. If each of the n boxes contains at most one
of the objects, then the total number of objects is at most 1 +1+--- 4+ 1(n 1s) = n.
Since we distribute n + 1 objects, some box contains at least two of the objects. O

Notice that neither the pigeonhole principle nor its proof gives any help in finding
a box that contains two or more of the objects. They simply assert that if we examine
each of the boxes, we will come upon a box that contains more than one object. The
pigeonhole principle merely guarantees the existence of such a box. Thus, whenever
the pigeonhole principle is applied to prove the existence of an arrangement or some
phenomenon, it will give no indication of how to construct the arrangement or find an
instance of the phenomenon other than to examine all possibilities.

!The word shoeboz is a mistranslation and folk etymology for the German Schubfach, which means
“pigeonhole” (in a desk).
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Notice also that the conclusion of the pigeonhole principle cannot be guaranteed if
there are only n (or fewer) objects. This is because we may put a different object in
each of the n boxes. Of course, it is possible to distribute as few as two objects among
the boxes in such'a way that a box contains two objects, but there is no guarantee that
a box will contain two or more objects unless we distribute at least n+ 1 objects. The
pigeonhole principle asserts that, no matter how we distribute n + 1 objects among n
boxes, we cannot avoid putting two objects in the same box. ’

Instead of putting objects into boxes, we may think of coloring each object with
one of n colors. The pigeonhole principle asserts that if n + 1 objects are colored with
n colors, then two objects have the same color.

We begin with two simple applications:

Application 1. Among 13 people there are 2 who have their birthdays in the same
month. a

Application 2. There are n married couples. How many of the 2n people must be
selected to guarantee that a married couple has been selected?

To apply the pigeonhole principle in this case, think of n boxes, one corresponding
to each of the n couples. If we select n + 1 people and put each of them in the box
corresponding to the couple to which they belong, then some box contains two people;
that is, we have selected a married couple. Two of the ways to select n people without
getting a married couple are to select all the husbands or all the wives. Therefore,

n + 1 is the smallest number that will guarantee a married couple has been selected.
a

There are other principles related to the pigeonhole principle that are worth stating
formally:

o If n objects are put into n boxes and no box is empty, then each box contains
ezxactly one object.

o Ifn objects are put into n boxes and no box gets more than one object, then each
bozx has an object in it.

Referring to Application 2, if we select 7 people in such a way that we have selected
at least one person from each married couple, then we have selected exactly one person
from each couple. Also, if we select n people without selecting more than one person
from each married couple, then we have selected at least one (and, hence, exactly one)
person from each couple.

More abstract formulations of the three principles enunciated thus far are as fol-
lows:

Let X and Y be finite sets and let f : X — Y be a function from X to Y.
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o If X has more elements than Y, then f is not one-to-one.

o If X and Y have the same number of elements and f is onto, then f is one-to-
one.

e If X and Y have the same number of elements and f is one-to-one, then f is

onto.
Application 3. Given m integers aj,as,...,an, there exist integers k and I with
0 < k <! < m such that ag+1 + aky2 + - - + a; is divisible by m. Less formally, there
exist consecutive a’s in the sequence aj,as, ..., a,, whose sum is divisible by m.

To see this, consider the m sums
ai,ay +ag,a1 +az+as,...,a1 +az+az+--- +am.

If any of these sums is divisible by m, then the conclusion holds. Thus, we may
suppose that each of these sums has a nonzero remainder when divided by m, and so
a remainder equal to one of 1,2,...,m — 1. Since there are m sums and only m — 1
remainders, two of the sums have the same remainder when divided by m. Therefore,
there are integers k and [ with k < ! such that a; +as+---+aganda;+as+---+q
have the same remainder 7 when divided by m:

ar+ag+-+ag=bm+r, ay+ax+--+a=cm+r.

Subtracting, we find that ag1 + - + @y = (¢ — b)m; thus, ags+1 + -+ + a; is divisible
by m.

To illustrate this a,rgument,2 let m = 7 and let our integers be 2,4,6,3,5,5, and
6. Computing the sums as before, we get 2,6, 12,15, 20, 25, and 31 whose remainders
when divided by 7 are, respectively, 2,6,5,1, 6,4, and 3. We have two remainders
equal to 6, and this implies the conclusion that 6 +3 +5 = 14 is divisible by 7. O

Application 4. A chess master who has 11 weeks to prepare for a tournament decides
to play at least one game every day but, to avoid tiring himself, he decides not to play
more than 12 games during any calendar week. Show that there exists a succession of
(consecutlve) days during which the chess master will have played ezactly 21 games.

Let a; be the number of games played on the first day, az the total number of games
played on the first and second days, as the total number of games played on the first,
second, and third days, and so on. The sequence of numbers ay, as, ... ,az7 is a strictly
increasing sequence® since at least one game is played each day. Moreover, a; > 1,

2The argument actually contains a nice algorithm, whose validity relies on the pigeonhole principle,
for finding the consecutive a’s, which is more efficient than examining all sums of consecutive a’s.
3Each term of the sequence is larger than the one that precedes it.
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and since at most 12 games are played during any one week, a7; < 12 x 11 = 1324
Hence, we have
1<a1<ay <~ <apy <132

The sequence a1 + 21, az + 21,...,a77 + 21 is also a strictly increasing sequence:
2<a;+21<ax+21 < <aypr+21 <132+ 21 =153.
Thus each of the 154 numbers
a1,as,...,a77,a1 +21,a0 +21,... ,a77 +21

is an integer between 1 and 153. It follows that two of them are equal. Since no
two of the numbers a1, as,...,a77 are equal and no two of the numbers a; + 21, a9 +
21,...,a77+21 are equal, there must be an ¢ and a j such that a; = a; +21. Therefore,
on days j + 1,7+ 2,...,% the chess master played a total of 21 games. ]

Application 5. From the integers 1,2,...,200, we choose 101 integers. Show that,
among the integers chosen, there are two such that one of them is divisible by the
other.

By factoring out as many 2s as possible, we see that any integer can be written in
the form 2* x a, where k > 0 and a is odd. For an integer between 1 and 200, a is one
of the 100 numbers 1,3,5,...,199. Thus among the 101 integers chosen, there are two
having a’s of equal value when written in this form. Let these two numbers be 2" x a
and 2° x a. If 7 < s, then the second number is divisible by the first. If r > s, then
the first is divisible by the second. a

Let us note that the result of Application 5 is the best possible in the sense that
we may select 100 integers from 1,2,...,200 in such a way that no one of the selected
integers is divisible by any other (for instance, the 100 integers 101, 102,. .., 199, 200).

We conclude this section with another application from number theory. First, we
recall that two positive integers m and n are said to be relatively prime if their greatest
common divisor® is 1. Thus 12 and 35 are relatively prime, but 12 and 15 are not
since 3 is a common divisor of 12 and 15.

Application 6. (Chinese remainder theorem) Let m and n be relatively prime positive
integers, and let a and b be integers where 0 < a<m—1and 0 < b<n—1. Then
there is a positive integer = such that the remainder when z is divided by m is a,
and the remainder when z is divided by n is b; that is,  can be written in the form
z = pm + a and also in the form ¢ = gn + b for some integers p and q.

“This is the only place where the assumption that at most 12 games are played during any of the
11 calendar weeks is used. Thus, this assumption could be replaced by the assumption that at most
132 games are played in 77 days.

5 Also called greatest common factor or highest common factor.



3.2. PIGEONHOLE PRINCIPLE: STRONG FORM 73

To show this, we consider the n integers
a,m+a,2m+a,...,(n—-1)m+a.

Each of these integers has remainder a when divided by m. Suppose that two of them
had the same remainder 7 when divided by n. Let the two numbers be im + a and
jm+a, where 0 < i < j <n — 1. Then there are integers ¢; and g; such that

im+a=qgn-+r
and
jm+a=gqn+r.

Subtracting the first equation from the second, we get

(G —8)m = (g5 — ¢:)n.

The preceding equation tells us that n is a factor of the number (j —2)m. Since n has
no common factor other than 1 with m, it follows that n is a factor of j —i. However,
0<i<j<n-1implies that 0 < j —i <n — 1, and hence n cannot be a factor of
7 —¢. This contradiction arises from our supposition that two of the numbers

a,m+a,2m+a,...,(n—1)m+a

had the same remainder when divided by n. We conclude that each of these n numbers
has a different remainder when divided by n. By the pigeonhole principle, each of the
n numbers 0,1,...,n — 1 occurs as a remainder; in particular, the number b does. Let
p be the integer with 0 < p < n — 1 such that the number z = pm + a has remainder
b when divided by n. Then, for some integer g,

z=gqn+b.

So z =pm + a and = gn + b, and z has the required properties. a

The fact that a rational number a/b has a decimal expansion that eventually
repeats is a consequence of the pigeonhole principle, and we leave a proof of this fact
for the Exercises.

For further applications we need a stronger form of the pigeonhole principle.

3.2 Pigeonhole Principle: Strong Form

The following theorem contains Theorem 3.1.1 as a special case:
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Theorem 3.2.1 Let q1,¢q2,...,q, be positive integers. If
Gatgtoteg—n+tl

objects are distributed into n boxes, then either the first box contains at least g, objects,
or the second box contains at least qa objects, ... , or the nth box contains at least gn
objects.

Proof. Suppose that we distribute ¢; + g2 + -+ + ¢, —n + 1 objects among n boxes.
If for each ¢ = 1,2,...,n the ith box contains fewer than ¢; objects, then the total
number of objects in all boxes does not exceed

(@a-D+(e~-D++@m-D=a+te+ +@m-n

Since this number is one less than the number of objects distributed, we conclude that
for some i = 1,2,...,n the ith box contains at least ¢; objects. ]

Notice that it is possible to distribute ¢; + g2 + - - - + g — 1 objects among n boxes
in such a way that for no ¢ = 1,2,...,n is it true that the ith box contains ¢; or more
objects. We do this by putting g1 — 1 objects into the first box, g2 — 1 objects into the
second box, and so on.

The simple form of the pigeonhole principle is obtained from the strong form by
taking g1 = ¢2 =+ = gp = 2. Then

a+@e+--t+tgp—n+l=2n-n+1l=n+1.

In terms of coloring, the strong form of the pigeonhole principle asserts that if each of
@1+ g2+ -+ g —n + 1 objects is assigned one of n colors, then there is an i such
that there are (at least) ¢; objects of the ith color.

In elementary mathematics the strong form of the pigeonhole principle is most
often applied in the special case when ¢1, g2, . . ., g, are all equal to some integer 7. We
formulate this special case as a corollary.

Corollary 3.2.2 Letn and r be positive integers. Ifn(r—1)+1 objects are distributed
into n boxes, then at least one of the bozes contains r or more of the objects.

