




English reprint edition copyright © 2009 by Pearson Education Asia Limited and 

China Machine Press. 

Original English language title: Introductory Combinatorics, Fifth Edition (ISBN 

978-0-13-602040-0) by Richard A. Brualdi, Copyright © 2010, 2004, 1999, 1992, 

1977 by Pearson Education, Inc. 

All rights reserved. 

Published by arrangement with the original publisher, Pearson Education, Inc., 

publishing as Prentice Hall. 

For sale and distribution in the People's Republic o( China exclusively (except 

Taiwan, Hong Kong SAR and Macau SAR). 

*=I'1*:Jc~EP Jlti EI3 Pearson Education Asia Ltd·tf&,fJL,j;jI~ t±:I Jlti1±5!1l;R t±:I Jlti 0 

*~t±:IJlti.=I'100W~,~~QffM~~~~~~.*=I'1~~o 
&.~~$A~*~OO~~(~~M~OO~m .• nM~fiROC~~OO~~ 

it!! OC) ti'f ~ :& 1']- 0 

*=I'1t-tOOm6:ftPearson Education (:I:.g:1::~l'l' t±:IJlti~ffi) i*:J't!)jjffJfu;~, 7Cfu;~ 

.~l~ti'f~o 

Jl&tJlJiJf~, ~tJl!lO~o 

*~*~~~ ~.*~~~~~.JiJf 

*~JI&~~ia~: 111*: 01-2009-1361 

III ~ ;ffJl&~ ~ ( CIP) ~. 

tfl~~~ (~:JcJlti . ~5Jlti) / (~) :;flJ'l-j@ (Brualdi, R. A.) if. -~~*: ,fJL 

lJItI~t±:IJlti1±, 2009.3 

( ~ ~ Iffi Jlti =1'1 J! ) 
=I'1~Iffi:Jc: Introductory Combinatorics, Fifth Edition 

ISBN 978-7-111-26525-2 

I. tfl··· II. :;flJ... m. tfl~~~-~M-~:Jc IV. 0157 

,fJL,j;jI~t±:IJlti1± (~tffir!T]l!iJ;&1K ~iJJ!l:*m22% iI!~i&tli!~ l00037) 

~ff~m: iKtJHF 
~Lrjc.?~QiIlEP ~:ff.0iil f1111: lj 

2009if-3 j} ~ lJlti~ I & Ep,\jlIJ 

150mm x 214mm • 19.375EPStt 

fu;lt=l'1%: ISBN 978-7-111-26525-2 

JEff)-: 49.00jC 



~~~~0.,.lli~*~n~M~~~~m~~~*~m,~fi~ 

OO~a~Mn~~~~~~*~T£.ft~~.,~~A~~~ffl.,~ 

~OOamAtt*~B~~+~~~£~~lli.~~m~oaft~~~*~ 

~, ~OO~~~~~~~~~*~~*~~~,rr.m~n~~~~*w 

~t41i'fl1Jt~~H4liJf;fo~~~l\llltrti, B3Jltffij~1:.~~~n~~f'F, /Ff)(. 
~TliJf~~m_,~.ffiT~*~.~, ~.oo~*~m,x~~~~~ 

ft,~~m*/F~~~fl~~~ffij~~o 

~~,a~*mA~*.~.~~,fiOO~rr.m~~~Bili~,~ 

~~A~~.*B~~mo~~rr.m~~~~lli~~W~Am~,~A 

.~;ffij*~~M~.~a~~~.~R~*~Q.oafioomAtt*~ 

BIJt~~5~~~~, ~oo~~~oo~a~rr.mn~~B~A+$~~ 

iJE;fo~B~g2~~MfJJ~it~f1i1~ft~z~o ~Jlt, 51*-1!tOOj~~3'Ht 

.m~M~~fiOOrr.m~~.~~~B~~~m~.~~m,~A~~ 

~~~ .• ~~~~~~-~*~~~B3Z~o 
m;ffllI~lli~U~~7H±~1f.~iR¥1j "lli~~7-J~~nli97" 0 ~ 1998$ 

*M,~~~U.~I~.~~aT~~.8~OO~~~~M~o~M~ 
~~/F1f&r~jJ, fi1f1~Pearson, McGraw-Hill, Elsevier, MIT, John 

Wiley & Sons, Cengage~~~~£lli~0-i'f].iz:.T~tff~~f'F**, hAft!? 
1f1~~~~5(Bf!tt~Mq:tft~lliAndrew S. Tanenbaum, Bjarne Stroustrup, 

Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. 

Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz, William Stallings, 

Donald E. Knuth, John L. Hennessy, Larry L. Peterson~*~iP£~~-1!tg2 

~~~, 0"rr.mn~~~"7-J~.lli~,m~~~~.liJf~&$.o 

*m~ttm~MW,~~*~T~~~~~~~~ •• o 

"~.mn~~~"~lli~I~~~TOO~~~~~~jJ.M, OO~~ 

~~/Ff)(.mT~~~~.m%,~/Fff~~~mffTn~~$~~I 



iv 

~;ffi~~~~~&~~~~~~~~~~~fflM, ~~ffi~~~~~~ 

~~*~*.~+, "~.mn~M~" B~lli~T~~N~~~, ~® 
~M~~~~W~T~H~Q~,#.W$~~*m~~~.M~#~~ 

M. ~~~~"~A~~~$"~~~~.& •• *.$~.~m.~ 
~~~JlJT*m. 

~~~~~. ~A~.M. -~~~~. F.~$~.ME~~., 

~®~.~fim~OO~~T~~~*~.~.~.mn~~tt*~~~M 

.~~~.~.~.M&*~~.~~, .. ~~~*~.m.M~.* 
~~m~~~A-~~~~~,fim~§~~~~~~, ~&~~.m~ 

~fim~~~-~.§~~.~moo.~.~tl~~~~~~~~fim~ 

I~.lli.~~~~m~, fim~G~~~~T: 

$~[XJgj}~: www.hzbook.com 

Eg T~Ht: hzjsj@hzbook.com 

.IIHj~Eg1.~: (010) 88379604 



Preface 
I have made some substantial changes in this new edition of Introductory Combi­

natorics, and they are summarized as follows: 

In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been 
added to illustrate some of ,the counting techniques in later chapters. Previously 
the content of this section occured in Chapter 7. 

The old section on cutting a cube in Chapter 1 has been deleted, but the content 
appears as an exercise. 

Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chap­
ter 3. Chapter 3 in the previous edition, on permutations and combinations, is 
now Chapter 2. Pascal's formula, which in the previous edition first appeared 
in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use 
of the term combination as it applies to a set, using the essentially equivalent 
term of subset for clarity. However, in the case of multisets, we continue to use 
combination instead of, to our mind, the more cumbersome term submultiset. 

Chapter 2 now contains a short section (Section 3.6) on finite probability. 

Chapter 3 now contains a proof of Ramsey's theorem in the case of pairs. 

Some of the biggest changes occur in Chapter 7, in which generating functions 
and exponential generating functions have been moved to earlier in the chapter 
(Sections 7.2 and 7.3) and have become more central. 

The section on partition numbers (Section 8.3) has been expanded. 

Chapter 9 in the previous edition, on matchings in bipartite graphs, has under­
gone a major change. It is now an interlude chapter (Chapter 9) on systems of 
distinct representatives (SDRs)-the marriage and stable marriage problems­
and the discussion on bipartite graphs has been removed. 

As a result of the change in Chapter 9, in the introductory chapter on graph 
theory (Chapter 11), there is no longer the assumption that bipartite graphs 
have been discussed previously. 

The chapter on more topics of graph theory (Chapter 13 in the previous edition) 
has been moved to Chapter 12. A new section on the matching number of a 
graph (Section 12.5) has been added in which the basic SDR result of Chapter 
9 is applied to bipartite graphs. 
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The chapter on digraphs and networks (Chapter 12 in the previous edition) is 
now Chapter 13. It contains a new section that revisits matchings in bipartite 
graphs, some of which appeared in Chapter 9 in the previous edition. 

In addition to the changes just outlined, for this fifth edition, I have corrected all 
of the typos that were brought to my attention; included some small additions; made 
some clarifying changes in exposition throughout; and added many new exercises. 
There are now 700 exercises in this ,fifth edition. 

Based on comments I have received over the years from many people, this book 
seems to have passed the test of time. As a result I always hesitate to make too 
many changes or to add too many new topics. I don't like books that have "too many 
words" (and this preface will not have too many words) and that try to accomodate 
everyone's personal preferences on topics. Nevertheless, I did make the substantial 
changes described previously because I was convinced they would improve the book. 

As with all previous editions, this book car be used for either a one- or two­
semester undergraduate course. A first semester could emphasize counting, and a 
second semester could emphasize graph theory and designs. This book would also 
work well for a one-semester course that does some counting and graph theory, or some 
counting and design theory, or whatever combination one chooses. A brief commentary 
on each of the chapters and their interrelation follows. 

Chapter 1 is an introductory chapter; I usually select just one or two topics from 
it and spend at most two classes on this chapter. Chapter 2, on permutations and 
combinations, should be covered in its entirety. Chapter 3, on the pigeonhole principle, 
should be discussed at least in abbreviated form. But note that no use is made later of 
some of the more difficult applications of the pigeonhole principle and of the section on 
Ramsey's theorem. Chapters 4 to 8 are primarily concerned with counting techniques 
and properties of some of the resulting counting sequences. They should be covered in 
sequence. Chapter 4 is about schemes for generating permutations and combinations 
and includes an introduction to partial orders and equivalence relations in Section 4.5. 
I think one should at least discuss equivalence relations, since they are so ubiquitous 
in mathematics. Except for the section on partially ordered sets (Section 5.7) in 
Chapter 5, chapters beyond Chapter 4 are essentially independent of Chapter 4, and 
so this chapter can either be omitted or abbreviated. And one can decide not to cover 
partially ordered sets at all. I have split up the material on partially ordered sets into 
two sections (Sections 4.5 and 5.7) in order to give students a little time to absorb 
some of the concepts. Chapter 5 is on properties of the binomial coefficients, and 
Chapter 6 covers the inclusion-exclusion principle. The section on Mobius inversion, 
generalizing the inclusion-exclusion principle, is not used in later sections. Chapter 7 
is a long chapter on generating functions and solutions of recurrence relations. Chapter 
8 is concerned mainly with the Catalan numbers, the Stirling numbers of the first and 
second kind, partition numbers and the large and small Schroder numbers. One could 
stop at the end of any section of this chapter. The chapters that follow Chapter 8 are 
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independent of it. Chapter 9 is about systems of distinct representatives (so-called 
marriage problems). Chapters 12 and 13 make some use of Chapter 9, as does the 
section on Latin squares in Chapter 10. Chapter 10 concerns some aspects of the 
vast theory of combinatorial designs and is independent of the remainder of the book. 
Chapters 11 and 12 contain an extensive discussion of graphs, with some emphasis on 
graph algorithms. Chapter 13 is concerned with digraphs and network flows. Chapter 
14 deals with counting in the presence of the action of a permutation group and does 
make use of many of the earlier counting ideas. Except for the last example, it is 
independent of the chapters on graph theory and designs. 

When I teach' a one-semester cour~e out of this book, I like to conclude with 
Burnside's theorem, and several applications of it, in Chapter 14. This result enables 
one to solve many counting problems that can't be touched with the techniques of 
earlier chapters. Usually, I don't get to P6lya's theorem. 

Following Chapter 14, I give solutions and hints for some of the 700 exercises in 
the book. A few of the exercises have a * symbol beside them, indicating that they 
are quite challenging. The end of a proof and the end of an example are indicated by 
writing the symbol D. 

It is difficult to assess the prerequisites for this book. As with all books intended 
as textbooks, having highly motivated and interested students helps, as does the en­
thusiasm of the instructor. Perhaps the prerequisites can be best described as the 
mathematical maturity achieved by the successful completion of the calculus sequence 
and an elementary course on linear algebra. Use of calculus is minimal, and the refer­
ences to linear algebra are few and should not cause any problem to those not familiar 
with it. 

It is especially gratifying to me that, after more than 30 years since the first edition 
of Introductory Combinatorics was published, it continues to be well received by many 
people in the professional mathematical community. 

I am very grateful to many individuals who have given me comments on previous 
editions and for this edition, including the discovery of typos. These individuals in­
clude, in no particular order: Russ Rowlett, James Sellers, Michael Buchner, Leroy 
F. Meyers, Tom Zaslavsky, Nils Andersen, James Propp, Louis Deaett, Joel Brawley. 
Walter Morris, John B. Little, Manley Perkel, Cristina Ballantine, Zixia Song, Luke 
Piefer, Stephen Hartke, Evan VanderZee, Travis McBride, Ben Brookins, Doug Shaw, 
Graham Denham, Sharad Chandarana, William McGovern, and Alexander Zakharin. 
Those who were asked by the publisher to review the fourth edition in preparation for 
this fifth edition include Christopher P. Grant who made many excellent comments. 
Chris Jeuell sent me many comments on the nearly completed fifth edition and saved 
me from additional typos. Mitch Keller was an excellent accuracy checker. Typos, but 
I hope no mistakes, probably remain and they are my responsibility. I am grateful to 
everyone who brings them to my attention. Yvonne Nagel was extremely helpful in 
solving a difficult problem with fonts that was beyond my expertise. 



viii Preface 

It has been a pleasure to work with the editorial staff at Prentice Hall, namely, 
Bill Hoffman, Caroline Celano, and especially Raegan Heerema, in bringing this fifth 
edition to completion. Pat Daly was a wonderful copyeditor. 

The book, I hope, continues to reflect my love of the subject of combinatorics, my 
enthusiasm for teaching it, and the way I teach it. 

Finally, I want to thank again my dear wife, Mona, who continues to bring such 
happiness, spirit, and adveqture into my life. 

Richard A. Brualdi 
Madison, Wisconsin 
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Chapter 1 

What Is Combinatorics? 

It would be surprising indeed if a reader of this book had never solved a combinatorial 
problem. Have you ever counted the number of games n teams would play if each team 
played every other team exactly once? Have you ever attempted to trace through a 
network without removing your pencil from the paper and without tracing any part of 
the network more than once? Have you ever counted the number of poker hands that 
are full houses in order to determine the odds against a full house? More recently, 
have you ever solved a Sudoku puzzle? These are all combinatorial problems. As 
these examples might suggest, combinatorics has its roots in mathematical recreations 
and games. Many problems that were studied in the past, either for amusement or 
for their aesthetic appeal, are today of great importance in pure and applied science. 
Today, combinatorics is an important branch of mathematics. One of the reasons for 
the tremendous growth of combinatorics has been the major impact that computers 
have had and continue to have in our society. Because of their increasing speed, 
computers have been able to solve large-scale problems that previously would not 
have been possible. But computers do not function independently. They need to 
be programmed to perform. The bases for these programs often are combinatorial 
algorithms for the solutions of problems. Analysis of these algorithms for efficiency 
with regard to running time and storage requirements demands more combinatorial 
thinking. 

Another reason for the continued growth of combinatorics is its applicability to 
disciplines that previously had little serious contact with mathematics. Thus, we 
find that the ideas and techniques of combinatorics are being used not only in the 
traditional area of mathematical application, namely the physical sciences, but also in 
the social sciences, the biological sciences, information theory, and so on. In addition, 
combinatorics and combinatorial thinking have become more and more important in 
many mathematical disciplines. 

Combinatorics is concerned with arrangements of the objects of a set into patterns 
satisfying specified rules. Two general types of problems occur repeatedly: 



2 CHAPTER 1. WHAT IS COMBINATORICS? 

• Existence of the arrangement. If one wants to arrange the objects of a set so 
that certain conditions are fulfilled, it may not be at all obvious whether such an 
arrangement is possible. This is the most basic of questions. If the arrangement 
is not always possible, it is then appropriate to ask under what conditions, both 
necessary and sufficient, the desired arrangement can be achieved. 

• Enumemtion or classification of the arrangements. If a .specified arrangement is 
possible, there may be several ways of achieving it. If so, one may want to count 
or to classify them into types. 

If the number of arrangements for a particular problem is small, the arrangements 
can be listed. It is important to understand the distinction between listing all the 
arrangements and determining their number. Once the arrangements are listed, they 
can be counted by setting up a one-to-one correspondence between them and the set 
of integers {I, 2, 3, ... , n} for some n. This is the way we count: one, two, three, ... . 
However, we shall be concerned primarily with techniques for determining the number 
of arrangements of a particular type without first listing them. Of course the number 
of arrangements may be so large as to preclude listing them all. 

Two other combinatorial problems often occur. 

• Study of a known arrangement. After one has done the (possibly difficult) work of 
constructing an arrangement satisfying certain specified conditions, its properties 
and structure can then be investigated. 

• Construction of an optimal arrangement. If more than one arrangement is pos­
sible, one may want to determine an arrangement that satisfies some optimality 
criterion-that is, to find a "best" or "optimal" arrangement in some prescribed 
sense. 

Thus, a general description of combinatorics might be that combinatorics is con­
cerned with the existence, enumemtion, analysis, and optimization of discrete struc­
tures. In this book, discrete generally means "finite," although some discrete structures 
are infinite. 

One of the principal tools of combinatorics for verifying discoveries is mathematical 
induction. Induction is a powerful procedure, and it is especially so in combinatorics. 
It is often easier to prove a stronger result than a weaker result with mathematical 
induction. Although it is necessary to verify more in the inductive step, the inductive 
hypothesis is stronger. Part of the art of mathematical induction is to find the right 
balance of hypotheses and conclusions to carry out the induction. We assume that the 
reader is familiar with induction; he or she will become more so as a result of working 
through this book. 

The solutions of combinatorial problems can often be obtained using ad hoc ar­
guments, possibly coupled with use of general theory. One cannot always fall back 
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on application of formulas or known results. A typical solution of a combinatorial 
problem might encompass the following steps: (1) Set up a mathematical model, (2) 
study the model, (3) do some computation for small cases in order to develop some 
confidence and insight, and (4) use careful reasoning and ingenuity to finally obtain 
the solution of the problem. For counting problems, the inclusion-exclusion principle, 
the so-called pigeonhole principle, the methods of recurrence relations and generating 
functions, Burnside's theorem, and P61ya's counting formula are all examples of gen­