Another way to formulate the assertion in this corollary is as an averaging principle:

If the average of n nonnegative integers my,ma,...,m, is greater than r — 1,

that is
’ mi+mg+---+my

n
then at least one of the integers is greater than or equal to 7.

>r—1,
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The connection between the assertion in Corollary 3.2.2 and this averaging prin-
ciple is seen by taking n(r — 1) + 1 objects and putting them into n boxes. For
i=1,2,...,n, let m; be the number of objects in the ith box. Then the average of
the numbers mi,mg,...,my, is

mi+me+-o+my  n(r—1)+1
n B n B

1
(7‘—‘1)“‘;

Since this average is greater than r — 1, one of the integers m; is at least r. In other
words, one of the boxes contains at least 7 objects.

A different averaging principle is the following:

If the average of n nonnegative integers mi, ma,..., m, is less than 7 + 1, that
is,
my+ma+--+my
n .
then at least one of the integers is less than r + 1.

<r+1,

Application 7. A basket of fruit is being arranged out of apples, bananas, and
oranges. What is the smallest number of pieces of fruit that should be put in the
basket to guarantee that either there are at least eight apples or at least six bananas
or at least nine oranges?

By the strong form of the pigeonhole principle, 8+ 6 +9—3+1 = 21 pieces of fruit,
no matter how selected, will guarantee a basket of fruit with the desired properties.
But 7 apples, 5 bananas, and 8 oranges, a total of 20 pieces of fruit, will not. a

The following is yet another averaging principle:

o If the average of n nonnegative integers mj, mg,..., m, is at least equal to 7,
then at least one of the integers my,mg, ..., m, satisfies m; > r.

Application 8. Two disks, one smaller than the other, are each divided into 200
congruent sectors.® In the larger disk, 100 of the sectors are chosen arbitrarily and
painted red; the other 100 sectors are painted blue. In the smaller disk, each sector is
painted either red or blue with no stipulation on the number of red and blue sectors.
The small disk is then placed on the larger disk so that their centers coincide. Show
that it is possible to align the two disks so that the number of sectors of the small disk
whose color matches the corresponding sector of the large disk is at least 100.

To see this, we observe that if the large disk is fixed in place, there are 200 possible
positions for the small disk such that each sector of the small disk is contained in a
sector of the large disk. We first count the total number of color matches over all of

5Two hundred equal slices of a pie.
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the 200 possible positions of the disks. Since the large disk has 100 sectors of each
of the two colors, each sector of the small disk will match in color the corresponding
sector of the large disk in exactly 100 of the 200 possible positions. Thus, the total
number of color matches over all the positions equals the number of sectors of the
small disk multiplied by 100, and this equals 20,000. Therefore, the average number
of color matches per position is 20,000/200=100. So there must be some position with
at least 100 color matches. a

We next present an application that was first discovered by Erdos and Szekeres.”

Application 9. Show that every sequence a1, as,...,a,241 of n? + 1 real numbers
contains either an increasing subsequence of length n + 1 or a decreasing subsequence
of length n + 1.

We first clarify the notion of a subsequence. If by,bs,...,b,;, is a sequence, then
biy, big, ..., bi, is a subsequence, provided that 1 < 4; < i3 < --- < 4 < m. Thus
ba, by, b5, bs is a subsequence of by, b, ..., bs, but be, bs, b5 is not. The subsequence
biy, biy, - .-, by, is increasing (more properly not decreasing) if by, < b, <--- < b;, and
decreasing if b;, > by, > -+ > by,

We now prove the assertion. We suppose that there is no increasing subsequence
of length n+ 1 and show that there must be a decreasing subsequence of length n+ 1.
For each k = 1,2,...,n%2+1, let my be the length of the longest increasing subsequence
that begins with ag. Suppose m; < n for each k = 1,2,...,n% + 1, so that there is no
increasing subsequence of length n + 1. Since my > 1 for each k = 1,2,...,n2+1, the
numbers my, My, ..., My2,, are n? + 1 integers each between 1 and n. By the strong
form of the pigeonhole principle, n + 1 of the numbers m;, ma,...,m,2,; are equal.
Let

My = My =+ = My iy,

where 1 < ky < kg < +++ < kpy1 < n? + 1. Suppose that for some i = 1,2,...,n,
ax, < ag,.,- Then, since k; < k;y1 we could take a longest increasing subsequence
beginning with ay,,, and put a, in front to obtain an increasing subsequence beginning
with ag,. Since this implies that my, > my,,,, we conclude that ax;, > ay,,,. Since
this is true for each 1 = 1,2,...,n, we have

A,y 2 (23’2 2 Z akn+17

and we conclude that ag,, a,,...,0k,,, is a decreasing subsequence of length n + 1.
a

An amusing formulation of Application 9 is the following: Suppose that n? + 1
people are lined up shoulder to shoulder in a straight line. Then it is always possible
to choose n + 1 of the people to take one step forward so that, going from left to right,

"P. Erdés and A. Szekeres, A Combinatorial Problem in Geometry, Compositio Mathematica, 2
(1935), 463-470.
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either their heights are increasing or their heights are decreasing. It is instructive to
read through the proof of Application 9 in these terms.

3.3 A Theorem of Ramsey

We now discuss a profound and important generalization of the pigeonhole principle
called Ramsey’s theorem, after the English logician Frank Ramsey.?

The following is the most popular and easily understood instance of Ramsey’s
theorem:

Of six (or more) people, either there are three, each pair of whom are
acquainted, or there are three, each pair of whom are unacquainted.

One way to prove this result is to examine all the different ways in which six people
can be acquainted and unacquainted. This is a tedious task, but nonetheless one that
can be accomplished with a little fortitude. There is, however, a simple and elegant
proof that avoids consideration of cases. Before giving this proof, we formulate the
result more abstractly as

Kg — K3, K3 (read K¢ arrows K3, K3). (3.1)

What does this mean? First, by K we mean a set of six objects (e.g., people) and
all of the 15 (unordered) pairs of these objects. We can picture Kg by choosing six
points in the plane, no three of which are collinear, and then drawing the edge or line
segment connecting each pair of points (the edges now represent the pairs). In general,
we mean by K, a set of n objects and all of the pairs of these objects.® Illustrations
for K, (n=1,2,3,4,5) are given in Figure 3.1. Notice that the picture of K3 is that
of a triangle, and we often refer to K3 as a triangle.

Ky Kz Ks Ka Ks

Figure 3.1

We distinguish between acquainted pairs and unacquainted pairs by coloring edges
red for acquainted and blue for unacquainted. “Three mutually acquainted people”

8Frank Ramsey was born in 1903 and died in 1930 when he was not quite 27 years of age. In spite
of his premature death, he laid the foundation for what is now called Ramsey theory.
°In later chapters, K, is called the complete graph of order n.
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now means “a K3 each of whose edges is colored red: a red K3.” Similarly, three
mutually unacquainted people form a blue K3. We can now explain the expression
(3.1):

K¢ — K3, K3 is the assertion that no matter how the edges of Kg are
colored with the colors red and blue, there is always a red K3 (three of the
original stz points with the three line segments between them all colored red)
or a blue K3 (three of the original siz points with the three line segments
between them all colored blue), in short, a monochromatic triangle.

To prove that Kg — K3, K3, we argue as follows: Suppose the edges of K¢ have
been colored red or blue in any way. Consider one of the points p of Kg. It meets
five edges. Since each of these five edges is colored red or blue, it follows (from the
strong form of the pigeonhole principle) that either at least three of them are colored
red or at least three of them are colored blue. We suppose that three of the five edges
meeting the point p are red. (If three are blue, a similar argument works.) Let the
three red edges meeting p join p to points a, b, and ¢, respectively. Consider the edges
which join a, b, ¢ in pairs. If all of these are blue, then a, b, ¢ determine a blue Kj. If
one of them, say the one joining a and b, is red, then p, a,b determine a red K3. Thus,
we are guaranteed either a red K3 or a blue Ks.

We observe that the assertion K5 — K3, K3 is false. This is because there is some
way to color the edges of K5 without creating a red K3 or a blue K3. This is shown
in Figure 3.2, where the edges of the pentagon (the solid edges) are the red edges and
the edges of the inscribed pentagram (the dashed edges) are the blue edges.

Figure 3.2

We now state and prove Ramsey’s theorem, although still not in its full generality.

Theorem 3.3.1 If m > 2 and n > 2 are integers, then there is a positive integer p
such that
K, - K, K.

In words, Ramsey’s theorem asserts that given m and n there is a positive integer
p such that, if the edges of K, are colored red or blue, then either there is a red K,
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or there is a blue K,,. The existence of either a red K,, or a blue K, is guaranteed,
no matter how the edges of K, are colored. If K, — Ky,, K, then K; — Kn,, Ky, for
every integer ¢ > p. The Ramsey number r(m,n) is the smallest integer p such that
Ky, — K, K. Thus Ramsey’s theorem asserts the existence of the number r(m,n).
By interchanging the colors red and blue, we see that

r(m,n) = r(n,m).
The facts that K — K3, K3 and K5 /4 K3, K3 imply that
r(3,3) = 6.

The Ramsey numbers r(2,n) and r(m,2) are easy to determine. We show that
r(2,n) = n:

r(2,n) < n: If we color the edges of K, either red or blue, then either some edge is

colored red (and so we have a red K2) or all edges are blue (and so we have a blue
K,).

r(2,n) > n — 1: If we color all the edges of K, _; blue, then we have neither a red K>
nor a blue K.

In a similar way, we show that r(m,2) = m. The numbers r(2,n) and r(m, 2) with
m,n > 2 are the trivial Ramsey numbers.

Proof of Theorem 3.3.1. We show the existence of the numbers r(m,n) by using
(double) induction on both integer parameters m > 2 and n > 2. If m = 2, we know
that 7(2,n) = n, and if n = 2, we know that 7(m,2) = m. We now assume that m >3
and n > 3, and take as our inductive assumption that both r(m —1,n) and r(m,n—1)
exist. Let p = r(m — 1,n) + r(m,n — 1). We will show that K, — Kp,, K, for this
integer p.

Suppose that the edges of K, have been colored red or blue in any way. Consider
one of the points z of K,,. Let R, be the set of points that are joined to z by a red
edge, and let B, be the set of points that are joined to 2 by a blue edge. Then

|R;]+|Bz|=p—1=r(m—-1,n)+r(mmn—-1) -1,
implying that
(1) |Rz| = r(m —1,n), or
(2) |Bz| 2 r(m,n—1).

(If both (1) and (2) failed, then |R,|+|Bg| < r(m—1,n)—1+r(mn—1)—1=p—2,
a contradiction.)

Suppose that (1) holds. Let ¢ = |R;| so that ¢ > r(m — 1,n). Then considering
K, on the points of R;, we see that either there are m — 1 points of K, (and so of
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K3) all of whose edges are colored red (that is, a red K1) or there are n points all
of whose edges are colored blue (that is, a blue K,,). If the second possibility holds,
we are done since we have a blue K,. If the first possibility holds, we are also done
since we can take the red K,,—1 and add the point z to it to obtain a red K,,, since
all edges joining x to the points in R, are colored red.

A similar argument works when (2) holds. We conclude by induction that the
numbers r(m, n) exist for all integers m,n > 2. a

Our proof of Theorem 3.3.1 not only shows that the Ramsey numbers r(m, n) exist,
but also that they satisfy the inequality

r(m,n) <r(m-1,n)+r(mn-1) (m,n>3). (3.2)
Let
f(m,n) = (m;fz2) (m,n >2).

Then, using Pascal’s formula, we get that

m+n—2 m+n-—3 m+n—3
= + .
m—1 m—1 m—2
Hence

f(m7n) =f(m_ 17n)+f(m7n_ 1) (m7n23)7

a relation similar to that of (3.2) but with equality: Since r(2,n) =n = f(2,n) and
r(m,2) = m = f(m,2), we conclude that the Ramsey number r(m,n) satisfies

s (00) = (M)

110

The following list '’ contains known facts about nontrivial Ramsey numbers r(m,n):

10The paper “Small Ramsey Numbers” by S.P. Radziszowski, Electronic Journal of Combinatorics,
Dynamic Survey #1, contains this and other information; see http://www.combinatorics.org.
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r(3,3) =

r(3,4) = r(4 3) =09,
r(3,5) = r(5,3) = 14,

r(3,6) = r(6,3) = 18,

r(3,7) = r(7,3) = 23,

r(3,8) = r(8,3) = 28,

r(3,9) =r(9,3) = 36,

40 < (3,10) = r(10,3) < 43,

r(4,4) = 18,

r(4,5) = r(5,4) = 25,

35 <r(4,6) =r(6,4) <41

43 < r(5,5) <49

58 < r(5,6) =r(6,5) < 87

102 < r(6,6) < 165.

Notice that the fact that r(3,10) lies between 40 and 43 implies that
K3 — K3,K1o

and
K39 # K3, K.

Thus, there is no way to color the edges of K3 without creating either a red K3 or a
blue K7o; there is a way to color the edges of K39 without creating either a red K3 or a
blue Kjg, but neither of these conclusions is known to be true for K49, K41, and Kjys.
The assertion 43 < r(5,5) < 49 implies that K59 — K3, K5 and that there is a way to
color the edges of K45 without creating a monochromatic Kj.

Ramsey’s theorem generalizes to any number of colors. We give a very brief intro-
duction. If nq,n9, and ng are integers greater than or equal to 2, then there exists an
integer p such that

Kp - Knl ’ K‘nza Kns‘

In words, if each of the edges’of K, is colored red, blue, or green, then either there is a
red Ky, or a blue K, or a green K,,,. The smallest integer p for which this assertion
holds is the Ramsey number r(n;,n2,n3). The only nontrivial Ramsey number of this
type that is known is

r(3,3,3) = 17.

Thus K17 — K3, K3, K3 but K16 # K3, K3,'K3. The Ramsey numbers r(n1,no, ..., ng)
are defined in a similar way, and Ramsey’s theorem in its full generality for pairs asserts
that these numbers exist; that is, there is an integer p such that

K, = Ky, ,Kny,..., Ky,
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There is an even more general form of Ramsey’s theorem in which pairs (subsets
of two elements) are replaced by subsets of ¢ elements for some fixed integer ¢ > 1.
Let
K,
denote the collection of all subsets of ¢ elements of a set of n elements. Generalizing
our preceding notation, we obtain the general form of Ramsey’s theorem:

Given integers t > 2 and integers q1,qo, - ..,qx > t, there exists an integer p such
that
t t gt t .
K,— Ky ,Kg,..., Kg,.
In words, there exists an integer p such that if each of the t-element subsets of a p-
element set is assigned one of k colors c1,c¢2,...,ck, then either there are q; elements,

all of whose t-element subsets are assigned the color c1, or there are qo elements, all
of whose t-element subsets are assigned the color ¢y, ..., or there are qx elements, all
of whose t-element subsets are assigned the color cx. The smallest such integer p is
the Ramsey number

Tt(‘]l’fh’ R 7qk)'

Suppose t = 1. Then 7r1(q1,¢q2,-..,qx) is the smallest number p such that, if the
elements of a set of p elements are colored with one of the colors ¢;,cg,...,ck, then
either there are ¢; elements of color ¢, or ¢z elements of color ¢a, . . . , or gx elements
of color ¢;. Thus, by the strong form of the pigeonhole principle,

ri(gq,q2, - @) =a+a@+-a-k+1

This demonstrates that Ramsey’s theorem is a generalization of the strong form of the
pigeonhole principle.

The determination of the general Ramsey numbers 7:(g1,q2,-..,gx) is a difficult
problem. Very little is known about their exact values. It is not difficult to see that

Tt(taQ27 (RN 7qk) = Tt(an .. 7qk)

and that the order in which ¢1,¢s,...,qx are listed does not affect the value of the
Ramsey number.

3.4 Exercises

1. Concerning Application 4, show that there is a succession of days during which
the chess master will have played exactly k games, for each k¥ = 1,2,...,21.
(The case k = 21 is the case treated in Application 4.) Is it possible to conclude
that there is a succession of days during which the chess master will have played
exactly 22 games?
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. 2. % Concerning Application 5, show that if 100 integers are chosen from 1,2, .. .,200,
.and one of the integers chosen is less than 16, then there are two chosen numbers

such that one of them is divisible by the other.

. Generalize Application 5 by choosing (how many?) integers from the set

{1,2,...,2n}.

. Show that if n+ 1 integers are chosen from the set {1,2,...,2n}, then there are

always two which differ by 1.

. Show that if n + 1 distinct integers are chosen from the set {1,2,...,3n}, then

there are always two which differ by at most 2.

. Generalize Exercises 4 and 5.

. * Show that for any given 52 integers there exist two of them whose sum, or else

whose difference, is divisible by 100.

. Use the pigeonhole principle to prove that the decimal expansion of a rational

number m/n eventually is repeating. For example,

34,478

. In a room there are 10 people, none of whom are older than 60 (ages are given in

whole numbers only) but each of whom is at least 1 year old. Prove that we can
always find two groups of people (with no common person) the sum of whose
ages is the same. Can 10 be replaced by a smaller number?

A child watches TV at least one hour each day for seven weeks but, because of
parental rules, never more than 11 hours in any one week. Prove that there is
some period of consecutive days in which the child watches exactly 20 hours of
TV. (It is assumed that the child watches TV for a whole number of hours each
day.)

A student has 37 days to prepare for an examination. From past experience she
knows that she will require no more than 60 hours of study. She also wishes to
study at least 1 hour per day. Show that no matter how she schedules her study
time (a whole number of hours per day, however), there is a succession of days
during which she will have studied exactly 13 hours.

Show by example that the conclusion of the Chinese remainder theorem (Appli-
cation 6) need not hold when m and n are not relatively prime.
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* Let S be a set of six points in the plane, with no three of the points collinear.
Color either red or blue each of the 15 line segments determined by the points of
S. Show that there are at least two triangles determined by points of S which
are either red triangles or blue triangles. (Both may be red, or both may be
blue, or one may be red and the other blue.)

A bag contains 100 apples, 100 bananas, 100 oranges, and 100 pears. If I pick
one piece of fruit out of the bag every minute, how long will it be before I am
assured of having picked at least a dozen pieces of fruit of the same kind?

Prove that, for any n+ 1 integers a;, as,...,an+1, there exist two of the integers
a; and a; with i # j such that a; — a; is divisible by n.

Prove that in a group of n > 1 people there are two who have the same number
of acquaintances in the group. (It is assumed that no one is acquainted with
oneself.)

There are 100 people at a party. Each person has an even number (possibly
zero) of acquaintances. Prove that there are three people at the party with the
same number of acquaintances.

Prove that of any five points chosen within a square of side length 2, there are
two whose distance apart is at most v/2.

(a) Prove that of any five points chosen within an equilateral triangle of side
length 1, there are two whose distance apart is at most %

(b) Prove that of any 10 points chosen within an equilateral triangle of side
length 1, there are two whose distance apart is at most %

(c) Determine an integer m, such that if m,, points are chosen within an equi-
lateral triangle of side length 1, there are two whose distance apart is at
most 1/n.

Prove that r(3,3,3) < 17.

* Prove that 7(3,3,3) > 17 by exhibiting a coloring, with colors red, blue, and
green, of the line segments joining 16 points with the property that there do not
exist three points such that the three line segments joining them are all colored
the same.

Prove that

3,3,...,3) < (k+1)(r(3,3,...,3) — 1) + 2.
( ) < (k+1)(r( ) -1+

k+1 k
Use this result to obtain an upper bound for

r(3,3,...,3).

n
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The line segments joining 10 points are arbitrarily colored red or blue. Prove
that there must exist three points such that the three line segments joining them
are all red, or four points such that the six line segments joining them are all
blue (that is, 7(3,4) < 10).

Let g3 and t be positive integers with g3 > ¢t. Determine the Ramsey number
rt(tv g, Q3)'

Let q1,92,-..,qk,t be positive integers, where q; > ¢, go > t,..., qx > t. Let m
be the largest of q1,¢2,...,qk. Show that

re(m,m,...,m) > r(q1,q2,- -, k)

Conclude that, to prove Ramsey’s theorem, it is enough to prove it in the case
that o =g =+ = qx.

Suppose that the mn people of a marching band are standing in a rectangular
forination of m rows and n columns in such a way that in each row each person
is taller than the one to his or her left. Suppose that the leader rearranges the
people in each column in increasing order of height from front to back. Show
that the rows are still arranged in increasing order of height from left to right.

A collection of subsets of {1,2,...,n} has the property that each pair of subsets
has at least one element in common. Prove that there are at most 2% ! subsets
in the collection.

At a dance party there are 100 men and 20 women. For each ¢ from 1,2,...,100,
the ¢th man selects a group of a, women as potential dance partners (his “dance
list,” if you will), but in such a way that given any group of 20 men, it is always
possible to pair the 20 men with the 20 women, with each man paired with a
woman on his dance list. What is the smallest sum a; +as +- - - + aygg for which
there is a selection of dance lists that will guarantee this?

A number of different objects have been distributed into n boxes By, Bs, ..., By.
All the objects from these boxes are removed and redistributed into n + 1 new
boxes B}, B3,..., By, 1, with no new box empty (so the total number of objects
must be at least n + 1). Prove that there are two objects each of which has the
property that it is in a new box that contains fewer objects than the old box
that contained it.