eral principles and methods that we will consider in later chapters. Often, however, 
cleverness is required to see that a particular method or formula can be applied and 
how to apply. Thus, experience in solving combinatorial problems is very important. 
The implication is that with combinatorics, as with mathematics in general, the more 
problems one soives, the more likely one is able to solve the next problem. 

We now consider a few introductory examples of combinatorial problems. They 
vary from relatively simple problems (but whose solution requires ingenuity) to prob­
lems whose solutions were a major achievement in combinatorics. Some of these 
problems will be considered in more detail in subsequent chapters. 

1.1 Example: Perfect Covers of Chessboards 

Consider an ordinary chessboard which is divided into 64 squares in 8 rows and 8 
columns. Suppose there is available a supply of identically shaped dominoes, pieces 
which cover exactly two adjacent squares of the chessboard. Is it possible to arrange 
32 dominoes on the chessboard so that no 2 dominoes overlap, every domino covers 
2 squares, and all the squares of the chessboard are covered? We call such an ar­
rangement a perfect cover or tiling of the chessboard by dominoes. This is an easy 
arrangement problem, and we can quickly construct many different perfect covers. It 
is difficult, but nonetheless possible, to count the number of different perfect covers. 
This number was found by Fischer1 in 1961 to be 12,988,816 = 24 X 172 X 532. The 
ordinary chessboard can be replaced by a more general chessboard divided into mn 
squares lying in m rows and n columns. A perfect cover need not exist now. Indeed, 
there is no perfect cover for the 3-by-3 board. For which values of m and n does 
the m-by-n chessboard have a perfect cover? It is not difficult to see that an m-by-n 
chessboard will have a perfect cover if and only if at least one of m and n is even 
or, equivalently, if and only if the number of squares of the chessboard is even. Fis­
cher has derived general formulas involving trigonometric functions for the number of 
different perfect covers for the m-by-n chessboard. This problem is equivalent to a 
famous problem in molecular physics known as the dimer problem. It originated in the 
investigation of the absorption of diatomic atoms (dimers) on surfaces. The squares of 
the chessboard correspond to molecules, while the dominoes correspond to the dimers. 

'M. E. Fischer, Statistical Mechanics of Dimers on a Plane Lattice, Physical Review, 124 (1961), 
1664-1672. 
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Consider once again the 8-by-8 chessboard and, with a pair of scissors, cut out 
two diagonally opposite corner squares, leaving a total of 62 squares. Is it possible to 
arrange 31 dominoes to obtain a perfect cover of this "pruned" board? Although the 
pruned board is very close to being the 8-by-8 chessboard, which has over 12 million 
perfect covers, it has no perfect cover. The proof of this is an example of simple, but 
clever, combinatorial reasoning. In an ordinary 8-by-8 chessboard, usually the squares 
are alternately colored black and white, with 32 of the squares colored white and 32 
of the squares colored black. If we cut out two diagonally opposite corner squares, we 
have removed two squares of the same color, say white. This leaves 32 black and 30 
white squares. But each domino will cover one black and one white square, so that 
31 nonoverlapping dominoes on the board cover 31 black and 31 white squares. We 
conclude that the pruned board has no perfect cover. The foregoing reasoning can be 
summarized by 

311 B Iwl# 3:00+ 3@. 

More generally, we can take an m-by-n chessboard whose squares are alternately 
colored black and white and arbitrarily cut out some squares, leaving a pruned board 
of some type or other. When does a pruned board have a perfect cover? For a perfect 
cover to exist, the pruned board must have an equal number of black and white squares. 
But this is not sufficient, as the example in Figure 1.1 indicates. 

W x W B W 
x W B x B 

W B x B W 
B W B W B 

Figure 1.1 

Thus, we ask: What are necessary and sufficient conditions for a pruned board to 
have a perfect cover? We will return to this problem in Chapter 9 and will obtain a 
complete solution. There, a practical formulation of th[s problem is given in terms of 
assigning applicants to jobs for which they qualify. 

There is another way to generalize the problem of a perfect cover of an m-by-n 
board by dominoes. Let b be a positive integer. In place of dominoes we now consider 
1-by-b pieces that consist of b 1-by-1 squares joined side by side in a consecutive 
manner. These pieces are called b-ominoes. and they can cover b consecutive squares 
in a row or b consecutive squares in a column. In Figure 1.2, a 5-omino is illustrated. 
A 2-omino is simply a domino. A l-omino is also called a monomino. 

Figure 1.2 A 5-omino 
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A perfect cover of an m-by-n board by b-ominoes is an arrangement of b-ominoes on 
the board so that (1) no two b-ominoes overlap, (2) every b-omino covers b squares of 
the board, and (3) all the squares of the board are covered. When does an m-by-n 
board have a perfect cover by b-ominoes? Since each square of the board is covered 
by exactly one b-omino, in order for there to be a perfect cover, b must be a factor 
of mn. Surely, a sufficient condition for the existence of a perfect cover is that b be 
a factor of m or b be a factor of n. For if b is a factor of m, we may perfectly cover 
the m-by-n board by arranging mlb b-ominoes in each of the n columns, while if b is 
a factor of n we may perfectly cover the board by arranging nib b-ominoes in each of 
the m rows. Is this sufficient condition also necessary for there to be a perfect cover? 
Suppose for the moment that b is a prime number and that there is a perfect cover 
·of the m-by-n board by b-ominoes. Then b is a factor of mn and, by a fundamental 
property of prime numbers, b is a factor of m or b is a factor of n. We conclude that, 
at least for the case of a prime number b, an m-by-n board can be perfectly covered 
by b-ominoes if and only if b is a factor of m or b is a factor of n. 

In case b is not a prime number, we have to argue differently. So suppose we have 
the m-by-n board perfectly covered with b-ominoes. We want to show that either m 
or n has a remainder of 0 when divided by b. We divide m and n by b obtaining 
quotients p and q and remainders rand s, respectively: 

m 

n 

pb + r, where 

qb + s, where 

o ~ r ~ b - 1, 

O~s~b-1. 

If r = 0, then b is a factor of m. If s = 0, then b is a factor of n. By interchanging the 
two dimensions of the board, if necessary, we may assume that r ~ s. We then want 
to show that r = O. 

1 2 3 ... b-1 b 
b 1 2 ... b-2 b-1 

b-l b 1 ... b-3 b-2 

2 3 4 " . b 1 

Figure 1.3 Coloring of a b-by-b board with b colors 

We now generalize the alternate black-white coloring used in the case of dominoes 
(b = 2) to b colors. We choose b colors, which we label as 1, 2, ... , b. We color a 
b-by-b board in the manner indicated in Figure 1.3, and we extend this coloring to an 
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m-by-n board in the manner illustrated in Figure 1.4 for the case m = 10, n = 11, 
and b = 4. 

Each b-omino of the perfect covering covers one square of each of the b colors. It 
follows that there must be the same number of squares of each color on the board. We 
consider the board to be divided into three parts: the upper pb-by-n part, the lower 
left r-by-qb part, and the lower right r-by-s part. (For the lO-by-11 board in Figure 
1.4, we would have the upper B-by-ll part, the 2-by-B part in the lower left, and the 
2-by-3 part in the lower right.) In the upper part, each color occurs p times in each 
column and hence pn times all together. In the lower left part, each color occurs q 
times in each row and hence rq times overall. Since each color occurs the same number 
of times on the whole board, it now follows that each color occurs the same number 
of times in the lower right r-by-s part. 

1 2 3 4 1 2 3 4 1 2 3 
4 1 2 3 4 1 2 3 4 1 2 
3 4 1 2 3 4 1 2 3 4 1 
2 3 4 1 2 3 4 1 2 3 4 

1 2 3 4 1 2 3 4 1 2 3 
4 1 2" 3 4 1 2 3 4 1 2 
3 4 .1 2 3 4 1 2 3 4 1 
2 3 4 1 2 3 4 1 2 3 4 

I ! I ~I ~ I ~ II ! I ~ I ~ I ~ II ! I ~ I ~ I 
Figure 1.4 Coloring of a lO-by-ll board with four colors 

How many times does color 1 (and, hence, each color) occur in the r-by-s part? 
Since r ~ s, the nature of the coloring is such that color 1 occurs once in each row of 
the r-by-s part and hence r times in the r-by-s part. Let us now count the number of 
squares in the r-by-s part. On the one hand, there are rs squares; on the other hand, 
there are r squares of each of the b colors and so rb squares overall. Equating, we get 
rs = rb. If r =1= 0, we cancel to get s = b, contradicting s ~ b - 1. So r = 0, as desired. 
We summarize as follows: 

An m-by-n board has a perfect cover by b-ominoes if and only if b is a factor of m 
or b is a factor of n. 

A striking reformulation of the preceding statement is the following: Call a perfect 
cover trivial if all the b-ominoes are horizontal or all the b-ominoes are vertical. Then 
an m-by-n board has a perfect cover by b-ominoes if and only if it has a trivial perfect 
cover. Note that this does not mean that the only perfect covers are the trivial ones. 
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It does mean that if a perfect cover is possible, then a triv.ial perfect cover is also 
possible. 

We conclude this section with a domino-covering problem with an added feature. 
Consider a 4-by-4 chessboard that is perfectly covered with 8 dominoes. Show 

that it is always possible to cut the board into two nonempty horizontal pieces or 
two nonempty vertical pieces without cutting through one of the 8 dominoes. The 
horizontal or vertical line of such a· cut is called a fault line of the perfect cover. Thus 
a horizontal fault line implies that the perfect cover of the 4-by-4 chessboard consists 
of a perfect cover of a k-by-4 board and a perfect cover of a (4 - k )-by-4 board for some 
k = 1,2, or 3. Suppose there is a perfect cover of a 4-by-4 board such that none of the 
three horizontal lines and three vertical lines that cut the board into two nonempty 
pieces is a fault line. Let XI,X2, X3 be, respectively, the number of dominoes that are 
cut by the horizontal lines (see Figure 1.5). 

Figure 1.5 

Because there is no fault line, each of Xl, x2, and X3 is positive. A horizoNtal domino 
covers two squares in a row, while a vertical domino covers one square in each of two 
rows. From these facts we conclude successively that Xl is even, X2 is even, and X3 is 
even. Hence, 

Xl + X2 + X3 ~ 2 + 2 + 2 = 6, 

and there are at least 6 vertical dominoes in the perfect cover. In a similar way, 
we conclude that there are at least 6 horizontal dominoes. Since 12 > 8, we have a 
contradiction. Thus, it is impossible to cover perfectly a 4-by-4 board with dominoes 
without creating a fault line. 

1.2 Example: Magic Squares 

Among the oldest and most popular forms of mathematical recreations are magic 
squares, which have intrigued many important historical people. A magic square of 
order n is an n-by-n array constructed out of the integers 1,2,3, ... , n 2 in such a way 
that the sum of the integers in each row, in each column, and in each of the two 
diagonals is the same number s. The number s is called the magic sum of the magic 
square. Examples of magic squares of orders 3 and 4 are 
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[ 
8 1 6] [16 3 2 13] 5 10 11 8 
3 5 7 and 9 6 7 12 ' 
4 9 2 4 15 14 1 

(1.1) 

with magic sums 15 and 34, respectively. In medieval times there was a certain mys­
ticism associated with magic squares; they were worn for protection against evils. 
Benjamin Franklin constructed many magic squares with additional properties.2 

The sum of all the integers in a magic square of order n is 

using the formula for the sum of numbers in an arithmetic progression (see Section 
7.1). Since a magic square of order n has n rows each with magic sum s, we obtain 
the relation ns = n2 (n 2 + 1)/2. Thus, any two magic squares of order n have the same 
magic sum, namely, 

n(n2 + 1) 
s = 2 . 

The combinatorial problem is to determine for which values of n there is a magic 
square of order n and to find general methods of construction. It is not difficult to 
verify that there can be no magic square of order 2 (the magic sum would have to 
be 5). But, for all other values of n, a magic square of order n can be constructed. 
There are many special methods of construction. We describe here a method found 
by de la Loubere in the seventeenth century for constructing magic squares of order n 
when n is odd. First a 1 is placed in the middle square of the top row. The successive 
integers are then placed in their natural order along a diagonal line that slopes upward 
and to the right, with the following modifications: 

(1) When the top row is reached, the next integer is put in the bottom row as if it 
came immediately above the top row. 

(2) When the right-hand column is reached, the next integer is put in the left-hand 
column as if it had immediately succeeded the right-hand column. 

(3) When a square that has already been filled is reached or when the top right-hand 
square is reached, the next integer is placed in the square immediately below the 
last square that was filled. 

2See P. C. Pasles, The Lost Squares of Dr. Franklin: Ben Franklin's Missing squares and the Secret 
of the Magic Circle, Amer. Math. Monthly, 108 (2001), 489-511. Also see P. C. Pasles, Benjamin 
F'ranklin's Numbers: An Unsung Mathematical Odyssey, Princeton University Press, Princeton, NJ, 
2008. 
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The magic square of order 3 in (1.1), as well as the magic square 

[ 17 
24 1 8 

15

1 

23 5 7 14 16 
4 6 13 20 22 

10 12 19 21 3 
11 18 25 2 9 

of order 5, was constructed by using de la Loubere's method. Methods for constructing 
magic squares of even orders different from 2 and other methods for constructing magic 
squares of odd order can be found in a book by Rouse Ball.3 Two of the magic squares 
of order 8 constructed by Franklin are as follows: 

52 61 4 13 20 29 36 45 17 47 30 36 21 43 26 40 
14 3 62 51 46 35 30 19 32 34 19 45 28 38 23 41 
53 60 5 12 21 28 37 44 33 31 46 20 37 27 42 24 
11 6 59 54 43 38 27 22 48 18 35 29 44 22 39 25 
55 58 7 10 23 26 39 42 49 15 62 4 53 11 58 8 
9 8 57 56 41 40 25 24 64 2 51 13 60 6 55 9 

50 63 2 15 18 31 34 47 1 63 14 52 5 59 10 56 
16 1 64 49 48 33 32 17 16 50 3 61 12 54 7 57 

These magic squares have some interesting properties. Can you see what they are? 
Three-dimensional analogs of magic squares have been considered. A magic cube 

of order n is an n-by-n-by-n cubical array constructed out of the integers 1,2, ... , n3 

in such a way that the sum s of the integers in the n cells of each of the following 
straight lines is the same: 

(1) lines parallel to an edge of the cube; 

(2) the two diagonals of each plane cross section; 

(3) the four space diagonals. 

The number s is called the magic sum of the magic cube and has the value (n4 +n)/2. 
We leave it as an easy exercise to show that there is no magic cube of order 2, and we 
verify that there is no magic cube of order 3. 

Suppose that there is a magic cube of order 3. Its magic sum would then be 42. 
Consider any 3-by-3 plane cross section 

3W. W. Rouse Ball, Mathematical Recreations and Essays; revised by H. S. M. Coxeter. Macmillan, 
New York (1962), 193-221. 
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with numbers as shown. Since the cube is magic, 

a+y+! 42 

b+y+e 42 

c+y+d 42 

a+b+c 42 

d+e+! 42. 

Subtracting the sum of the last two equations from the sum of the first three, we get 