Chapter 4

Generating Permutations and
Combinations

In this chapter we explore some features of permutations and combinations that are
not directly related to counting. We discuss some ordering schemes for them and
algorithms for carrying out these schemes. In case of combinations, we use the subset
terminology as discussed in Section 2.3. We also introduce the idea of a relation
on a set and discuss two important instances, those of partial order and equivalence
relation.

4.1 Generating Permutations

The set {1,2,...,n} consisting of the first n positive integers has n! permutations,
which, even if n is only moderately large, is quite enormous. For instance, 15! is
more than 1,000,000, 000,000. A useful and readily computable approximation to n!
is given by Stirling’s formula,

i~ Vo (2,
e

where 7 = 3.141... , and e = 2.718... is the base of the natural logarithm. As n
grows without bound, the ratio of n! to v/2rn (2)" approaches 1. A proof of this can
be found in many texts on advanced calculus and in an article by Feller.!

Permutations are of importance in many different circumstances, both theoreti-
cal and applied. For sorting techniques in computer science they correspond to the
unsorted input data. We consider in this section a simple but elegant algorithm for
generating all the permutations of {1,2,...,n}.

!W. Feller, A Direct Proof of Stirling’s Formula, Amer. Math. Monthly, 74 (1967), 1223-1225.
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Because of the large number of permutations of a set of n elements, for such an
algorithm to be effective on a computer the individual steps must be simple to perform.
The result of the algorithm should be a list containing each of the permutations of
{1,2,...,n} exactly once. The algorithm to be described has these features. It was
independently discovered by Johnson? and Trotter® and was described by Gardner in
a popular article.? The algorithm is based on the following observation:

If the integer n is deleted from a permutation of {1,2,...,n}, the result is
a permutation of {1,2,...,n — 1}.

The same permutation of {1,2,...,n — 1} can result from different permutations of
{1,2,...,n}. For instance, if n = 5 and we delete 5 from the permutation 3,4, 1, 5,2,
the result is 3,4,1,2. However 3,4, 1,2 also results when 5 is deleted from 3,5,4,1, 2.
Indeed there are exactly 5 permutations of {1,2,3,4, 5} which yield 3,4, 1,2 upon the
deletion of 5, namely,

53412
35412
34512
34152
34125,
which we can also write as
34125
34152
34512
35412
53412
More generally, each permutation of {1,2,...,n—1} results from exactly n permu-
tations of {1,2,...,n} upon the deletion of n. Looked at from the opposite viewpoint,
given a permutation of {1,2,...,n — 1}, there are exactly n ways to insert n into
this permutation to obtain a permutation of {1,2,...,n}. Thus, given a list of the
(n — 1)! permutations of {1,2,...,n — 1}, we can obtain a list of the n! permutations
of {1,2,...,n} by systematically inserting n into each permutation of {1,2,...n — 1}
in all possible ways. We now give an inductive description of such an algorithm; it
generates the permutations of {1,2,...,n} from the permutations of {1,2,...,n—1}.

Thus, starting with the unique permutation 1 of {1}, we build up the permutations
of {1,2}, then the permutations of {1,2,3}, and so on until finally we obtain the
permutations of {1,2,...,n}.

2S. M. Johnson, Generation of Permutations by Adjacent Transpositions, Mathematics of Compu-
tation, 17 (1963), 282-285.

3H. F. Trotter, Algorithm 115, Communications of the Association for Computing Machinery, 5
(1962), 434-435.

M. Gardner, Mathematical Games, Scientific American, November (1974), 122-125.
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n = 2: To generate the permutations of {1,2}, write the unique permutation of {1}
twice and “interlace” the 2:

The second permutation is obtained from the first by switching the two numbers.

n = 3: To generate the permutations of {1,2,3}, write each of the permutations of
{1,2} three times in the order generated above, and interlace the 3 with them as
shown:

w
NN N =
_ e N NN

It is seen that each permutation other than the first is obtained from the preceding
one by switching two adjacent numbers. When the 3 is fixed, as it is from the third
to the fourth permutation in the sequence of generation, the switch comes from a
corresponding switch for n = 2. We note that by switching 1 and 2 in the last
permutation generated, we obtain the first one, namely, 123.

n = 4: To generate the permutations of {1,2,3,4}, write each of the permutations of
1,2, 3 four times in the order generated above, and interlace the 4 with them.

Again we observe that each permutation is obtained from the preceding one by
switching two adjacent numbers. When the 4 is fixed, as it is between the 4th and
5th, the 8th and 9th, the 12th and 13th, the 16th and 17th, and the 20th and 21st
permutations in the sequence of generation, the switch comes from a corresponding
switch for n = 3. Also, by switching 1 and 2 in the last permutation generated, we
obtain the first permutation 1234.
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1 2 3 4
1 2 4 3
1 4 2 3
4 1 2 3
4 1 3 2
1 43 2
1 3 4 2
1 3 2 4
3 1 2 4
3 1 4 2
3 41 2
4 3 1 2
4 3 2 1
3 4 2 1
3 2 41
3 2 1 4
2 3 1 4
2 3 41
2 4 3 1
4 2 3 1
4 2 1 3
2 41 3
2 1 4 3
2 1 3 4

It should now be clear how to proceed for any n. It readily follows by induc-
tion on n, using our earlier remarks, that the algorithm generates all permutations of
{1,2,...,n} exactly once. Moreover, each permutation other than the first is obtained
from the preceding one by switching two adjacent numbers. The first permutation
generated is 12---n. This is so for n = 1 and follows by induction, since, in the algo-
rithm, 7 is first put on the extreme right. Provided that n > 2, the last permutation
generated is always 213---n. This observation can be verified by induction on n as
follows: If n = 2, the last permutation generated is 21. Now suppose that n > 3 and
that 213--- (n — 1) is the last permutation generated for {1,2,...,n — 1}. There are
(n — 1)1, an even number, of permutations of {1,2,...n — 1}, and it follows that, in
applying the algorithm, the integer n ends on the extreme right. Hence, 213---n is
the last permutation generated. Since the last permutation is 213---n, by switching
1 and 2 in the last permutation the first permutation results. Thus the algorithm is
cyclical in nature.

To generate the permutations of {1,2,...,n} in the manner just described, we must
first generate the permutations of {1,2,...,n — 1}. To generate the permutations of
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{1,2,...,n — 1}, we must first generate the permutations of {1,2,...,n — 2}, and so
on. We would like to be able to generate the permutations one at a time, using only
the current permutation in order to generate the next one. We next show how it is
possible to generate in this way the permutations of {1,2,...,n} in the same order
as above. Thus, rather than having to retain a list of all the permutations, we can
simply overwrite the current permutation with the one that follows it. To do this, we
need to determine which two adjacent integers are to be switched as the permutations
appear on the list. The particular description we give is taken from Even.®

Given an integer k, we assign a direction to it by writing an arrow above it pointing

to the left or to the right: 7; or k. Consider a permutation of {1,2,...,n} in which
each of the integers is given'a direction. The integer k is called mobile if its arrow
points to a smaller integer adjacent to it. For example, in

263154
only 3,5, and 6 are mobile. It follows that the integer 1 can never be mobile since

there is no integer in {1,2,...,n} smaller than 1. The integer n is mobile, except in
two cases:

(1) n is the first integer and its arrow points to the left: e,
(2) n is the last integer and its arrow points to the right: - -- .

This is because n, being the largest integer in the set {1,2,...,n}, is mobile whenever
its arrow points to an integer. We can now describe the algorithm for generating the
permutations of {1,2,...,n} directly.

Algorithm for generating the permutations of
{1,2,...,n}

Begin with T 2 ... n.
While there exists a mobile integer, do the following:
(1) Find the largest mobile integer m.
(2) Switch m and the adjacent integer to which its arrow points.

(3) Switch the direction of all the arrows above integers p with p > m.

We illustrate the algorithm for n = 4. The results are displayed in two columns, with
the first column giving the first 12 permutations:

5S. Even, Algorithmic Combinatorics, Macmillan, New York (1973).
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Since no integer is mobile in 5 T 3 Z, the algorithm stops.

That this algorithm generates the permutations of {1,2,...,n}, and in the same
order as our previous method, follows by induction on n. We don’t give a formal
proof, and we only illustrate the inductive step from n = 3 to n = 4. We begin with

— -

123 Z, with 4 the largest mobile integer. The integer 4 remains mobile until it
reaches the extreme left. At that point 4 has been inserted in all possible ways in the
permutation 123 of {1,2,3}. Now 4 is no longer mobile. The largest mobile integer is

3, which is the same as the largest mobile integer in 1 E E Then 3 and 2 switch places
and 4 changes direction. The switch is the same switch that would have occurred in

— — — ’

12 3. Theresultisnow 4 1 3 2; now 4 is mobile again and remains mobile until it
reaches the extreme right. Again a switch takes place, which is the same switch that
would have occurred in T E E The algorithm continues like this, and 4 is interlaced
in all possible ways with each permutation of {1,2,3}.

It is possible to determine, for a given permutation of {1,2,...,n}, at which step
the permutation occurs in the preceding algorithm. Conversely, it is possible to deter-
mine which permutation occurs at a given step. For a clear analysis of this, we refer
to the book by Even.®

Given a positive integer n, we have described an algorithm to generate all the n!
permutations of {1,2,...,n}. To conclude this section, we say a few brief words about
generating a random permutation i1iz ... i, of {1,2,...,n}; that is, we want to generate
one permutation of {1,2,...,n} in such a way that each of the n! permutations has
an equal chance, namely 1/n!, of being generated. Let A = {1,2,...,n}. One obvious

S0p. cit.
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way to do this is to choose an integer at random from A (so each of the integers in A
has a probability of 1/n of being chosen) and call this integer ¢;. Then remove %; from
A and choose an integer at random from the remaining n — 1 elements (so now each
integer left in A has a probability of 1/(n— 1) of being chosen) and call this integer 5.
Continue this process of choosing an integer in A at random and removing it. When
A becomes empty, we have a permutation %345 ..., of 1,2,...,n whose probability of
being chosen is

nn-1n-2 21 n
and hence a random permutation.” Another possible way, known as the Knuth shuffle,
for generating a random permutation is as follows: Start with the identity permutation
12...n and, sequentially, for each £k = 1,2,...,n — 1, randomly choose one of the
positions k, k+1,...,n and switch the integers in position k and the chosen position.8

4.2 Inversions in Permutations

In this section we discuss a method of describing a permutation by means of its in-
versions discovered by Hall.® The notion of an inversion is an old one, and it plays an
important role in the theory of determinants of matrices.

Let %1i3.. .4, be a permutation of the set {1,2,...,n}. The pair (i,%;) is called
an inversion if k < and i > ¢;. Thus, an inversion in a permutation corresponds to
a pair of numbers that are out of their natural order. For example, the permutation
31524 has four inversions, namely (3,1),(3,2),(5,2),(5,4). The only permutation of
{1,2,...,n} with no inversions is 12...n. For a permutation iis...%n, we let a;
denote the number of inversions whose second component is j. In other words,

a; equals the number of integers that precede j in the permutation but are
greater than j; it measures how much j is out of order.

The sequence of numbers
a1, a2,...,0n

is called the inversion sequence of the permutation 4145 ...4,. The number a; + as +
.-+ + a, measures the disorder of a permutation.

"Those with more knowledge of probability than given in this book will have recognized that we
have cheated a little here by multiplying the individual probabilities. We can justify this as follows:
In choosing the first k integers, there are n(n—1)--- (n — k+ 1) possible outcomes with, each outcome
having the same chance of being chosen, and so a 1 in n(n — 1)--- (n — k + 1) chance, as any other.
When k& = n we get 1/nl. )

8Note that we allow k as one of the possible positions and when k is chosen as the position, no
switch actually occurs. If we didn’t allow k, we could never end up with the identity permutation and
hence we would not have a random generation scheme.

SM. Hall, Jr., Proceedings Symposium in Pure Mathematics, American Mathematical Society, Prov-
idence, 6 (1963), 203.



94 CHAPTER 4. GENERATING PERMUTATIONS AND COMBINATIONS

Example. The inversion sequence of the permutation 31524 is

1,2,0,1,0.
a
The inversion sequence aj,as,...,a, of the permutation ¢1iy...47, satisfies the
conditions
0<a1€<n—-1,0<a3<n—-2,...,0<ap-1 <1, a,=0.
This is so because for each k = 1,2, ..., n, there are n—k integers in the set {1,2,...,n}

which are greater than k. Using the multiplication principle, we see that the number
of sequences of integers by, bo, ..., b,, with

0<b;<n—-1,0<by<n—-2,...,0<bpy <1, by =0, (4.1)

equals n X (n—1) x--- x2x 1=mnl

Thus, there are as many permutations of {1, 2,...,n} as there are possible inversion
sequences. This suggests (but does not yet prove!) that different permutations of
{1,2,...,n} have different inversion sequences. If we can show that each sequence
of integers by, ba, ..., b, satisfying (4.1) is the inversion sequence of a permutation of
{1,2,...,n}, then it follows (from the pigeonhole principle) that different permutations
have different inversion sequences.

Theorem 4.2.1 Let by, bs,...,b, be a sequence of integers satisfying
0<b)<n—1,0<by<n—-2,...0<b,1<1, b, =0.

Then there ezists a unique permutation of {1,2,...,n} whose inversion sequence is
b1,b2,...,bn.

Proof. We describe two methods for uniquely constructing a permutation whose
inversion sequence is by, ba,...,by,.

Algorithm I
Construction of a permutation from its inversion sequence

n: Write down n.

n — 1: Consider b,_;. We are given that 0 < b,_; < 1. If b,_; =0, then n — 1 must be
placed before n. If b,—; = 1, then n — 1 must be placed after n.
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— 2: Consider b,_3. We are given that 0 < b,_s < 2. If b,_9 =0, then n — 2 must be
placed before the two numbers from step n — 1. If b,_o = 1, then n — 2 must be
placed between the two numbers from step n — 1. If b,_o = 2, then n — 2 must
be placed after the two numbers from step n — 1.

—k: (general step) Consider b,_x. We are given that 0 < b,—x < k. In steps n
through n — k+1, the k numbersn,n—1,...,n —k+1 have already been placed
in the required order. If b,_; = 0, then n — k must be placed before all the
numbers from step n — k + 1. If b,_, = 1, then n — k must be placed between
the first two numbers. . . . If b,_x = k, then n — k must be placed after all the
numbers.

1: We must place 1 after the bi;st number in the sequence constructed in step 2.

Steps n,n — 1,n — 2,...,1, when carried out, determine the unique permutation
of {1,2,...,n} whose inversion sequence is by, ba,...,b,. The disadvantage of this
algorithm is that the location of each integer in the permutation is not known until
the very end; only the relative positions of the integers remain fixed throughout the
algorithm.

In the second algorithm,'0 the positions of the integers 1,2, ..., n in the permuta-
tion are determined.

Algorithm II
Construction of a permutation from its inversion sequence

We begin with n empty locations, which we label 1,2,...,n from left to right.

1: Since there are to be by integers that precede 1 in the permutation, we must put
1 in location number b; + 1.

2: Since there are to be by integers that precede 2 and are larger than 2 in the
permutation, and since these integers have not yet been inserted, we must leave
exactly by empty locations for them. Thus, counting from the left, we put 2 in
the (b2 + 1)st empty location. '

10T his algorithm was brought to my attention by J. Csima.
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k : (general step) Since there are to be by integers that precede k in the permutation,
and since these integers have not yet been inserted, we must leave exactly by
empty locations for them. We observe that the number of empty locations at
the beginning of this step is n — (k — 1) = n — k + 1. Counting from the left,
we put k in the (by + 1)st-such empty location. Since by < n — k, we have
br +1<n—k+1 and so such an empty location can be determined.

n : We put n in the one remaining empty location.

Carrying out the steps 1,2,...,n in the order described, we obtain the unique
permutation of {1,2,...,n} whose inversion sequence is by, b, ..., bp. O

Example. Determine the permutation of {1, 2, 3,4, 5, 6,7, 8} whose inversion sequence
is 5,3,4,0,2,1,1,0.

The steps in the two algorithms in the proof of Theorem 4.2.1, when carried out
for the given inversion sequence, yield the following results:
Algorithm 1

8

87

867

8657
48657
486537
4862537
48625137

N Wk OO g

Thus, the permutation is 48625137.
Algorithm 11

1: 1

2: 2 1

3: 2 1 3

4: 4 2 1 3

5: 4 2 5 1 3

6: 4 6 2 5 1 3

7: 4 6 2 5 1 3 7

8: 4 8 6 2 5 1 3 7
m®eE @6 6 0 @

Again, the permutation is 48625137. a
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It follows from Theorem 4.2.1 that the correspondence which associates the in-
version sequence to each permutation is a one-to-one correspondence between the
permutations of {1,2,...,n} and the sequences of integers by, ba, ..., b, satisfying

0<bi<n-1,0<by<n—2,...,0<bpq<1,by=0.

Thus, a permutation is uniquely specified by specifying its inversion sequence. Think
of it as a code for the permutation. In the proof of Theorem 4.2.1, we have given two
methods to break this code.

There is a subtle distinction worth making between a permutation and its inversion
sequence. In choosing a permutation of {1,2,...,n}, we have to make n choices, one
for each term of the permutation. We choose the first term, in any one of n ways,
then the second term, in any one of n — 1 ways, but notice that while the number of
choices for the second term is always n — 1, the actual possible choices for the second
term depend on what was chosen for the first term (we cannot choose whatever has
already been chosen). A similar situation occurs for the choice of the kth term. We
have n — (k — 1) choices for the kth term, but the actual choices depend on what has
already been chosen for the first £ — 1 terms.

The preceding description can be contrasted with choosing an inversion sequence
b1, ba,...,b, for a permutation of {1,2,...,n}. For b;, we can choose any of the n
integers 0,1,...,n — 1. For by, we can choose any of the n — 1 integers 0,1,...,n — 2,
and it does not matter what our choice for by is. In general, for by, we can choose
any of the n — (k — 1) integers 0,1,...,n — k, and it does not matter what our choices
for by, ba,...,by—1 are. Thus, the inversion sequence replaces dependent choices by
independent choices.

It is customary to call a permutation i14s . . .4, of {1,2,...,n} evenor odd according
to whether its number of inversions is even or odd. The sign of the permutation
is then defined to be +1 or —1 according to whether it is even or odd. The sign
of a permutation is important in the theory of determinants of matrices, where the
determinant of an n X n matrix

A=[aij] (i,j:l,?,...,n)

is defined to be
det(A) = Z €(i1ig. .. in)a1i1a2,'2 C O,
the summation extending over all permutations %13 . .., of the set {1,2,...,n}, and
€(i192 . .. 1,) is equal to the sign of 4ds ... 0.1t
If the permutation 4145 . . . 7, has inversion sequence by, bs,...,b, and k = by + by +
-++ + by is the number of inversions, then %;iy...4, can be brought to 12...n by k

" Thinking of an n x n matrix as an n-by-n chessboard in which the squares are occupied by
numbers, the terms in the summation for the formula for the determinant correspond to the n! ways
to place n nonattacking rooks on the board.
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successive switches of adjacent numbers. We first switch 1 successively with the b;
numbers to its left. We then switch 2 successively with the b3 numbers to its left which
are greater than 2, and so on. In this way, we arrive at 12...n after by +ba+ -+ b,
switches.

Example. Bring the permutation 361245 to 123456 by successive switches of adjacent
numbers.

The inversion sequence is 220110. The results of successive switches are as follows:

RS e e ) W
NN WWD
WWwWwN SO
RO O NN N
[S1 = T N NG NN
S Ot Ot Ot O Ot O

a

This procedure is one instance of a sorting procedure common in computer science.
The elements of a permutation iis... 4, correspond to the unsorted data. For more
efficient sorting techniques and their analysis, consult Knuth.1?

4.3 Generating Combinations

Let S be a set of n elements. For reasons that will be clear shortly, we take the set S
in the form

S = {-Tn—-la ce 7:1:17:1:0}'

We now seek an algorithm that generates all of the 2" combinations of S, thus, all
2™ subsets of S. This means that we want a systematic procedure that lists all the
subsets of S. The resulting list should contain all the subsets of S (and only subsets
of S) with no duplications. Thus, according to Theorem 2.3.4, there will be 2" subsets
on the list.

Given a subset A of S, then each element z either belongs or does not belong to
A. If we use 1 to denote that an element belongs and 0 to denote that an element
does not belong, then we can identify the 2™ subsets of S with the 2" n-tuples

(@n—1,--+,01,00) = Gyp_1---010p

12D, E. Knuth, Sorting and Searching. Volume 3 of The Art of Computer Programming, 2nd edition,
Addison-Wesley, Reading, MA (1998).
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of 0s and 1s.13 We let the ith term a; of the n-tuple correspond to the element x;
for each i = 0,1,...,n — 1. For example, when n = 3, the 2% = 8 subsets and their
corresponding 3-tuples are given as follows:

a a1 Qo
(] 0 0 O
{:L‘o} 0 0 1
{:L‘l} 0 1 0
{561, .’L‘o} 0o 1 1
{z2} 1 0 0
{:L‘z, .’1:0} 1 0 1
{z2,21} 1 1 0
{2, 1,70} 1 1 1

Example. Let S = {zs, z5, T4, Z3, T2, Z1,70}. The 7-tuple corresponding to the sub-
set {rs,z4,Z2,z0} is 0110101. The subset corresponding to the 7-tuple 1010001 is
{-T67 T4, .’L‘()}. a

Because of this identification of subsets of a set of n elements with n-tuples of Os
and 1s, to generate the subsets of a set of n elements, it suffices to describe a systematic
procedure for writing in a list the 2" n-tuples of Os and 1s. Now, each such n-tuple
can be regarded as a base 2 numeral.!* For example, 10011 is the binary numeral for
the integer 19 since

19=1x2"+0x22+0x22 +1x2" +1x20
In general, given an integer m from 0 up to 2™ — 1, it can be expressed in the form
Mm=an_1x2" 1 ta, ox2" 2+ ... 4a; x 2! +a9 x 29,
where each a; is 0 or 1. Its binary numeral is
an—10n—2 - A100-

Conversely, since
2n—1 _|_2n—2_|_+21 +20=2n_1,

every expression of the preceding form has value equal to an integer between 0 and
2" — 1. The n-tuples of Os and 1s are thus in one-to-one correspondence with the
integers 0,1,...,2" — 1. Note that, in writing the binary numeral for an integer
between 0 and 2™ — 1, our convention is to use exactly n digits and thus to include, if
necessary, some initial Os that are not normally included.