3y = 42 and, hence, y = 14. But this means that 14 has to be the center of each 
plane cross section of the magic cube and, thus, would have to occupy seven different 
places. But it can occupy only one place, and we conclude that there is no magic cube 
of order 3. It is more difficult to show that there is no magic cube of order 4. A magic 
cube of order 8 is given in an article by Gardner. 4 

Although magic squares continue to interest mathematicians, we will not study 
them further in this book. 

1.3 Example: The Four-Color Problem 

Consider a map on a plane or on the surface of a sphere where the countries are con­
nected regions.5 To differentiate countries quickly, we must color them so that two 
countries that have a common boundary receive different colors (a corner does not 
count as a common boundary). What is the smallest number of colors necessary to 
guarantee that every map can be so colored? Until fairly recently, this was one of the 
famous unsolved problems in mathematics. Its appeal to the layperson is due to the 
fact that it can be simply stated and understood. More than any other mathemati­
cal problem, except possibly the well-known angle-trisection problem, the four-color 
problem has intrigued more amateur mathematicians, many of whom came up with 
faulty solutions. First posed by Francis Guthrie about 1850 when he was a graduate 
student, it has also stimulated a large body of mathematical research. Some maps 
require four colors. That's easy to see. An example is the map in Figure 1.6. Since 
each pair of the four countries of this map has a common boundary, it is clear that 
four colors are necessary to color the map. It was proven by Heawood6 in 1890 that 
five colors are always enough to color any map. We give a proof of this fact in Chapter 
12. It is not too difficult to show that it is impossible to have a map in the plane which 

4M. Gardner, Mathematical Games, Scientific American, January (1976), 118-123. 
5 Thus , the state of Michigan would not be allowed as a country for such a map, unless we take into 

account that the upper and lower peninsulas of Michigan are connected by the Straits of Mackinac 
Bridge. Kentucky would also not be allowed, since its westernmost tip of Fulton County is completely 
surrounded by Missouri and Tennessee. 

6p. J. Heawood, Map-Colour Theorems, Quarterly J. Mathematics, Oxford ser., 24 (1890), 332-338. 
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has five countries, every pair of which has a boundary in common. Such a map, if it 
had existed, would have required five colors. But not having .five countries every two 
of which have a common boundary does not mean that four colors suffice. It might 
be that some map in the plane requires five colors for other more subtle reasons. 

Figure 1.6 

Now there are proofs that every planar map can be colored using only four colors, 
but they require extensive computer calculation.7 

1.4 Example: The Problem of the 36 Officers 

Given 36 officers of 6 ranks and from 6 regiments, can they be arranged in a 6-by-
6 formation so that in each row and column there is one officer of each rank and 
one officer from each regiment? This problem, which was posed in the eighteenth 
century by the Swiss mathematician L. Euler as a problem in recreational mathematics, 
has important repercussions in statistics, especially in the design of experiments (see 
Chapter 10). An officer can be designated by an ordered pair (i,j), where i denotes his 
rank (i = 1,2, ... ,6) and j denotes his regiment (j = 1,2, ... ,6). Thus, the problem 
asks the following question: 

Can the 36 ordered pairs (i, j) (i = 1,2, ... ,6; j = 1,2, ... ,6) be arranged 
in a 6-by-6 array so that in each row and each column the integers 1,2, ... ,6 
occur in some order in the first positions and in some order in the second 
positions of the ordered pairs? 

Such an array can be split into two 6-by-6 arrays, one corresponding to the first 
positions of the ordered pairs (the mnk array) and the other to the second positions 
(the regiment array). Thus, the problem can be stated as follows: 

Do there exist two 6-by-6 arrays whose entries are taken from the integers 
1,2, ... ,6 such that 

7K. Appel and W. Haken, Every Planar Map is Four Colorable, Bulletin of the American Mathe­
matical Society, 82 (1976), 711-712; K. Appel and W. Haken, Every Planar Map is Four Colorable, 
American Math. Society, Providence, RI (1989); and N. Robertson, D. P. Sanders, P. D. Seymour, 
and R. Thomas, The Four-Colour Theorem, J. Combin. Theory Ser. B, 70 (1997), 2-44. 
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(1) in each row and in each column of these arrays the integers 1,2, ... ,6 
occur in some order, and 

(2) when the two arrays are juxtaposed, all of the 36 ordered pairs (i, j) 
(i = 1,2, ... ,6;j = 1,2, ... ,6) occur? 

To make this concrete, suppose instead that there are 9 officers of 3 ranks and 
from 3 different regiments. Then a solution for the problem in this case is 

[ !~~l [~~~l 
231 312 

rank array regiment array 

[ 
(1,1) 
(3,2) 
(2,3) 

(2,2) 
(1,3) 
(3,1) 

(3,3) 1 
(2,1) . 
(1,2) 

juxtaposed array 

(1.2) 

The preceding rank and regiment arrays are examples of Latin squares of order 3; each 
of the integers 1, 2, and 3 occurs once in each row and once in each column. The 
following are Latin squares of orders 2 and 4: 

[~ ; 1 and [l ~ ~ ~ 1 (1.3) 

The two Latin squares of order 3 in (1.2) are called orthogonal because when they are 
juxtaposed, all of the 9 possible ordered pairs (i, j), with i = 1,2,3 and j = 1,2,3, 
result. We can thus rephrase Euler's question: 

Do there exist two orthogonal Latin squares of order 6? 

Euler investigated the more general problem of orthogonal Latin squares of order n. 
It is easy to see that there is no pair of orthogonal Latin squares of order 2, since, 
besides the Latin square of order 2 given in (1.3), the only other one is 

and these are not orthogonal. Euler showed how to construct a pair of orthogonal Latin 
squares of order n whenever n is odd or has 4 as a factor. Notice that this does not 
include n = 6. On the basis of many trials he concluded, but did not prove, that there 
is no pair of orthogonal Latin squares of order 6, and he conjectured that no such pair 
existed for any of integers 6, 10, 14, 18, ... ,4k + 2, . .. . By exhaustive enumeration, 
Tarrys in 1901 proved that Euler's conjecture was true for n = 6. Around 1960, 

SG. Tarry, Le Probleme de 36 officiers, Compte Rendu de l'Association Fran9aise pour l'Avancement 
de Science Naturel, 1 (1900), 122-123; 2 (1901), 170-203. 
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three mathematician-statisticians, R. C. Bose, E. T. Parker, and S. S. Shrikhande,9 
succeeded in proving that Euler's conjecture was false for all n > 6. That is, they 
showed how to construct a pair of orthogonal Latin squares of order n for every n of the 
form 4k + 2, k = 2,3,4, .... This was a major achievement and put Euler's conjecture 
to rest. Later we shall explore how to construct orthogonal Latin squares using finite 
number systems called finite fields and how they can be applied in experimental design. 

As a concluding remark to this section, we observe that in the number placement 
puzzle called Sudoku, which became an international success in 2005, one is asked to 
construct a special Latin square of order 9 that has been partitioned into nine 3-by-3 
squares as follows: 

1111 III II 
I 

I II I II I I 

I111 III I 

In each Sudoku puzzle, some of the entries of a 9-by-9 square have been filled in 
such a way that there is a unique and logical way to complete it to a Latin square of 
order 9 with the additional constraint that each of the nine 3-by-3 squares contains the 
integers 1,2,3,4,5,6,7,8,9. Thus each of the nine rows, columns, and 3-by-3 squares 
is to contain one each of the numbers 1,2, ... ,9. The level of difficulty of a Sudoku 
puzzle depends on the depth of the logic needed to determine how to fill the empty 
boxes and in what order. 

An example of a Sudoku puzzle is 

11 3 5 2 7 
7 3 

4 6 5 8 11111111111 

I: I II: I I !II I: I I 
2 1 6 3 

8 6 
6 4 8 1 11111111111 

9R. C. Bose, E. T. Parker and S. S. Shrikhande, Further Results on the Construction of Mutually 
Orthogonal Latin squares and the Falsity of Euler's conjecture, Canadian Journal of Mathematics, 12 
(1960), 189-203. 
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whose solution is 
3 9 5 6 4 8 2 1 7 
2 1 8 7 5 3 9 4 6 
7 4 6 9 2 1 5 8 3 

5 3 2 1 8 9 7 6 4 
4 6 9 2 3 7 1 5 8, 

1 8 7 4 6 5 3 9 2 

8 2 1 5 7 4 6 3 9 
9 7 3 8 1 6 4 2 5 

6 5 4 3 9 2 8 7 1 

The solution to a Sudoku puzzle is an instance of a Latin square called a gerechte 
design, where an n-by-n square is partitioned into n regions each containing n squares 
and each of the integers 1,2,., . ,n occurs once in each row and columns (so we get a 
Latin square) and once in each of the n regions. 10 

We give a simple example of a gerechte design coming from a partitioning of a 
4-by-4 square into four L-shaped regions containing four squares each. We use the 
symbols ., <>,., and 0 to denote the different regions, as shown below . 

• • • <> 1 2 3 4 

• <> <> <> 4 3 2 1 

• 0 0 0, 2 1 4 3 

• • • 0 3 4 1 2 

1.5 Example: Shortest-Route Problem 

Consider a system of streets and intersections. A person wishes to travel from one 
intersection A to another intersection B. In general, there are many available routes 
from A to B. The problem is to determine a route for which the distance traveled is as 
small as possible, a shortest route. This is an example of a combinatorial optimization 
problem. One possible way to solve this problem is to list in a systematic way all 
possible routes from A to B. It is not necessary to travel over any street more than 
once; thus, there is only a finite number of such routes. Then compute the distance 
traveled for each and select a shortest route. This is not a very efficient procedure and, 
when the system is large, the amount of work may be too great to permit a solution 
in a reasonable amount of time. What is needed is an algorithm for determining 
a shortest route in which the work involved in carrying out the algorithm does not 
increase too rapidly as the system increases in size. In other words, the amount of 
work should be bounded by a polynomial function (as opposed to, say, an exponential 
function) of the size of the problem. In Section 11.7 we describe such an algorithm. 

lOR. A. Bailey, p,' J. Cameron, and R. Connelly, Sudoku, Gerechte Designs, Resolutions, Affine 
Spaces, Spreads, Reguli, and Hamming Codes, Amer. Math, Monthly, 115 (2008), 383-404. 
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This algorithm will actually find a shortest route from A to every other intersection 
in the system. 

xc><!> 
1 1 Y 

1 1 
1 

a 2 d 

Figure 1.7 

The problem of finding a shortest route between two intersections can be viewed 
abstractly. Let V be a finite set of objects called vertices (which correspond to the 
intersections and the ends of dead-end streets), and let E be a set of unordered pairs 
of vertices called edges (which correspond to the streets). Thus, some pairs of vertices 
are joined by edges, while others are not. The pair (V, E) is called a gmph. A walk in 
the graph joining vertices x and y is a sequence of vertices such that the first vertex 
is x and the last vertex is y, and any two consecutive vertices are joined by an edge. 
Now associate with each edge a nonnegative real number, the length of the edge. The 
length of a walk is the sum of the lengths of the edges that join consecutive vertices 
of the walk. Given two vertices x and y, the shortest-route problem is to find a walk 
from x to y that has the smallest length. In the graph depicted in Figure 1.7, there 
are 6 vertices and 10 edges. The numbers on the edges denote their lengths. One 
walk joining x and y is x, a, b, d, y, and it has length 4. Another is x, b, d, y, and it has 
length 3. It is not difficult to see that the latter walk gives a shortest route joining x 
and y. 

A graph is an example of a discrete structure which has been and continues to be 
extensively studied in combinatorics. The generality of the notion allows for its wide 
applicability in such diverse fields as psychology, sociology, chemistry, genetics, and 
communications science. Thus, the vertices of a graph might correspond to people, 
with two vertices joined by an edge if the corresponding people distrust each other; or 
the vertices might represent atoms, and the edges represent the bonds between atoms. 
You can probably imagine other ways in which graphs can be used to model phenom­
ena. Some important concepts and properties of graphs are studied in Chapters 9, 11, 
and 12. 

1.6 Example: Mutually Overlapping Circles 

Consider n mutually overlapping circles /'1,/'2, ... ,/'n in general position in the plane. 
By mutually overlapping we mean that each pair of the circles intersects in two distinct 
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points (thus nonintersecting or tangent circles are not allowed). By general position, 
we mean that there do not exist three circles with a common point. 11 The n circles 
create a number of regions in the plane. The problem is to determine how many 
regions are so created. 

Let hn equal the number of regions created. We easily compute that hI = 2 (the 
inside and outside of the circle I'd, h2 = 4 (the usual Venn diagram for two sets), 
and h3 = 8 (the usual Venn diagram for three sets). Since the numbers seem to be 
doubling, it is tempting now to think that h4 = 16. However, a picture quickly reveals 
that h4 = 14 (see Figure 1.8). 

Figure 1.8 Four mutually overlapping circles in general position 

One way to solve counting problems of this sort is to try to determine the change 
in the number of regions that occurs when we go from n - 1 circles 1'1, ... ,I'n-l to 
n circles 1'1, ... , I'n-l, I'n- In more formal language, we try to determine a recurrence 
relation for hn ; that is, express hn in terms of previous values. 

So assume that n 2: 2 and that the n - 1 mutually overlapping circles 1'1,.·. ,I'n-l 
have been drawn in the plane in general position creating hn-l regions. Then put in the 
nth circle I'n so that there are now n mutually overlapping circles in general position. 
Each of the first n - 1 circles intersects the nth circle I'n in two points, and since the 
circles are in general position we obtain 2(n - 1) distinct points PI, P2 , ... , P2(n-l). 
These 2(n -1) points divide I'n into 2(n -1) arcs: the arc between PI and P2, the arc 
between P2 and P3, ... , the arc between P2(n-l)-1 and P2(n-l), and the arc between 
P 2(n-l) and Pl· Each of these 2(n - 1) arcs divides a region formed by the first n - 1 
circles 1'1, ... ,I'n-l into two, creating 2( n - 1) more regions. Thus, hn satisfies the 
relation 

hn = hn-l + 2(n - 1), (n 2: 2). (1.4) 

We can use the recurrence relation (1.4) to obtain a formula for hn in terms of the 
parameter n. By iterating (1.4),12 we obtain 

hn = hn-l + 2(n - 1) 

II It is not necessary that the "circles" be round. Closed convex curves are sufficient. 
12That is, applying (1.4) over and over again until finally we get to h1 which we know to be 2. 
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hn hn - 2 + 2(n - 2) + 2(n - 1) 

hn hn - 3 + 2(n - 3) + 2(n - 2) + 2(n - 1) 

hn = hl + 2(1) + 2(2) + ... + 2(n - 2) + 2(n - 1). 

Since hl = 2, and 1 + 2 + ... + (n - 1) = n(n - 1)/2, we get 

n(n - 1) 
hn = 2 + 2 . = n2 - n + 2 

2 ' 
(n 2: 2). 

This formula is also valid for n = 1, since hl = 2. A formal proof of this formula can 
now be given using mathematical induction. 

1. 7 Example: The Game of Nim 

We close this introductory chapter by returning to the roots of combinatorics in recre­
ational mathematics and investigating the ancient game of Nim. 13 Its solution depends 
on parity, an important problem-solving concept in combinatorics. We used a simple 