13In the language of Section 3.3, we identify the subsets with the n-permutations of the multiset
{n-0,n-1}.
14Gee also Section 1.7.
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Example. Let n = 7. The number 29 is between 0 and 27 — 1 = 127 and can be
expressed as

290=0x294+0x2P+1x22+1x22+1x22+0x2"+1x20.

Thus, 29 has a binary numeral of seven digits given by 0011101 and corresponds to
the subset {z4,z3,z2,z0} of the set

S = {z¢, 5, T4, T3, T2, T1, L0}
a

How do we generate the 2" subsets of S = {z,_1,...,21,70}? Equivalently, how
do we generate the 2™ n-tuples of Os and 1s? The answer is now simple. We write
down the numbers from 0 to 2" — 1 in increasing order by size, but in binary form,
adding 1 each time, using base 2 arithmetic. This is how the 3-tuples of Os and 1s were
generated earlier.

Example. Generate the 4-tuples of Os and 1s.

Number Binary Numeral

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

a
Example. If we use the base 2 arithmetic scheme just described, what is the subset
of {ze,z5, %4, T3, T2, 71,0} immediately following the subset {zg, z4, T2, Z1,20}?
The subset {z¢, 4, T2, Z1,Zo} corresponds to the binary numeral 1010111. Using
base 2 arithmetic, we see that the next subset corresponds to
1010111
+ 1
1011000




4.3. GENERATING COMBINATIONS 101

and thus is the subset {z¢,z4,z3}. Since
1x204+0x22+1x2+0x28 +1x22+1x2'+1x20 =87,

the subset {z¢, z4, T2, 21, To} is the 87th on the list. The subset that is 88th on the list
is {z6,z4,z3}. Note that the places on the list of all subsets are numbered beginning
with 0 and ending with 2™ — 1. The subset occupying the Oth place is always the
empty set. When we say, for instance, the 5th subset on the list, we mean the subset
on the list corresponding to the number 5, and not the subset corresponding to the
number 4. Five subsets precede the 5th subset on the list. If this is not yet clear, the
next example should clarify our convention. a

Example. Which subset of S = {zs, z5, 24, 23, T2, 1, o } is 108th on the list?
We first find the base 2 numeral for 108:
108=1x26+1x254+0x2%+1x2%+1x224+0x2"'+0x2%
Hence, the base 2 numeral for 108 is

1101100.

Thus, the subset is {z¢, 5, z3,z2}. Which subset immediately precedes this one? We
simply subtract in base 2:

1101100
- 1
110101 1

This corresponds to the subset {zs, x5, 23,21, Z0}. m]

We now describe in compact form our algorithm for generating the subsets of a
set of n elements. The description is in terms of n-tuples of Os and 1s. The rule of
succession given in the algorithm is a consequence of addition using base 2 arithmetic.

Base 2 Algorithm for Generating the Subsets of
{Zn-1,.--,21,%0}
Begin with a,—1---ajag =0---00.
While a,,—1---a1a9 # 1--- 11, do the following:

(1) Find the smallest integer j (between n—1and 0) such that a; = 0.

2) Replace a; with 1 and replace each of a;_1,...,ag (which, by our choice of j, all
i 3
equal 1) with 0.
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The algorithm comes to an end when a,—1---ajag = 1---11, which is the last
binary n-tuple on the resulting list.

The ordering of the n-tuples of Os and 1s produced by the base 2 generation
scheme is called the lexicographic ordering of n-tuples. In this ordering, an n-tuple
an—1 ' - a10g occurs earlier on the list than another n-tuple b, _1 - - - b1by provided that,
starting at the left, the first position in which they disagree, say position j, we have
aj = 0 and b; = 1. (Why? Because this is equivalent to saying that the number
whose base 2 numeral is given by a1 - - @1a¢ is smaller than the number whose base
2 numeral is given by bp_1 - - b1bg.) Thinking of the n-tuples as “words” of length n
in an alphabet of two “letters,” 0 and 1, in which 0 is the first letter of the alphabet
and 1 is the second letter, the lexicographic ordering is the order in which these words
would occur in a dictionary.

Viewing the n-tuples as subsets of the set {z,_1,...,Z1,Z0}, We see that for each j
with n—1 > j, all the subsets of {z;,...,z1,zo} precede those subsets which contain at
least one of the elements z,_1, ..., z;+1. For this reason, the lexicographic ordering on
n-tuples of Os and 1s, when viewed as an ordering of the subsets of {zn-1,...,71,Z0},
is sometimes called the squashed ordering of subsets. In the squashed ordering we
list all the subsets of the current elements before introducing a new element. The
squashed ordering of the subsets of {z3 = 4,22 = 3,71 = 2,79 = 1} is given below
and corresponds to our earlier (lexicographic) listing of the binary 4-tuples. Notice
how, in this ordering, all the subsets that do not contain 4 come before those that do.
Of the subsets that do not contain 4, those that do not contain 3 come before those
that do. Of the subsets that contain neither 4 nor 3, those that do not contain 2 come
before those that do.

-
vH uw‘owl—‘ v)—‘
B LW W W NN RS

2,4
1,2,4
3,4
1,3,4
2,3,4
1,2,3,4.

Subsets of {1,2,3,4} in the squashed ordering.
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Notice how, in this ordering, all the subsets that do not contain 4 come before those
that do. Of the subsets that do not contain 4, those that do not contain 3 come before
those that do. Of the subsets that contain neither 4 nor 3, those that do not contain
2 come before those that do.

The immediate successor of a subset in the squashed ordering of subsets (equiva-
lently, the immediate successor of an n-tuple in the lexicographic ordering of n-tuples)
may differ greatly from the subset itself. The subset A = {z¢, 4,3} (equivalently, the
7-tuple 1011000) which follows the subset B = {zg,z4, Z2,Z1,To} (equivalently, the
7-tuple 1010111) differs from B in four instances, since A contains z3 (and B doesn’t)
while B contains zq,z1, and zo (and A doesn’t). This suggests consideration of the
following question: Is it possible to generate the subsets of a set of n elements in a
different order so that the tmmediate successor of a subset differs from it as little as
possible? Here as little as possible means that the immediate successor of a subset is
obtained by either including a new element or deleting an old element, but not both;
in short, one in or one out. Such a generation scheme can be important for many
reasons, not the least of which is that there would be a smaller chance of error in
generating all the subsets.

Example. Let S = {z,-1,...,21,Z0}, and consider the following lists of the subsets
of S and the corresponding n-tuples for n = 1,2, 3.
n=1 n=2
0 0 0 00
{z0} 1 {zo} 01
{z1,z0} 11
{:1:1} 10
n=3
0 000
{:1:0} 001
{z1,T0} 011
{(L‘l} 010
{J)g,wl} 110
{(L‘Q,Zl,l‘o} 111
{:Ez, :Eo} 101
{z2} 100

In each list, the transition from one subset to the next is obtained by inserting a new
element or removing an element already present, but not both. In terms of n-tuples
of Os and 1s, we change a 0 to a 1 or a 1 to a 0, but not both. O

We now make a further identification, this time a geometric one. We regard an
n-tuple of 0s and 1s as the coordinates of a point in n-dimensional space. Thus, for
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n =1, the identification is with points on a line; for n = 2, it is with points in 2-space
or a plane; for n = 3, it is with points in three-dimensional space.

0 1
r-—e

Figure 4.1

Example. Let n = 1. The 1-tuples of 0s and 1s correspond to the endpoints or
corners of a unit line segment, as shown in Figure 4.1. [}

Example. Let n = 2. The 2-tuples of Os and 1s correspond to the corners of a unit
square, as shown in Figure 4.2. m}

00 01

Figure 4.2

Example. Let n = 3. The 3-tuples of 0s and 1s correspond to the corners of a unit

cube, as shown in Figure 4.3. a
1o 11
010 011
101
100
000 001

Figure 4.3

Notice that in all three examples there is an edge between two corners precisely
when their coordinates differ in only one place. This is precisely the feature we are
looking for in generating the n-tuples of 0s and 1s.

We can generalize to any n. The unit n-cube (a 1-cube is a line segment, a 2-cube
is a square, a 3-cube is an ordinary cube) has 2" corners whose coordinates are the 2"
n-tuples of Os and 1s. There is an edge of the n-cube joining two corners precisely when
the coordinates of the corners differ in only one place. An algorithm for generating the
n-tuples of Os and 1s which has the property that the successor of an n-tuple differs
from it in only one place corresponds to a walk along the edges of an n-cube that visits
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every corner exactly once. Any such walk (or the resulting list of n-tuples) is called
a Gray code of order n.'5 If it is possible to traverse one more edge to get from the
terminal corner to the initial corner of the walk, then the Gray code is called cyclic.
The lists for n = 1,2, and 3 in the examples are cyclic Gray codes. They have an
additional property that makes them quite special, and we now investigate it.

Figure 4.4

Let us begin with the unit 1-cube and the Gray code, which starts at 0 and ends at
1, as shown in Figure 4.4. We build a unit 2-cube by taking two copies of the 1-cube
and joining corresponding corners. We attach a 0 to the coordinates of one copy and a
1 to the coordinates of the other: We obtain a cyclic Gray code for the 2-cube by first
following the Gray code on one copy of the 1-cube, crossing over to the other copy,
and then following the Gray code for the 1-cube in the reverse direction, as shown on
the left in Figure 4.5.

110 111

10 1
010 011
100 101
00 01
000 001
Figure 4.5

We build a unit 3-cube in a similar way from the unit 2-cube. We take two copies
of the 2-cube and join corresponding corners. We attach a 0 to the coordinates of one
copy and a 1 to the coordinates of the other. We obtain a cyclic Gray code for the
3-cube by first following the Gray code on one copy of the 2-cube, crossing over to the
other copy, and then following the Gray code for the 2-cube in the reverse direction,
as shown on the right in Figure 4.5.

We may continue in this manner to construct inductively a Gray code of order n
for any integer n > 1. The Gray code constructed in this way is called the reflected
Gray code. The n-cube is a convenient visual device and, as we shall see, need not be
introduced in order to obtain the reflected Gray code of order n. The reflected Gray

151n 1878, the French engineer Emile Baudot demonstrated the use of a Gray code in a telegraph.
It was the Bell Labs researcher Frank Gray who first patented these codes in 1953.
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code for n = 4 is as follows:

bt b ok ek ek e e e O O OO O O OO
OO O O b -0 000

O = H OO OO - =OO
O = H OO R OO KRFOOMMEO

o

The general inductive definition of the reflected Gray code of order n is the follow-
ing:

(1) The reflected Gray code of order 1 is (1)

(2) Suppose n > 1 and the reflected Gray code of order n — 1 has been constructed.
To construct the reflected Gray code of order n, we first list the (n — 1)-tuples
of Os and 1s in the order given by the reflected Gray code of order n — 1, and
attach a 0 at the beginning (i.e. on the left) of each (n — 1)-tuple. We then list
the (n — 1)-tuples in the order which is the reverse of that given by the reflected
Gray code of order n — 1, and attach a 1 at the beginning.

It follows from this inductive definition that the reflected Gray code of order n
begins with the n-tuple 00---0 and ends with the n-tuple 10---0. It is therefore
cyclic, since 00-- -0 and 10--- 0 differ in only one place.

Since the reflected Gray codes have been defined inductively, to construct the
reflected Gray code of order n, we first construct the reflected Gray code of order
n — 1. So, for instance, to construct the reflected Gray code of order 6, we first
construct the reflected Gray code of order 5. To do that we must first construct the
reflected Gray code of order 4, and so on. Therefore, to construct the reflected Gray
code of order 6, using the inductive definition, we must construct sequentially the
reflected Gray codes of orders 1, 2, 3, 4, and 5. We now describe an algorithm that
enables us to construct the reflected Gray code of order n directly. To do this we need
a rule of succession, which tells us which place to change (from a0 to a 1 or a1 to
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a 0) in going from one n-tuple to the next in the reflected Gray code. This rule of
succession is provided in the next algorithm.
If ap—1an—2- - ag is an n-tuple of Os and 1s, then

0(an-10n-2-+09) =@n-1+an2+ - +ag

is the number of its 1s (and thus equals the size of the subset to which it corresponds).

Algorithm for generating the n-tuples of 0s and 1s
in the reflected Gray code order

Begin with the n-tuple ap—1a,—2--- a9 =00---0.
While the n-tuple ap—1a,-2---ag # 10---0, do the following:

(1) Compute o(an—1an—2-"-ag) = p-1 + an-2 + -+ + ap.
(2) If o(an—1an—2- - ag) is even, change ag (from 0 to 1 or 1 to 0).

(3) Else, determine j such that a; = 1 and a; = 0 for all i with j > ¢ (i.e., the first
1 from the right), and then change a;4; (from 0 to 1 or 1 to 0).

We note that if, in step (3), we have ap_1an—2---ag #10---0, then j <n — 2, so
that j +1 < n —1 and aj4+1 is defined. We also note that in step (3) we may have
j = 0, that is, ap = 1; in this case there is no ¢ with ¢ < j, and we change a; as
instructed in step (3).

You may wish to check that this algorithm does give the Gray code of order 4 as
already presented.

Theorem 4.3.1 The preceding algorithm for generating the n-tuples of 0s and 1ls
produces the reflected Gray code of order n for each positive integer n.

Proof. We prove the theorem by induction on n. It is clear that the algorithm applied
to n = 1 produces the reflected Gray code of order 1. Let n > 1, and assume that
the algorithm applied to n — 1 produces the reflected Gray of order n — 1. The first
27! n-tuples of the reflected Gray code of order n consist of the (n — 1)-tuples of
the reflected Gray code of order n — 1 with a 0 attached at the beginning of each
(n — 1)-tuple. Since the (n — 1)-tuple 10---0 occurs last in the reflected Gray code
of order n — 1, it follows that the rule of succession applied to the first (2rt -1
n-tuples of the reflected Gray code of order n has the same effect as applying the rule
of succession to all but the last (n — 1)-tuple of the reflected Gray code of order n — 1
and then attaching a 0. Hence it is a consequence of the inductive hypothesis that the
rule of succession produces the first half of the reflected Gray code of order n. The
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2n~1st n-tuple of the reflected Gray code of order n is 010--- 0. Since ¢(010---0) = 1,
an odd number, the rule of succession applied to 010---0 gives 110-- -0, which is the
(2"~1 4 1)st n-tuple of the reflected Gray code of order n.

Consider now two consecutive n-tuples in the second half of the reflected Gray
code of order n:

1 ang---ag
1 by_o---bg.

Then a,_3---ag immediately follows b,_2---bg in the reflected Gray code of order
n—1:

bz by
Ap_9 - ag.

Now o(an 2---ap) and o(by—2---by) are of opposite parity. One is even and the
other is odd. Also, o(lan-2---ag) and o(an—2---ap) are of opposite parity, and
so are o(1b,..o---bp) and o(bp—2---by). Suppose that o(b,_2---bg) is even. Then
o(an-2--+ap) is odd and o(lan—2---ap) is even. Using the induction assumption, we
see that a,—2 - - - ap is obtained from b,_5 - - - bp by changing by. The rule of succession
applied to la,—2 - - - ag instructs us to change ag, and this gives 1b,_3 - - - by as desired.
Now suppose that o(bn—2 - - - bg) is odd. Then o(an—2 - ag) is even and o(lanp—3 - - - ap)
is odd. The rule of succession applied to la,—_2 - - - ap has the opposite effect from the
rule of succession applied to b, - - - bg. Hence, it also follows by the induction assump-
tion that the rule of succession applied to la,_o---ag gives 1lb,_o- - by, as desired.
Therefore, the theorem holds by induction. u]

Example. Determine the 8-tuples that are successors of 10100110, 00011111, and
01010100 in the reflected Gray code of order 8.

Because ¢(10100110) = 4 is an even number, 10100111 follows 10100110. Because
0(00011111) = 5is an odd number, then in step (3) of the algorithm j = 0 so that
00011101 follows 00011111. Since ¢(01010100) = 3, 01011100 follows 01010100. a

We have described two linear orderings of the 2™ binary n-tuples: the lexicographic
order obtained, starting with 00---0, by using base 2 arithmetic; and the reflected
Gray code order, which also starts with 00---0. The lexicographic order corresponds
to the integers from 0 to 2" — 1 in base 2, and we can think of the reflected Gray
code order as listing the binary n-tuples in a specified order from 0 to 2" — 1. Let
an_1-'-a10p be a binary n-tuple. We can say explicitly in what place this binary
n-tuple occurs on the list in Gray code order. For i =0,1,...,n—1, let

b = 0 ifap—y+---+a;is even, and
T 11 ifap—y +-- +a;is odd.



4.4. GENERATING R-SUBSETS 109

Then a,,_1---a1ag is in the same place on the Gray code order list as b,_1-- - bibg is
on the lexicographic order list. Put another way, a,—1 -+ - ajao is in place

k=by1x2" 4. 4by x2+byx2°

on the Gray code order list. We leave this verification as an exercise.

4.4 Generating r-Subsets

In Section 4.3, we described two orderings for the subsets of a set of n elements and
corresponding algorithms based on a rule of succession for generating the subsets. We
now consider only the subsets of a fixed size r and seek a method to generate these
subsets. One way to do this is to generate all subsets and then go through the list
and select those that contain exactly r elements. This is obviously a very inefficient
approach.

Example. In Section 4.3, we listed all the 4-subsets of {1,2,3,4} in the squashed
ordering. Selecting the 2-subsets from among them, we get the squashed ordering of
the 2-subsets of {1,2,3,4}:

1,2
1,3
2,3
1,4
2,4
3,4.

0

In this section, we develop an algorithm for a lexicographic ordering of the r-subsets
of a set of n elements, where 7 is a fixed integer with 1 < r < n. We now take our set
to be the set

S={1,2,...,n}

consisting of the first n positive integers. This gives us a natural order,
1<2<.--<n,

on the elements of S. Let A and B be two 7-subsets of the set {1,2,...,n}. Then
we say that A precedes B in the lexicographic order provided that the smallest integer
which is in their union AU B, but not in their intersection AN B (that is, in one but
not both of the sets), is in A. '

Example. Let 5-subsets A and B of {1,2,3,4,5,6,7,8} be given by

A=1{2,3,478}, B={235671.
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The smallest element that is in one, but not both, of the sets is 4 (4 is in A). Hence
A precedes B in the lexicographic order. m}

How is this a lexicographic order in the sense used in the preceding section and
in the sense used in a dictionary? We think of the elements of S as the letters of
an alphabet, where 1 is the first letter of the alphabet, 2 is the second letter, and
so on. We want to think of the r-subsets as “words” of length r over the alphabet
S and then impose a dictionary-type order on the words. But the letters in a word
form an ordered sequence (e.g., part is not the same word as trap), and for subsets,
as we have learned, order doesn’t matter. Since order doesn’t matter in a subset, let
us agree that, whenever we write a subset of {1,2,...,n}, we write the integers in it
from smallest to largest. Thus, we agree that an r-subset of S = {1,2,...,n} is to be
written in the form

a1,a3,...,0r, where 1 <a; <ag <--- <ar <n.
Let us also agree, for convenience, to write this r-subset as
a1ag - Qp

without commas; that is, as a word of length ». We now have established a convention
for writing subsets that allows us to regard a subset as a word. But note that not all
words are allowed. The only words that will be in our dictionary are those that have r
letters from our alphabet 1,2,...,n and for which the letters are in strictly increasing
order (in particular, there are no repeated letters in our words).

Example. We return to our previous example and now, with our established conven-
tions, write A = 23478 and B = 23567. We see that A and B agree in their first two
letters and disagree in their third letter. Since 4 <5 (4 comes earlier in our alphabet
than 5), A precedes B in the lexicographic order. ]

Example. We consider the lexicographic order of the 5-subsets of {1, 2, 3,4,5,6,7,8,9}
The first 5-subset is 12345; the last 5-subset is 56789. What 5-subset immediately fol-
lows 12389 (in our dictionary)? Among the 5-subsets that begin with 123, 12389 is the
last. Among the 5-subsets that begin with 12 and don’t have a 3 in the third position,
12456 is the first. Thus, 12456 immediately follows 12389. a

We generalize this example and determine, for all but the last word in our dictio-
nary, the word that immediately follows it.