parity argument in investigating perfect covers of chessboards when we showed that a 
board had to have an even number of squares to have a perfect cover with dominoes. 

Nim is a game played by two players with heaps of coins (or stones or beans). 
Suppose that there are k 2: 1 heaps of coins that contain, respectively, nl, n2,.' . , nk 
coins. The object of the game is to select the last coin. The rules of the game are as 
follows: 

(1) The players alternate turns (let us call the player who makes the first move I 
and then call the other player II). 

(2) Each player, when it is his or her turn, selects one of the heaps and removes at 
least one of the coins from the selected heap. (The player may take all of the 
coins from the selected heap, thereby leaving an empty heap, which is now "out 
of play.") 

The game ends when all the heaps are empty. The last player to make a move-that 
is, the player who takes the last coin(s)-is the winner. 

The variables in this game are the number k of heaps and the numbers nl, n2, ... , nk 
of coins in the heaps. The combinatorial problem is to determine whether the first or 
second player wins 14 and how that player should move in order to guarantee a win-a 
winning stmtegy. 

13 Nim derives from the German Nimm!, meaning Take!. 
'4With intelligent play. 
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To develop some understanding of Nim, we consider some special cases. 15 If there 
is initially only one heap, then player I wins by removing all the coins. Now suppose 
that there are k = 2 heaps, with nl and n2 coins, respectively. Whether or not player 
I can win depends not on the actual values of nl and n2 but on whether or not they 
are equal. Suppose that nl i= n2. Player I can remove enough coins from the larger 
heap in order to leave two heaps of equal size for player II. Now player I, when it is 
her turn, can mimic player II's moves. Thus if player II takes c coins from one of the 
heaps, then player I takes the same number c of coins from the other heap. Such a 
strategy guarantees a win for player 1. If nl = n2, then player II can win by mimicking 
player I's moves. Thus, we have completely solved 2-heap Nim. An example of play 
in the 2-heap game of Nim with heaps of sizes 8 and 5, respectively, is 

8,5 ~ 5,5 ~ 5,2 ~ 2,2 ~ 0,2 ~ 0,0. 

The preceding idea in solving 2-heap Nim, namely, moving in such a way as to 
leave two equal heaps, can be generalized to any number k of heaps. The insight one 
needs is provided by the concept of the base 2 numeral of an integer. Recall that each 
positive integer n can be expressed as a base 2 numeral by repeatedly removing the 
largest power of 2 which does not exceed the number. For instance, to express the 
decimal number 57 in base 2, we observe that 

Thus, 

25 S 57 < 26 , 

24 S 25 < 25, 

23 S 9 < 24 , 

2° S 1 < 21 , 

and the base 2 numeral for 57 is 

57 - 25 = 25 
25 - 24 = 9 
9 - 23 = 1 
1 - 2° = 0. 

111001. 

Each digit in a base 2 numeral is either ° or 1. The digit in the ith position, the one 
corresponding to 2\ is called the ith bit16 (i 2: 0). We can think of each heap of coins 
as consisting of subheaps of powers of 2, according to its base numeral. Thus a heap of 
size 53 consists of subheaps of sizes 25 ,24,22 , and ~. In the case of 2-heap Nim, the 
total number of subheaps of each size is either 0, 1, or 2. There is exactly one subheap 
of a particular size if and only if the two heaps have different sizes. Put another way, 
the total number of subheaps of each size is even if and only if the two heaps have the 
same size--that is, if and only if player II can win the Nim game. 

l5This is an important principle to follow in general: Consider small or special cases to develop 
understanding and intuition. Then try to extend your ideas to solve the problem in general. 

16The word bit is short for binary digit. 
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Now consider a general Nim game with heaps of sizes nl, n2, .. . ,nk. Express each 
of the numbers ni as base 2 numerals: 

nl as· .. alaO 

n2 bs···blbo 

(By including leading Os, we can assume that all of the heap sizes have base 2 numerals 
with the same number of digits.) We call a Nim game balanced, provided that the 
number of subheaps of each size is even. Thus, a Nim game is balanced if and only if 

as + bs + ... + es is even, 

ai + bi + .. , . + ei is even, 

ao + bo + ... + eo is even. 

A Nim game that is not balanced is called unbalanced. We say that the ith bit is 
balanced provided that the sum ai + bi + ... + ei is even, and is unbalanced otherwise. 
Thus, a balanced game is one in which all bits are balanced, while an unbalanced game 
is one in which there is at least one unbalanced bit. 

We then have the following: 

Player I can win in unbalanced Nim games, and player II can win in bal­
anced Nim games. 

To see this, we generalize the strategies used in 2-heap Nim. Suppose the Nim game 
is unbalanced. Let the largest unbalanced bit be the jth bit. Then player I moves in 
such a way as to leave a balanced game for player II. She does this by selecting a heap 
whose jth bit is 1 and removing a number of coins from it so that the resulting game 
is balanced (see also Exercise 32). No matter what player II does, she leaves for player 
I an unbalanced game again, and player I once again balances it. Continuing like this 
ensures player I a win. If the game starts out balanced, then player I's first move 
unbalances it, and now player II adopts the strategy of balancing the game whenever 
it is her move. 

For example, consider a 4-heap Nim game with heaps of sizes 7,9, 12, and 15. The 
base 2 numerals for these heap sizes are, respectively, 0111, 1001, llOO, and 111l. In 
terms of subheaps of powers of 2, we have: 

123 = 8 22 = 4 I 21 = 2 20 = 1 I 
Heap of size 7 0 1 1 1 
Heap of size 9 1 0 0 1 
Heap of size 12 1 1 0 0 
Heap of size 15 1 1 1 1 
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This game is unbalanced with the 3rd, 2nd and Oth bits unbalanced. Player I can 
remove 11 coins from the pile of size 12, leaving 1 coin. Since the base 2 numeral of 
1 is 0001, the game is now balanced. Alternatively, player I can remove 5 coins from 
the pile of size 9, leaving 4 coins, or player I can remove 13 coins from the pile of size 
15, leaving 2 coins. 

1.8 Exercises 

l. Show that an m-by-n chessboard has a perfect cover by dominoes if and only if 
at least one of m and n is even. 

2. Consider an m-by-n chessboard with m and n both odd. To fix the notation, 
suppose that the square in the upper left-hand corner is colored white. Show 
that if a white square is cut out anywhere on the board, the resulting pruned 
board has a perfect cover by dominoes. 

3. Imagine a prison consisting of 64 cells arranged like the squares of an 8-by-8 
chessboard. There are doors between all adjoining cells. A prisoner in one of 
the corner cells is told that he will be released, provided he can get into the 
diagonally opposite corner cell after passing through every other cell exactly 
once. Can the prisoner obtain his freedom? 

4. (a) Let f(n) count the number of different perfect covers of a 2-by-n chessboard 
by dominoes. Evaluate f(1), f(2), f(3), f(4), and f(5). Try to find (and verify) 
a simple relation that the counting function f satisfies. Use this relation to 
compute f(12). 

(b) * Let g(n) be the number of different perfect covers of a 3-by-n chessboard 
by dominoes. Evaluate g(l), g(2), ... , g(6). 

5. Find the number of different perfect covers of a 3-by-4 chessboard by dominoes. 

6. Consider the following three-dimensional version of the chessboard problem: A 
three-dimensional domino is defined to be the geometric figure that results when 
two cubes, one unit on an edge, are joined along a face. Show that it is possible 
to construct a cube n units on an edge from dominoes if and only if n is even. If 
n is odd, is it possible to construct a cube n units on an edge with a 1-by-1 hole 
in the middle? (Hint: Think of a cube n units on an edge as being composed of 
n 3 cubes, one unit on an edge. Color the cubes alternately black and white.) 

7. Let a and b be positive integers with a a factor of b. Show that an m-by-n board 
has a perfect cover by a-by-b pieces if and only if a is a factor of both m and 
nand b is a factor of either m or n. (Hint: Partition the a-by-b pieces into a 
1-by-b pieces.) 
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8. Use Exercise 7 to conclude that when a is a factor of b, an m-by-n board has a 
perfect cover by a-by-b pieces if and only if it has a trivial perfect cover in which 
all the pieces are oriented the same way. 

9. Show that the conclusion of Exercise 8 need not hold when a is not a factor of b. 

10. Verify that there is no magic square of order 2. 

11. Use de la Loubere's method to construct a magic square of order 7. 

12. Use de la Loubere's method to construct a magic square of order 9. 

13. Construct a magic square of order 6. 

14. Show that a magic square of order 3 must have a 5 in the middle position. 
Deduce that there are exactly 8 magic squares of order 3. 

15. Can the following partial square be completed to obtain a magic square of order 
4? 

[~3 1 
16. Show that the result of replacing every integer a in a magic square of order n 

with n 2 + 1 - a is a magic square of order n. 

17. Let n be a positive integer divisible by 4, say n = 4m. Consider the following 
construction of an n-by-n array: 

(1) Proceeding from left to right and from first row to nth row, fill in the places 
of the array with the integers 1,2, ... , n 2 in order. 

(2) Partition the resulting square array into m 2 4-by-4 smaller arrays. Replace 
each number a on the two diagonals of each of the 4-by-4 arrays with its 
"complement" n 2 + 1 - a. 

Verify that this construction produces a magic square of order n when n = 4 
and n = 8. (Actually it produces a magic square for each n divisible by 4.) 

18. Show that there is no magic cube of order 2. 

19. * Show that there is no magic cube of , order 4. 

20. Show that the following map of 10 countries {I, 2, ... , 1O} can be colored with 
three but no fewer colors. If the colors used are red, white, and blue, determine 
the number of different colorings. 
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1 2 3 
4 5 6 
7 8 9 

21. (a) Does there exist a magic hexagon of order 2? That is, is it possible to arrange 
the numbers 1,2, ... ,7 in the following hexagonal array so that all of the nine 
"line" sums (the sum of the numbers in the hexagonal boxes penetrated by a 
line through midpoints of opposite sides) are the same? 

(b) * Construct a magic hexagon of order 3; that is, arrange the integers 
1,2, ... ,19 in a hexagonal array (three integers on a side) in such a way that all 
of the fifteen "line" sums are the same (namely, 38). 

22. Construct a pair of orthogonal Latin squares of order 4. 

23. Construct Latin squares of orders 5 and 6. 

24. Find a general method for constructing a Latin square of order n. 

25. A 6-by-6 chessboard is perfectly covered with 18 dominoes. Prove that it is pos­
sible to cut it either horizontally or vertically into two nonempty pieces without 
cutting through a domino; that is, prove that there must be a fault line. 

26. Construct a perfect cover of an 8-by-8 chessboard with dominoes having no 
fault-line. 

27. Determine all shortest routes from A to B in the system of intersections and 
streets (graph) in the following diagram. The numbers on the streets represent 
the lengths of the streets measured in terms of some unit. 
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A eE--~----tl!---~-....... -......;;;;-~ B 

28. Consider 3-heap Nim with heaps of sizes 1, 2, and 4. Show that this game is 
unbalanced and determine a first move for player 1. 

29. Is 4-heap Nim with heaps of sizes 22, 19, 14, and 11 balanced or unbalanced? 
Player I's first move is to remove 6 coins from the heap of size 19. What should 
player II's first move be? 

30. Consider 5-heap Nim with heaps of sizes 10, 20, 30, 40, and 50. Is this game 
balanced? Determine a first move for player I. 

31. Show that player I can always win a Nim game in which the number of heaps 
with an odd number of coins is odd. 

32. Show that in an unbalanced game of Nim in which the largest unbalanced bit is 
the jth bit, player I can always balance the game by removing coins from any 
heap the base 2 numeral of whose number has a 1 in the jth bit. 

33. Suppose we change the object of Nim so that the player who takes the last coin 
loses (the misere version). Show that the following is a winning strategy: Play 
as in ordinary Nim until all but exactly one heap contains a single coin. Then 
remove either all or all but one of the coins of the exceptional heap so as to leave 
an odd number of heaps of size 1. 

34. A game is played between two players, alternating turns as follows: The game 
starts with an empty pile. When it is his turn, a player may add either 1, 2, 
3, or 4 coins to the pile. The person who adds the 100th coin to the pile is the 
winner. Determine whether it is the 6rst or second player who can guarantee a 
win in this game. What is the winning strategy? 

35. Suppose that in Exercise 34, the player who adds the 100th coin loses. Now who 
wins, and how? 
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36. Eight people are at a party and pair off to form four teams of two. In how many 
ways can this be done? (This is sort of an "unstructured" domino-covering 
problem.) 

37. A Latin square of order n is idempotent provided the integers {I, 2, ... ,n} occur 
in the diagonal positions (1,1), (2, 2), ... , (n, n) in the order 1,2, ... , n, and is 
symmetric provided the integer in position (i, j) equals the integer in position 
(j, i) whenever i i= j. There is no symmetric, idempotent Latin square of order 
2. Construct a symmetric, idempotent Latin square of order 3. Show that there 
is no symmetric, idempotent Latin square of order 4. What about order n in 
general, where n is even? 

38. Take any set of 2n points in the plane with no three collinear, and then arbitrarily 
color each point red or blue. Prove that it is always possible to pair up the red 
points with the blue points by drawing line segments connecting them so that 
no two of the line segments intersect. 

39. Consider an n-by-n board and L-tetrominoes (4 squares joined in the shape of an 
L). Show that if there is a perfect cover of the n-by-n board with L-tetrominoes, 
then n is divisible by 4. What about m-by-n-boards? 

40. Solve the' following Sudoku puzzle, 

11111111111 i 

5 6 
8 7 

7 5 6 4 

3 6 8 2 4 5 
2 3 9 6 

5 1 7 2 8 3 

2 4 7 8 
4 3 
1 3 111111111111 

41. Solve the following Sudoku puzzle, 

1111111111 I 
7 1 5 4 8 
2 5 9 8 1 6 

I Jaj:II:1 I: II: I, I 
I ~ I 13 ]1 : 171 ~ 11 9 1 ~I 
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42. Let 8n denote the staircase board with 1 + 2 + ... + n = n( n + 1) /2 squares. For 
example, 8 4 is g.xxx. 

x x 
x 

Prove that 8n does not have a perfect cover with dominoes for any n :2: 1. 

43. Consider a block of wood in the shape of a cube, 3 feet on an edge. It is desired 
to cut the cube into 27 smaller cubes, 1 foot on an edge. One way to do this is 
to make 6 cuts, 2 in each direction, while keeping the cube in one block. Is it 
possible to use fewer cuts if the pieces can be rearranged between cuts? 

44. Show how to cut a cube, 3 feet on an edge, into 27 cubes, 1 foot on an edge, using 
exactly 6 cuts but making a nontrivial rearrangement of the pieces between two 
of the cuts. 





Chapter 2 

Permutations and Combinations 

Most readers of this book will have had some experience with simple counting prob­
lems, so the concepts "permutation" and "combination" are probably familiar. But 
the experienced counter knows that even rather simple-looking problems can pose dif­
ficulties in their solutions. While it is generally true that in order to learn mathematics 
one must do mathematics, it is especially so here-the serious student should attempt 
to solve a large number of problems. 

In this chapter, we explore four general principles and some of the counting formu­
las that they imply. Each of these principles gives a complementary principle, which 
we also discuss. We conclude with an application of counting to finite probability. 

2.1 Four Basic Counting Principles 

The first principle1 is very basic. It is one formulation of the principle that the whole 
is equal to the sum of its parts. 

Let 8 be a set. A partition of 8 is a collection 81, 82, ... , 8m of subsets of 8 such 
that each element of 8 is in exactly one of those subsets: 

8i n 8j = 0, (i i j). 

Thus, the sets 8 1,82", . , 8m are pairwise disjoint sets, and their union is 8. The 
subsets 8 1 ,82,,,,, 8m are called the parts of the partition. We note that by this 
definition a part of a partition may be empty, but usually there is no advantage in 

1 According to the The Random House College Dictionary, Revised Edition, 1997, a principle is (1) 
an accepted or professed rule of action or conduct, (2) a basic law, axiom, Or doctrine. O'urprinciples in 
this section are basic laws of mathematics and important rules of action for solving counting problems. 
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considering partitions with one or more empty parts. The number of objects of a set 
8 is denoted by 181 and is sometimes called the size of 8. 

Addition Principle. 8uppose that a set 8 is partitioned into pairwise disjoint parts 
8 1,82 , ... ,8m . The number of objects in 8 can be determined by finding the number 
of objects in each of the parts, and adding the numbers so obtained: 

If the sets 8 1 ,82 ,." , 8m are allowed to overlap, then a more profound principle, the 
inclusion-exclusion principle of Chapter 6, can be used to count the number of objects 
in 8. 

In applying the addition principle, we usually define the parts descriptively. In 
other words, we break up the problem into mutually exclusive cases that exhaust all 
possibilities. The art of applying the addition principle is to partition the set 8 to be 
counted into "manageable parts"-that is, parts which we can readily count. But this 
statement needs to be qualified. If we partition 8 into too many parts, then we may 
have defeated ourselves. For instance, if we partition 8 into parts each containing only 
one element, then applying the addition principle is the same as counting the number 
of parts, and this is basically the same as listing all the objects of 8. Thus, a more 
appropriate description is that the art of applying the addition principle is to partition 
the set 8 into not too many manageable parts. 

Example. Suppose we wish to find the number of different courses offered by the 
University of Wisconsin-Madison. We partition the courses according to the depart­
ment in which they are listed. Provided there is no cross-listing (cross-listing occurs 
when the same course is listed by more than one department), the number of courses 
offered by the University equals the sum of the number' of courses offered by each 
department. 0 

Another formulation of the addition principle in terms of choices is the following: 
If an object can be selected from one pile in p ways and an object can be selected from 
a separate pile in q ways, then the selection of one object chosen from either of the 
two piles can be made in p + q ways. This formulation has an obvious generalization 
to more than two piles. 

Example. A student wishes to take either a mathematics course or a biology course, 
but not both. If there are four mathematics courses and three biology courses for which 
the student has the necessary prerequisites, then the student can choose a course to 
take in 4 + 3 = 7 ways. 0 

The second principle is a little more complicated. We state it for two sets, but it 
can also be generalized to any finite number of sets. 

Multiplication Principle. Let 8 be a set of ordered pairs (a, b) of objects, where the 
first object a comes from a set of size p, and for each choice of object a there are q 
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choices for object b. Then the size of S is p x q: 

JSI = p x q. 

The multiplication principle is actually a consequence of the addition principle. 
Let aI, a2, ... ,ap be the p different choices for the object a. We partition S into 
parts SI, S2, .. " Sp where Si is the set of ordered pairs in S with first object ai, 
(i = 1,2, ... ,p). The size of each Si is q; hence, by the addition principle, 

lSI ISll + IS21 + ... + ISpl 
q+q+"'+q (pq's) 
p x q. 

Note how the basic fact-multiplication of whole numbers is just repeated addition­
enters into the preceding derivation. 

A second useful formulation of the multiplication principle is as follows: If a first 
task has p outcomes and, no matter what the outcome of the first task, a second task 
has q outcomes, then the two tasks performed consecutively have p x q outcomes. 

Example. A student is to take two courses. The first meets at anyone of 3 hours in 
the morning, and the second at anyone of 4 hours in the afternoon. The number of 
schedules that are possible for the student is 3 x 4 = 12. 0 

As already remarked, the multiplication principle can be generalized to three, 
four, or any finite number of sets. Rather than formulate it in terms of n sets, we give 
examples for n = 3 and n = 4. 

Example. Chalk comes in three different lengths, eight different colors, and four 
different diameters. How many different kinds of chalk are there? 

To determine a piece of chalk of a specific type, we carry out three different tasks 
(it does not matter in which order we take these tasks): Choose a length, Choose a 
color, Choose a diameter. By the multiplication principle, there are 3 x 8 x 4 = 96 
different kinds of chalk. 0 

Example. The number of ways a man, woman, boy, and girl can be selected from 
five men, six women, two boys, and four girls is 5 x 6 x 2 x 4 = 240. 

The reason is that we have four different tasks to carry out: select a man (five 
ways), select a woman (six ways), select a boy (two ways), select a girl (four ways). 
If, in addition, we ask for the number of ways one person can be selected, the answer 
is 5 + 6 + 2 + 4 = 17. This follows from the a'ddition principle for four piles. 0 

Example. Determine the number of positive integers that are factors of the number 
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The numbers 3,5,11, and 13 are prime numbers. By the fundamental theorem of 
arithmetic, each factor is of the form 

3i x 51 X 11k X 131, 

where 0 'S i 'S 4, 0 'S j 'S 2, 0 'S k 'S 7, and 0 'S I 'S 8. There are five choices for i, 
three for j, eight for k, and nine for l. By the multiplication principle, the number of 
factors is 

5 x 3 x 8 x 9 = 1080. 

o 
In the multiplication principle the q choices for object b may vary with the choice of 

a. The only requirement is that there be the same number q of choices, not necessarily 
the same choices. 

Example. How many two-digit numbers have distinct and nonzero digits? 

A two-digit number ab can be regarded as an ordered pair (a, b), where a is the 
tens digit and b is the units digit. Neither of these digits is allowed to be 0 in the 
problem, and the two digits are to be different. There are nine choices for a, namely 
1,2, ... ,9. Once a is chosen, there are eight choices for b. If a = 1, these eight choices 
are 2,3, ... ,9, if a = 2, the eight choices are 1,3, ... ,9, and so on. What is important 
for application of the multiplication principle is that the number of choices is always 
8. The answer to the questions is, by the multiplication principle, 9 x 8 = 72. 

We can arrive at the answer 72 in another way. There are 90 two-digit numbers, 
10,11,12, ... ,99. Of these numbers, nine have a 0, (namely, 10,20, ... , 90) and nine 
have identical digits (namely, 11,22, ... ,99). Thus the number of two-digit numbers 
with distinct and nonzero digits equals 90 - 9 - 9 = 72. 0 

The preceding example illustrates two ideas. One is that there may be more than 
one way to arrive at the answer to a counting question. The other idea is that to find 
the number of objects in a set A (in this case the set of two-digit numbers with distinct 
and nonzero digits) it may be easier to find the number of objects in a larger set U 
containing S (the set of all two-digit numbers in the preceding example) and then 
subtract the number of objects of U that do not belong to A (the two-digit numbers 
containing a 0 or identical digits). We formulate this idea as our third principle. 

Subtraction Principle. Let A be a set and let U be a larger set containing A. Let 

A = U \ A = {x E U: x It" A} 

be the complement of A in U. Then the number IAI of objects in A is given by the 
rule 

IAI = 1U1-IAI· 
In applying the subtraction principle, the set U is usually some natural set con­

sisting of all the objects under discussion (the so-called universal set). Using the 
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subtraction principle makes sense only if it is easier to count the number of objects in 
U and in A than to count the number of objects in A. 

Example. Computer passwords are to consist of a string of six symbols taken from 
the digits 0,1,2, ... ,9 and the lowercase letters a, b, c, ... ,z. How many computer 
passwords have a repeated symbol? 

We want to count the number of objects in the set A of computer passwords with a 
repeated symbol. Let U be the set of all computer passwords. Taking the complement 
of A in U we get the set A of computer passwords with no repeated symbol. By two 
applications of the multiplication principle, we get 

lUI = 366 = 2, 176,782,336 

and 
IAI = 36· 35 . 34·33·32·31 = 1,402,410,240. 

Therefore, 

IAI = lUI - IAI = 2, 176,782,336 - 1,402,410,240 = 774,372,096. 

o 

We now formulate the final principle of this section. 

Division Principle. Let 8 be a finite set that is partitioned into k parts in such a 
way that each part contains the same number of objects. Then the number of parts 
in the partition is given by the rule 

k = 181 
number of objects in a part 

Thus, we can determine the number of parts if we know the number of objects in 8 
and the common value of the number of objects in the parts. 

Example. There are 740 pigeons in a collection of pigeonholes. If each pigeonhole 
contains 5 pigeons, the number of pigeonholes equals 

740 _ 148 
5 - . 

o 
More profound applications of the division principle will occur later in this book. 

Now consider the next example. 

Example. You wish to give your Aunt Moille a basket of fruit. In your refrigerator 
you have six oranges and nine apples. The only requirement is that there must be at 
least one piece of fruit in the basket (that is, an empty basket of fruit is not allowed). 
How many different baskets of fruit are possible? 
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One way to count the number of baskets is the following: First, ignore the re­
quirement that the basket cannot be empty. We can compensate for that later. What 
distinguishes one basket of fruit from another is the number of oranges and number 
of apples in the basket. There are 7 choices for the number of oranges (0, 1, ... ,6) 
and 10 choices for the number of apples (0,1, ... ,9). By the multiplication principle, 
the number of different baskets is 7 x 10 = 70. Subtracting the empty basket, the 
answer is 69. Notice that if we had not (temporarily) ignored .the requirement that 
the basket be nonempty, then there would have been 9 or 10 choices for the number 
of apples depending on whether or not the number of oranges was 0, and we could 
not have applied the multiplication principle directly. But an alternative solution is 
the following. Partition the non empty baskets into two parts, Sl and S2, where Sl 
consists of those baskets with no oranges and S2 consists of those baskets with at least 
one orange. The size of Sl is 9 (1,2, ... ,9 apples) and the size of S2 by the foregoing 
reasoning is 6 x 10 = 60. The number of possible baskets of fruit is, by the addition 
principle, 9 + 60 = 69. 0 

We made an implicit assumption in the preceding example which we should now 
bring into the open. It was assumed in the solution that the oranges were indistin­
guishable from one another (an orange is an orange is an orange is ... ) and that the 
apples were indistinguishable from one another. Thus, what mattered in making up 
a basket of fruit was not which apples and which oranges went into it but only the 
number of each type of fruit. If we distinguished among the various oranges and the 
various apples (one orange is perfectly round, another is bruised, a third very juicy, 
and so on), then the number of baskets would be larger. We will return to this example 
in Section 3.5. 

Before continuing with more examples, we discuss some general ideas. 
A great many counting problems can be classified as one of the following types: 

(1) Count the number of ordered arrangements or ordered selections of objects 

(a) without repeating any object, 

(b) with repetition of objects permitted (but perhaps limited). 

(2) Count the number of unordered arrangements or unordered selections of objects 

(a) without repeating any object, 

(b) with repetition of objects permitted (but perhaps limited). 

Instead of distinguishing between nonrepetition and repetition of objects, it is some­
times more convenient to distinguish between selections from a set and a multiset. 
A multiset is like a set except that its members need not be distinct. 2 For example, 

2Thus a multiset breaks one of the' cardinal rules of sets, namely, elements are not repeated in sets; 
they are either in the set or not in the set. The set {a,a,b} is the same as the set {a,b} but not so 
for multisets, 
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we might have a multiset M with three a's, one b, two e's, and four d's, that is, 10 
elements of 4 different types: 3 of type a, 1 of type b, 2 of type e, and 4 of type d. We 
shall usually indicate a multiset by specifying the number of times different types of 
elements occur in it. Thus, M shall be denoted by {3· a, 1· b, 2· e, 4· d}.3 The numbers 
3,1,2, and 4 are the repetition numbers of the multiset M. A set is a multiset that has 
all repetition numbers equal to 1. To include the listed case (b) when there is no limit 
on the number of times an object of each type can occur (except for that imposed by 
the size of the arrangement), we allow infinite repetition numbers.4 Thus, a multiset 
in which a and c each have an infinite repetition number and band d have repetition 
numbers 2 and 4, respectively, is denoted by {oo . a, 2 . b,oo . c,4 . d}. Arrangements 
or selections in (1) in which order is taken into consideration are generally called per­
mutations, whereas arrangements or selections in (2) in which order is irrelevant are 
generally called combinations. In the next two sections we will develop some general 
formulas for the number of permutations and combinations of sets and multisets. But 
not all permutation and combination problems can be solved by using these formulas. 
It is often necessary to return to the basic addition, mUltiplication, subtraction, and 
division principles. 

Example. How many odd numbers between 1000 and 9999 have distinct digits? 

A number between 1000 and 9999 is an ordered arrangement of four digits. Thus 
we are asked to count a certain collection of permutations. We have four choices to 
make: a units, a tens, a hundreds, and a thousands digit. Since the numbers we want 
to count are odd, the units digit can be anyone of 1,3,5,7,9. The tens and the 
hundreds digit can be anyone of 0, 1, ... ,9, while the thousands digit can be anyone 
of 1,2, ... ,9. Thus, there are five choices for the units digit. Since the digits are to 
be distinct, we have eight choices for the thousands digit, whatever the choice of the 