Theorem 4.4.1 Let ajay---a, be an r-subset of {1,2,...,n}. The first r-subset in
the lexicographic ordering is 12---r. The last r-subset in the lexicographic ordering is
(n=r+1)(n—7+42)---n. Assume that a1as---ar # (n—r+1)(n—r+2)---n. Let k be
the largest integer such that ap < n and ag + 1 is different from each of agi1,...,ar.
Then the r-subset that is the immediate successor of ajas---a, in the lexicographic
ordering is

aj---ag—1(ak + D(ag +2)- - (ax +7 -k +1).
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Proof. It follows from the definition of the lexicographic order that 12- - - r is the first
and (n—7+1)(n—r+2)---n is the last r-subset in the lexicographic ordering. Now
let ajas - - - ar be any r-subset other than the last, and determine & as indicated in the
theorem. Then

@102 ar = a1 ag—1ax(n—r+k+1)(n—-r+k+2)---(n),
where
ar+1<n—-r+k+1.
Thus aias - - - a, is the last r-subset that begins with a; - - - ag_1ax. The r-subset
ar--ap—1(ag+1)(ax +2) - (ax +r—k+1)
is the first r-subset that begins a; - - - ag—1ax + 1 and hence is the immediate successor
of ayay - - ar. O

From Theorem 4.4.1, we conclude that the next algorithm generates the r-subsets
of {1,2,...,n} in lexicographic order.

Algorithm for generating the r-subsets of {1,2,...,n}
in lexicographic order

Begin with the r-subset ajag---a, =12---7.
While ajaz---ar # (n—r +1)(n —r +2)---n, do the following:

(1) Determine the largest integer k such that ay +1 < n and ax + 1 is not one of
ai,a2,...,0r.

(2) Replace ajaz - - ar with the r-subset

ai - -ag—1(ax + D(ax +2)--- (ag + 7 —k +1).

Example. We apply the algorithm to generate the 4-subsets of S = {1,2,3,4,5,6}
and obtain the following (using three columns):

1234 1256 2345
1235 1345 2346
1236 1346 2356
1245 1356 2456
1246 1456 3456.

0

Combining the algorithm for generating permutations of a set with that for generat-
ing r-subsets of an n-element set, we obtain an algorithm for generating r-permutations
of an n-element set.
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Example. Generate the 3-permutations of {1,2,3,4}. We first generate the 3-subsets
in lexicographic order: 123, 124, 134, 234. For each 3-subset, we then generate all of

its permutations:
123 124 134 234

132 142 143 243
312 412 413 423
321 421 431 432
231 241 341 342
312 214 314 324.
[m]

We conclude by determining the position of each r-subset in the lexicographic order
of the r-subsets of {1,2,...,n}.

Theorem 4.4.2 The r-subset ajaz---a, of {1,2,...,n} occurs in place number
n\ (n-a\ (n-a\ = (n-a_1\ (n-ar
T T r—1 2 1

in the lexicographic order of the r-subsets of {1,2,...,n}.

Proof. We first count the number of r-subsets that come after a;as-- - a,:

(1) There are ("_T‘“) r-subsets whose first element is greater than a; that come after

aia - - Qp.

(2) There are (._9?) r-subsets whose first element is a; but whose second element

is greater than as that come after aias---a,.

— 1) There are (""% ') r-subsets that begin a; --- a¢,_p but whose (r — 1)st element
is greater than a,_; that come after aias- - a,.

r) There are ("7%") r-subsets that begin a; - - - a,_1 but whose rth element is greater
1 g g
than a, that come after ajaq---a,.

Subtracting the number of r-subsets that come after ajas---a, from the total
number (f) of r-subsets, we find that the place of a1as - - - a, is as given in the theorem.
O

Example. In which place is the subset 1258 among the 4-subsets of {1,2, 3,4,5,6,7, 8}
in lexicographic order?
We apply Theorem 4.4.2 and find that 1258 is in place

0-0-()-0)-0)-»
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4.5 Partial Orders and Equivalence Relations

In this chapter we have defined various “natural” orders on the sets of permutations,
subsets, and r-rubsets of a finite set, namely, the orders determined by the generating
schemes. These orders are “total orders” in the sense that there is a first object, a
second object, a third object, ... , a last object. There is a more general notion of
order, called partial order, which is extremely important and useful in mathematics.
Perhaps the two partial orders which are not total orders that are most familiar are
those defined by containment of one set in another and divisibility of one integer by
another. These are partial orders in the sense that, given any two sets, neither need
be a subset of the other, and given any two integers, neither need be divisible by the
other.

To give a precise definition of a partial order, it is important to know what is
meant in mathematics by a relation. Let X be a set. A relation on X is a subset R
of the set X x X of ordered pairs of elements of X. We write a Rb (a is related to b),
provided that the ordered pair (a,b) belongs to R; we also write a R b whenever (a,b)
is not in R (a is not related to b).

Example. Let X = {1,2,3,4,5,6}. Write a | b to mean that a is a divisor of b
(equivalently, b is divisible by a). This defines a partial order on X and we have, for
example, 2 | 6 and 3 J/5. .
Now consider the collection P(X) of all subsets of X. For A and B in P(X), w
write as usual A C B, read A is contained in B, provided that every element of A
is also an element of B. This defines a relation on P(X) and we have, in particular,
that, {1} C {1,3} and {1,2} € {2,3}. o

The following are special properties that a relation R on a set X may have:
1. R is reflexive, provided that z Rz for all z in X.
2. R is irreflexive, provided that z R« for all z in X.

3. R is symmetric, provided that, for all z and y in X, whenever we have z Ry we
also have y Rz.

4. R is antisymmetric, provided that, for all z and y in X with z # y, whenever
we have z Ry, we also have y Rz. Equivalently, for all z and y in X, z Ry and
y R together imply that z = y.

5. R is transitive, provided that, for all z,y,z in X, whenever we have z Ry and
y Rz, we also have z R 2.

Example. The relations of subset, C, and divisibility, |, as used in the previous

example are reflexive and transitive. The relation of subset is also antisymmetric, as
is that of divisibility provided we consider only positive integers.
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The relation of proper subset, C, defined by A C B, provided that every element
of A is also an element of B and A # B, is irreflexive, antisymmetric, and transitive.
The relation of less than or equal, <, on a set of numbers, is reflexive, antisymmetric,
and transitive, while the relation of less than, <, is irreflexive, antisymmetric, and
transitive. O

A partial order on a set X is a reflexive, antisymmetric, and transitive relation
R. A strict partial order on a set X is an irreflexive, antisymmetric, and transitive
relation. Thus, C, <, and | are partial orders, while C and < are strict partial orders.®
If a relation R is a partial order, we generally use the usual inequality symbol “<”
instead of R;!7 the relation < defined by a < b if and only if a < b and a # b is then
a strict partial order. (Conversely, starting from a strict partial order < on X, the
relation < defined by @ < b if and only if a < b or a = b is a partial order.)

A set X on which a partial order < is defined is usually called a partially ordered
set (or more simply, a poset) and denoted by (X, <).

If R is a relation on a set X, then for z and y in X,  and y are comparable,
provided that either z Ry or y Rx; = and y are incomparable otherwise.!® A partial
order R on a set X is a total order, provided that every pair of elements of X is
comparable. The standard relation < on a set of numbers is a total order.1®

If X is a finite set and we list the elements of X in some linear order a1, as,...,a,
¢a permutation of X), then by defining a; < a; provided that ¢ < j (that is, provided
that a; comes before a; in the permutation), it can be checked that we obtain a total
order on X. We now show that every total order on X arises in this way.

Theorem 4.5.1 Let X be a finite set with n elements. Then there is a one-to-one cor-
respondence between the total orders on X and the permutations of X. In particular,
the number of different total orders on X is nl.

Proof. We show by induction on n that each total order < on X corresponds to a
permutation ai,as,...,a, of X with a1 < as < -- < a,. If n =1, this is trivial. Let
n > 1. We first show that there is a minimal element of X; that is, an element a;
such that b < a; implies that b = a; (equivalently, there is no element z with z < ay).
Let a be any element of X. If a is not a minimal element, then there is an element
b such that b < a. If b is not a minimal element, there is an element ¢ such that
¢ < b so that ¢ < b < a. Continuing like this and using the fact that X is a finite set,

16The relation is divisible by but does not equal is also a strict partial order.

17Tt is important, then, to be aware that a < b does not mean that a and b are numbers with a no
bigger than b. The symbol “<” now becomes an abstract symbol for a partial order.

¥ Think of the phrase “z and y are incomparable” as an abstract version of the common phrase
“one cannot compare apples and oranges,” and so apples and oranges are incomparable.

19This is one reason why we should be careful to distinguish between the abstract symbol “<” for
a partial order and the standard relation “<” on numbers; the latter is a total order where any two
numbers a and b are comparable (either a < b or b < a), but this property does not hold for a general
partial order.
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eventually we locate a minimal element a;. Suppose there is an element z # a; of X
such that a; £ x. Since we have a total order, we must have z < a;, contradicting the
minimality of a;. Hence, a; < z for all z in X different from a;. Applying induction
to the set of n — 1 elements of X different from a;, we conclude that these elements
can be ordered asg,as,...,a, with as < ag < --- < a,. Hence, aj,a3,a3,...,0, is a
permutation of the elements of X with a; < as <az <--- < ay. ]

As a consequence of Theorem 4.5.1, a finite totally ordered set is often denoted as
a; < ap < --- < ap, or simply as a permutation a1, as,...,an.

A partially ordered set can be represented geometrically. To illustrate this, we
need to define the cover relation of a partially ordered set (X, <). Let a and b be in
X. Then a is covered by b (also expressed as b covers a), denoted a <. b, provided
that a < b and no element x can be squeezed between a and b; that is, there does
not exist an element z such that both a < z and z < b hold. If X is a finite set,
then, by transitivity, the partial order < is uniquely determined by its cover relation.
Thus, the cover relation is an efficient way to describe a partial order. It follows from
Theorem 4.5.1 that, if (X, <) is a totally ordered set, then the elements of X can be
listed as z1,x2,...,Z, such that z; <. z9 <. --- <¢ @p. It is for this reason that a
totally ordered set is also called a linearly ordered set.

A diagram (sometimes called the Hasse diagram) of a finite partially ordered set
(X, <) is obtained by taking a point in the plane for each element of X, being careful
to put the point for z below the point for y if z <. y, and connecting = and y by a
line segment if and only if z is covered by y. (We put z below y to signify that z is
covered by y.)

Figure 4.6

Example. A totally ordered set of five elements is represented by the diagram, shown
in Figure 4.6, of five vertical points, with four vertical line segments connecting the
points. O

Example. The partially ordered set of subsets of the set {1,2,3} ordered by contain-
ment is represented by the diagram, shown in Figure 4.7, of a cube “sitting” on one
of its corners. m]
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{1,2,3}

Figure 4.7

Example. The set of the first eight positive integers, partial