units digit. Then, there are eight choices for the hundreds digit, whatever the first two 
choices were, and seven choices for the tens digit, whatever the first three choices were. 
Thus, by the multiplication principle, the answer to the question is 5 x 8 x 8 x 7 = 2240. 
o 

Suppose in the previous example we made the choices in a different order: First 
choose the thousands digit, then the hundreds, tens, and units. There are nine choices 
for the thousands digit, then nine choices for the hundreds digit (since we are allowed 
to use 0), eight choices for the tens digit, but now the number of choices for the units 
digit (which has to be odd) depends on the previous choices. If we had chosen no 
odd digits, the number of choices for the units digit would be 5; if we had chosen one 
odd digit, the number of choices for the units digit would be 4; and so on. Thus, we 
cannot invoke the multiplication principle if we carry out our choices in the reverse 
order. There are two lessons to learn from this example. One is that as soon as your 

3If we wanted to follow standard set-theoretic notation, we could designate the multiset Musing 
ordered pairs as {(a,3),(b,1),(c,2),(d,4)}. 

4There are no circumstances in which we will have to worry about different sizes of infinity. 
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answer for the number of choices of one of the tasks is "it depends" (or some such 
words), the multiplication principle cannot be applied. The second is that there may 
not be a fixed order in which the tasks have to be taken, and by changing the order a 
problem may be more readily solved by the mUltiplication principle. A rule of thumb 
to keep in mind is to make the most restrictive choice first. 

Example. How many integers between 0 and 10,000 have only one digit equal to 5? 

Let 8 be the set of integers between 0 and 10,000 with only one digit equal to 5. 

First solution: We partition 8 into the set 8 1 of one-digit numbers in 8, the set 82 

of two-digit numbers in 8, the set 83 of three-digit numbers in 8, and the set 84 of 
four-digit numbers in 8. There are no five-digit numbers in 8. We clearly have 

181 1 = 1. 

The numbers in 82 naturally fall into two types: (1) the units digit is 5, and (2) the 
tens digit is 5. The number of the first type is 8 (the tens digit cannot be 0 nor can 
it be 5). The number of the second type is 9 (the units digit cannot be 5). Hence, 

Reasoning in a similar way, we obtain 

1831 = 8 x 9 + 8 x 9 + 9 x 9 = 225, and 

1841 = 8 x 9 x 9 + 8 x 9 x 9 + 8 x 9 x 9 + 9 x 9 x 9 = 2673. 

Thus, 
181 = 1 + 17 + 225 + 2673 = 2916. 

8econd solution: By including leading zeros (e.g., think of 6 as 0006, 25 as 0025, 352 
as 0352), we can regard each number in 8 as a four-digit number. Now we partition 
8 into the sets 8f, 8~, 83, 8~ according to whether the 5 is in the first, second, third, 
or fourth position. Each of the four sets in the partition contains 9 x 9 x 9 = 729 
integers, and so the number of integers in 8 equals 

4 x 729 = 2916. 

o 

Example. How many different five-digit numbers can be constructed out of the digits 
1, 1, 1, 3, 8? 

Here we are asked to count permutations of a multiset with three objects of one 
type, one of another, and one of a third. We really have only two choices to make: 
which position is to be occupied by the 3 (five choices) and then which position is to 
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be occupied by the 8 (four choices). The remaining three places are occupied by Is. 
By the multiplication principle, the answer is 5 x 4 = 20. 

If the five digits are 1, 1, 1, 3, 3, the answer is 10, half as many. 0 

These examples clearly demonstrate that mastery of the addition and multiplica­
tion principles is essential for becoming an expert counter. 

2.2 Permutations of Sets 

Let r be a positive integer. By an r-permutation of a set S of n elements, we understand 
an ordered arrangement of r of the n elements. If S = {a,b,c}, then the three 1-
permutations of S are 

a b c, 

the six 2-permutations of S are 

ab ac ba be ca cb, 

and the six 3-permutations of S are 

abc acb bac bca cab cba. 

There are no 4-permutations of S since S has fewer than four elements. 
We denote by P(n, r) the number of r-permutations of an n-element set. If r > n, 

then P(n, r) = o. Clearly P(n, 1) = n for each positive integer n. An n-permutation 
of an n-element set S will be more simply called a permutation of S or a permutation 
of n elements. Thus, a permutation of a set S can be thought of as a listing of the 
elements of S in some order. Previously we saw that P(3,1) = 3, P(3, 2) = 6, and 
P(3,3) = 6. 

Theorem 2.2.1 For nand r positive integers with r :s: n, 

P(n, r) = n x (n - 1) x ... x (n - r + 1). 

Proof. In constructing an r-permutation of an n-element set, we can choose the first 
item in n ways, the second item in n - 1 ways, whatever the choice of the first item, .. 
. ,and the rth item in n - (r - 1) ways, whatever the choice of the first r - 1 items. By 
the multiplication principle the r items can be chosen in n x (n - 1) x ... x (n - r + 1) 
ways. 0 

For a nonnegative integer n, we define n! (read n factoriaO by 

n! = n x (n - 1) x ... x 2 x 1, 
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with the convention that o! = 1. We may then write 

n! 
P(n, r) = (n _ r)!· 

For n 2: 0, we define P(n,O) to be 1, and this agrees with the formula when r = o. 
The number of permutations of n elements is 

P( ) _ n! _ , 
n,n - ,- n .. o. 

Example. The number of four-letter "words" that can be formed by using each of 
the letters a, b, c, d, e at most once is P(5,4), and this equals 5!/(5 - 4)! = 120. The 
number of five-letter words equals P(5, 5), which is also 120. 0 

Example. The so-called "15 puzzle" consists of 15 sliding unit squares labeled with 
the numbers 1 through 15 and mounted in a 4-by-4 square frame as shown in Figure 
2.1. The challenge of the puzzle is to move from the initial position shown to any 
specified position. (That challenge is not the subject of this problem.) By a position, 
we mean an arrangement of the 15 numbered squares in the frame with one empty 
unit square. What is the number of positions in the puzzle (ignoring whether it is 
possible to move to the position from the initial one)? 

1 2 3 4 
5 6 7 8 
9 10 11 12 

13 14 15 

Figure 2.1 

The problem is equivalent to determining the number of ways to assign the numbers 
1,2, ... , 15 to the 16 squares of a 4-by-4 grid, leaving one square empty. Since we 
can assign the number 16 to the empty square, the problem is also equivalent to 
determining the number of assignments of the numbers 1,2, ... , 16 to the 16 squares, 
and this is P(16, 16) = 16!. 

What is the number of ways to assign the numbers 1,2, ... ,15 to the squares 
of a 6-by-6 grid, leaving 21 squares empty? These assignments correspond to the 15-
permutations of the 36 squares as follows: To an assignment of the numbers 1,2, ... ,15 
to 15 of the squares, we associate the 15-permutation of the 36 squares obtained by 
putting the square labeled 1 first, the square labeled 2 second, and so on. Hence the 
total number of assignments is P(36, 15) = 36!/21!. 0 

Example. What is the number of ways to order the 26 letters of the alphabet so that 
no two of the vowels a, e, i, 0, and u occur consecutively? 
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The solution to this problem (like so many counting problems) is straightforward 
once we see how to do it. We think of two main tasks to be accomplished. The 
first task is to decide how to order the consonants among themselves. There are 21 
consonants, and so 21! permutations of the consonants. Since we cannot have two 
consecutive vowels in our final arrangement, the vowels must be in 5 of the 22 spaces 
before, between, and after the consonants. Our second task is to put the vowels in 
these places. There are 22 places for the a, then 21 for the e, 20 for the i, 19 for the 
0, and 18 for the u. That is, the second task can be accomplished in 

22! 
P(22,5) =, 

17. 

ways. By the multiplication principle, we determine that the number of ordered ar­
rangements of the letters of the alphabet with no two vowels consecutive is 

2 ' 22! 1. x ,. 
17. 

o 

Example. How many seven-digit numbers are there such that the digits are dis­
tinct integers taken from {I, 2, ... ,9} and such that the digits 5 and 6 do not appear 
consecutively in either order? 

We want to count certain 7-permutations of the set {I, 2, ... , 9}, and we partition 
these 7-permutations into four types: (1) neither 5 nor 6 appears as a digit; (2) 
5, but not 6, appears as a digit; (3) 6, but not 5, appears as a digit; (4) both 5 
and 6 appear as digits. The permutations of type (1) are the 7-permutations of 
{I, 2, 3, 4, 7, 8, 9}, and hence their number is P(7,7) = 7! = 5040. The permutations 
of type (2) can be counted as follows: The digit equal to 5 can be anyone of the seven 
digits. The remaining six digits are a 6-permutation of {I, 2, 3, 4, 7, 8, 9}. Hence there 
are 7 P(7, 6) = 7(7!) = 35,280 numbers of type (2). In a similar way we see that there 
are 35,280 numbers of type (3). To count the number of permutations of type (4), we 
partition the permutations of type (4) into three parts: 

First digit equal to 5, and so second digit not equal to 6: 

There are five places for the 6. The other five digits constitute a 5-permutation of the 
7 digits {I, 2, 3, 4, 7, 8, 9}. Hence, there are 

5 x 7! 
5 x P(7,5) = ~ = 12,600 

numbers in this part. 
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Last digit equal to 5, and so next to last digit not equal to 6: 

5 . 

By an argument similar to the preceding, we conclude that there are also 12,600 
numbers in this part. 

A digit other than the first or last is equal to 5: 

The place occupied by 5 is anyone of the five interior places. The place for the 6 can 
then be chosen in four ways. The remaining five digits constitute a 5-permutation of 
the seven digits {I, 2, 3, 4, 7, 8, 9}. Hence, there are 5 x 4 x P(7,5) = 50,400 numbers 
in this category. Thus, there are 

2(12,600) +50,400=75,600 

numbers of types (4). By the addition principle, the answer to the problem posed is 

5040 +2(35,280) +75,600 =151,200. 

The solution just given was arrived at by partitioning the set of objects we wanted 
to count into manageable parts, parts the number of whose objects we could calculate, 
and then using the addition principle. An alternative, and computationally easier, 
solution is to use the subtraction principle as follows. Let us consider the entire 
collection T of seven-digit numbers that can be formed by using distinct integers from 
{I, 2, ... ,9}. The set T then contains 

P(9,7) = ~ = 181,440 

numbers. Let S consist of those numbers in T in which 5 and 6 do not occur consecu­
tively; so the complement S consists of those numbers in T in which 5 and 6 do occur 
consecutively. We wish to determine the size of S. If we can find the size of S, then 
our problem is solved by the subtraction principle. How many numbers are there in 
S? In S, the digits 5 and 6 occur consecutively. There are six ways to position a 5 
followed by a 6, and six ways to position a 6 followed by a 5. The remaining digits 
constitute a 5-permutation of {I, 2, 3, 4,7,8, 9}. So the number of numbers in S is 

2 x 6 x P(7, 5) = 30,240. 

But then S contains 181,440 - 30,240 = 151,200 numbers. 

The permutations that we have just considered are more properly called linear 
permutations. We think of the ·objects as being arranged in a line. If instead of 
arranging objects in a line, we arrange them in a circle, the number of permutations 
is smaller. Think of it this way: Suppose six children are marching in a circle. In how 
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many different ways can they form their circle? Since the children are moving, what 
matters are their positions relative to each other and not to their environment. Thus, 
it is natural to regard two circular permutations as being the same provided one can 
be brought to the other by a rotation, that is, by a circular shift. There are six linear 
permutations for each circular permutation. For example, the circular permutation 

1 

2 6 

3 5 

4 

arises from each of the linear permutations 

123456 234561 345612 

456123 561234 612345 

by regarding the last digit as coming before the first digit. Thus, there is a 6-to-1 
correspondence between the linear permutations of six children and the circular per­
mutations of the six children. Therefore, to find the number of circular permutations, 
we divide the number of linear permutations by 6. Hence, the number of circular 
permutations of the six children equals 6'/6 = 51. 

Theorem 2.2.2 The number of circular r-permutations of a set ofn elements is given 
by 

P(n,r) n! 
r r.(n-r)'· 

In particular, the number of circular permutations of n elements is (n - I)!. 

Proof. A proof is essentially contained in the preceding paragraph and uses the divi­
sion principle. The set of linear r-permutations can be partitioned into parts in such 
a way that two linear r-permutations correspond to the same circular r-permutation 
if and only if they are in the same part. Thus, the number of circular r-permutations 
equals the number of parts. Since each part contains r linear r-permutations, the 
number of parts is given by 

P(n,r) n! 
r r.(n-r)!· 

o 

For emphasis, we remark that the preceding argument worked because each part 
contained the same number of r-permutations so that we could apply the division 
principle to determine the number of parts. If, for example, we partition a set of 10 
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objects into parts of sizes 2,4, and 4, respectively, the number of parts cannot be 
obtained by dividing 10 by 2 or 4. 

Another way to view the counting of circular permutations is the following: Sup­
pose we wish to count the number of circular permutations of A, B, C, D, E, and F 
(the number of ways to seat A, B, C, D, E, and F around a table). Since we are free 
to rotate the people, any circular permutation can be rotated so that A is in a fixed 
position; think of it as the "head" of the table: 

A 

D C 

F B 

E 

Now that A is fixed, the circular permutations of A, B, C, D, E, and F can be identified 
with the linear permutations of B, C, D, E, and F. (The preceding circular permuta­
tion is identified with the linear permutation DFEBC.) There are 5! linear permuta­
tions of B, C, D, E, and F, and hence 5! circular permutations of A, B, C, D, E, and 
F. 

This way of looking at circular permutations is also useful when the formula for 
circular permutations cannot be applied directly. 

Example. Ten people, including two who do not wish to sit next to one another, are 
to be seated at a round table. How many circular seating arrangements are there? 

We solve this problem using the subtraction principle. Let the 10 people be 
Pl , P2 , P3 , • .. ,PlO , where Pl and P2 are the two who do not wish to sit together. 
Consider seating arrangements for 9 people X, P3, ... , P lO at a round table. There are 
8! such arrangements. If we replace X by either Pl , P2 or by P2 , Pl in each of these 
arrangements, we obtain a seating arrangement for the 10 people in which Pl and 
P2 are next to one another. Hence using the subtraction principle, we see that the 
number of arrangements in which Pl and P2 are not together is 9! - 2 x 8! = 7 x 81. 

Another way to analyze this problem is the following: First seat Pl at the "head" 
of the table. Then P2 cannot be on either side of Pl' There are 8 choices for the 
person on H's left, 7 choices for the person on H's right, and the remaining seats can 
be filled in 7! ways. Thus, the number of seating arrangements in which Pl and P2 

are not together is 
8 x 7 x 7! = 7 x 81. 

o 

As we did before we discussed circular permutations, we will continue to use per­
mutation to mean "linear permutation." 

Example. The number of ways to have 12 different markings on a rotating drum is 
P(12, 12)/12 = 111. 0 
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Example. What is the number of necklaces that can be made from 20 beads, each of 
a different color? 

There are 20! permutations of the 20 beads. Since each necklace can be rotated 
without changing the arrangement of the beads, the number of necklaces is at most 
20!/20 = 191. Since a necklace can also be turned over without changing the arrange­
ment of the beads, the total number of necklaces, by the division principle, is 19!/2. 
o 

Circular permutations and necklaces are counted again in Chapter 14, in a more 
general context. 

2.3 Combinations (Subsets) of Sets 

Let S be a set of n elements. A combination of a set S is a term usually used to denote 
an unordered selection of the elements of S. The result of such a selection is a subset 
A of the elements of S: A ~ S. Thus a combination of S is a choice of a subset of 
S. As a result, the terms combination and subset are essentially interchangeable, and 
we shall generally use the more familiar subset rather than perhaps the more awkward 
combination, unless we want to emphasize the selection process. 

Now let r be a nonnegative integer. By an r-combination of a set S of n elements, 
we understand an unordered selection of r of the n objects of S. The result of an 
r-combination is an r-subset of S, a subset of S consisting of r of the n objects of S. 
Again, we generally use "r-subset" rather than "r-combination." 

If S = {a, b, c, d}, then 

{a,b,c},{a,b,d},{a,c,d},{b,c,d} 

are the four 3-subsets of S. We denote by (~) the number of r-subsets of an n-element 
set.5 Obviously, 

if r > n. 

Also, 

if r > O. 

The following facts are readily seen to be true for each nonnegative integer n: 

(~) = 1, (7) = n, (:) = 1. 

In particular, (g) = 1. The basic formula for the number of r-subsets is given in the 
next theorem. 

50t her common notations for these numbers are C(n, r) and nCr. 



42 CHAPTER 2. PERMUTATIONS AND COMBINATIONS 

Theorem 2.3.1 For 0::; r ::; n, 

P( n, r) = r! (~) . 

Hence, 

( n) n! 
r - r!(n.- r)!' 

Proof. Let S be an n-element set. Each r-permutation of S arises in exactly one way 
as a result of carrying out the following two tasks: 

(1) Choose r elements from S. 

(2) Arrange the chosen r elements in some order. 

The number of ways to carry out the first task is, by definition, the number (~). The 
number of ways to carry out the second task is P(r, r) = r!. By the multiplication 
principle, we have P( n, r) = r! (~). We now use our formula P( n, r) = (n~!T)! and 
obtain 

( n) P(n, r) n! 
r = -r-!- = r!(n - r)!' o 

Example. Twenty-five points are chosen in the plane so that no three of them are 
collinear. How many straight lines do they determine? How many triangles do they 
determine? 

Since no three of the points lie on a line, every pair of points determines a unique 
straight line. Thus, the number of straight lines determined equals the number of 
2-subsets of a 25-element set, and this is given by 

( 25) 25! 
2 = 2!23! = 300. 

Similarly, every three points determines a unique triangle, so that the number of 
triangles determined is given by 

( 25) 25! 
3 = 3!22" 

o 

Example. There are 15 people enrolled in a mathematics course, but exactly 12 
attend on any given day. The number of different ways that 12 students can be chosen 
is 

( 15) 15! 
12 = 12!3!' 
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If there are 25 seats in the classroom, the 12 students could seat themselves in 
P(25,12) = 25!/13! ways. Thus, there are 

( 15) 15!25! 
12 P(25, 12) = 12!3!13! 

ways in which an instructor might see the 12 students in the classroom. o 

Example. How many eight-letter words can be constructed by using the 26 letters of 
the alphabet if each word contains three, four, or five vowels? It is understood that 
there is no restriction on the number of times a letter can be used in a word. 

We count the number of words according to the number of vowels they contain 
and then use the addition principle. 

First, consider words with three vowels. The three positions occupied by the vowels 

can be chosen in ( ~ ) ways; the other five positions are occupied b; consonants. The 

vowel positions can then be completed in 53 ways and the consonant positions in 215 

ways. Thus, the number of words with three vowels is 

In a similar way, we see that the number of words with four vowels is 

and the number of words with five vowels is 

Hence, the total number of words is 

8! 3 5 8! 4 4 8! 5 3 
3!5!521 + 4!4!5 21 + 5!3!5 21 . 

o 

The following important property is immediate from Theorem 2.3.1: 

Corollary 2.3.2 FOT 0 :s; T :s; n, 

o 
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The numbers (~) have many important and fascinating properties, and Chapter 5 
is devoted to some of these. For the moment, we discuss only two basic properties. 

Theorem 2.3.3 (Pascal's formula) For all integers nand k with 1 ::; k ::; n - 1, 

( n) = (n - 1) (n - 1) 
k k + k-I . 

Proof. One way to prove this identity is to substitute the values of these numbers 
as given in Theorem 2.3.1 and then check that both sides are equal. We leave this 
straightforward verification to the reader. 

A combinatorial proof can be obtained as follows: Let S be a set of n elements. 
We distinguish one of the elements of S and denote it by x. Let S \ {x} be the set 
obtained from S by removing the element x. We partition the set X of k-subsets of S 
into two parts, A and B. In A we put all those k-subsets which do not contain x. In 
B we put all the k-subsets which do contain x. The size of X is IXI = (~); hence, by 
the addition principle, 

G) = IAI + IBI· 

The k-subsets in A are exactly the k-subsets of the set S \ {x} of n - 1 elements; thus, 
the size of A is 

A k-subset in B can always be obtained by adjoining the element x to a (k -I)-subset 
of S \ {x}. Hence, the size of B satisfies 

( n -1) IBI = k -1 . 

Combining these facts, we obtain 

o 

To illustrate the proof, let n = 5, k = 3, and S = {x, a, b, c, d}. Then the 3-subsets 
of S in A are 

{a,b,e},{a,b,d},{a,c,d},{b,e,d}. 

These are the 3-subsets of the set {a, b, e, d}. The 3-subsets S in Bare 

{x,a,b},{x,a,e},{x,a,d},{x,b,e}, {x,b,d},{x,e,d}. 

Upon deletion of the element x in these 3-subsets, we obtain 

{a,b}, {a,e}, {a,d},{b,e}, {b,d}, {e,d}, 
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the 2-su bsets of {a, b, c, d}. Thus, 

C) = 10 = 4 + 6 = G) + G)' 
Theorem 2.3.4 For n 2: 0, 

and the common value equals the number of subsets of an n-element set. 

Proof. We prove this theorem by showing that both sides of the preceding equation 
count the number of subsets of an n-element set S, but in different ways. First we 
observe that every subset of S is an r-subset of S for some r = 0, 1,2, ... , n. Since (~) 
equals the number of r-subsets of S, it follows from the addition principle that 

(~) + G) + G) + ... + (~) 
equals the number of subsets of S. 

We can also count the number of subsets of S by breaking down the choice of a 
subset into n tasks: Let the elements of S be Xl, X2, .. . , X n . In choosing a subset of S, 
we have two choices to make for each of the n elements: Xl either goes into the subset 
or it doesn't, X2 either goes into the subset or it doesn't, ... , Xn either goes into the 
subset or it doesn't. Thus, by the multiplication principle, there are 2n ways we can 
form a subset of S. We now equate the two counts and complete the proof. 0 

The proof of Theorem 2.3.4 is an instance of obtaining an identity by counting the 
objects of a set (in this case the subsets of a set of n elements) in two different ways 
and setting the results equal to one another. This technique of "double counting" is a. 
powerful one in combinatorics, and we will see several other applications of it. 

Example. The number of 2-subsets of the set {I, 2, ... , n} of the first n positive 
integers is (~). Partition the 2-subsets according to the largest integer they contain. 
For each i = 1,2, ... , n, the number of 2-subsets in which i is the largest integer is 
i-I (the other integer can be any of 1,2, ... , i-I). Equating the two counts, we 
obtain the identity 

0+ 1 + 2 + ... + (n _ 1) = (n) = _n(,---n_-_1-'..) 
2 2' 

o 
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2.4 Permutations of Multisets 

If S is a multiset, an r-permutation of S is an ordered arrangement of r of the objects 
of S. If the total number of objects of S is n (counting repetitions), then an n­
permutation of S will also be called a permutation of S. For example, if S = {2· a, 1 . 
b,3 . c}, then 

acbc cbcc 

are 4-permutations of S, while 
abccca 

is a permutation of S. The multiset S has no 7-permutations since 7 > 2 + 1 + 3 = 6, 
the number of objects of S. We first count the number of r-permutations of a multiset 
S, each of whose repetition number is infinite. 

Theorem 2.4.1 Let S .be a multiset with objects of k different types, where each object 
has an infinite repetition number. Then the number of r-permutations of S is kr. 

Proof. In constructing an r-permutation of S, we can choose the first item to be an 
object of anyone of the k types. Similarly, the second item can be an object of anyone 
of the k types, and so on. Since all repetition numbers of S are infinite, the number 
of different choices for any item is always k and it does not depend on the choices of 
any previous items. By the multiplication principle, the r items can be chosen in k r 

ways. 0 

An alternative phrasing of the theorem is: The number of r-permutations of k 

distinct objects, each available in unlimited supply, equals kr. We also note that the 
conclusion of the theorem remains true if the repetition numbers of the k different 
types of objects of S are all at Least r. The assumption that the repetition numbers 
are infinite is a simple way of ensuring that we never run out of objects of any type. 

Example. What is the number of ternary numerals6 with at most four digits? 

The answer to this question is the number of 4-permutations of the multiset {oo . 
0,00·1,00' 2} or of the multiset {4· 0,4·1,4· 2}. By Theorem 2.4.1, this number 
equals 34 = 81. 0 

We now count permutations of a multiset with objects of k different types, each 
with a finite repetition number. 

Theorem 2.4.2 Let S be a multiset with objects of k different types with finite repe­
tition numbers nl, n2, ... , nk, respectively. Let the size of S be n = nl + n2 + ... + nk. 
Then the number of permutations of S equals 

n! 

6 A ternary numeral, or base 3 numeral, is one arrived at by representing a number in terms of 
powers of 3. For instance, 46 = 1 x 33 + 2 X 32 + 0 X 3' + 1 x 3°, and so its ternary numeral is 1201. 
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Proof. We are given a multiset S having objects of k types, say aI, a2, ... ,ak, with 
repetition numbers nl, n2, ... ,nk, respectively, for a total of n = nl + n2 + ... + nk 
objects. We want to determine the number of permutations of these n objects. We 
can think of it this way. There are n places, and we want to put exactly one of the 
objects of S in each of the places. We first decide which places are to be occupied 
by the aI's. Since there are nl aI's in S, we must choose a subset of nl places from 
the set of n places. We can do this in (:J ways. We next decide which places are 
to be occupied by the a2 'so There are n - nl places left, and we must choose n2 of 
them. This can be done in (n~~l) ways. We next find that there are (n-~3-n2) ways 
to choose the places for the a3 'so We continue like this, and invoke the multiplication 
principle and find that the number of permutations of S equals 

(~) (n :2 nl) (n - ::3 -n2) ... (n - nl - n~~ ... - nk-l ). 

Using Theorem 2.3.1, we see that this number equals 

n! (n - nl)! (n - nl - n2)! 
nl!(n - nr)! n2!(n - nl - n2)! n3!(n - nl - n2 - n3)! 

which, after cancellation, reduces to 

(n - nl - n2 - ... -nk-r)! 
nk!(n - nl - n2 - ... - nk)!' 

n! n! 
nl!n2!n3! ... nk!O! nl!n2!n3!" . nk!' 

o 

Example. The number of permutations of the letters in the word MISSISSIPPI is 

11! 

1!4!4!2! ' 

since this number equals the number of permutations of the multiset {I . M,4 . 1,4· 
S,2·P}. 0 

If the multiset S has only two types, al and a2, of objects with repetition numbers 
nl and n2, respectively, where n = nl + n2, then according to Theorem 2.4.2, the 
humber of permutations of S is 

n! n! (n) 
nrln2! = nl!(n - nt)! = nl . 

Thus we may regard (:J as the number of nl-subsets of a set of n objects, and also 
as the number of permutations of a multiset with two types of objects with repetition 
numbers nl and n - nl, resp'ectively. 
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There is another interpretation of the numbers nl!n~! ... nk! that occur in Theorem 
2.4.2. This concerns the problem of partitioning a set of objects into parts of prescribed 
sizes where the parts now have labels assigned to them. To understand the implications 
of the last phrase, we offer the next example. 

Example. Consider a set of the four objects {a, b, c, d} that is to be partitioned into 
two sets, each of size 2. If the parts are not labeled, then there are three different 
partitions: 

{a,b}, {c,d}; {a,c},{b,d}; {a,d},{b,c}. 

Now suppose that the parts are labeled with different labels ( e.g,. the colors red and 
blue). Then the number of partitions is greater; indeed, there are six, since we can 
assign the labels red and blue to each part of a partition in two ways. For instance, 
for the particular partition {a,b}, {c,d} we have 

red box{ a, b}, blue box{ c, d} 

and 
blue box{ a, b}, red box{ c, d}. 

o 

In the general case, we can label the parts B l , B2, ... ,Bk (thinking of color 1, color 
2, ... , color k), and we also think of the parts as boxes. We then have the following 
result .. 

Theorem 2.4.3 Let n be a positive integer and let nl, n2, ... ,nk be positive integers 
with n = nl + n2 + ... + nk· The number of ways to partition a set of n objects into k 
labeled boxes in which Box 1 contains nl objects, Box 2 contains n2 objects, ... , Box 
k contains nk objects equals 

n! 
nl!n2!··· nk!· 

If the boxes are not labeled, and nl = n2 = ... = nk, then the number of partitions 
equals 

n! 

Proof. The proof is a direct application of the multiplication principle. We have to 
choose which objects go into which boxes, subject to the size restrictions. We first 
choose nl objects for the first box, then n2 of the remaining n - nl objects for the 
second box, then n3 of the remaining n - nl - n2 objects for the third box, ... , and 
finally n- nl - ... - nk-l = nk objects for the kth box. By the multiplication principle, 
the number of ways to make these choices is 



2.4. PERMUTATIONS OF MUL TISETS 49 

As in the proof of Theorem 2.4.2, this gives 

n! 

If boxes are not labeled and nl = n2 = ... = nk, then the result has to be divided 
by kL This is so because, as in the preceding example, for each way of distributing 
the objects into the k unlabeled boxes there are k! ways in which we can now attach 
the labels 1,2, ... ,k. Hence, using the division principle, we find that the number of 
partitions with unlabeled boxes is 

n! 

o 

The more difficult problem of counting partitions in which the sizes of the parts 
are not prescribed is studied in Section 8.2. 

We conclude this section with an example of a kind that we shall refer to many 
times in the remainder of the text.7 The example concerns nonattacking rooks on a 
chessboard. Lest the reader be concerned that knowledge of chess is a prerequisite for 
the rest of the book, let us say at the outset that the only fact needed about the game 
of chess is that two rooks can attack one another if and only if they lie in the same 
row or the same column of the chessboard. No other knowledge of chess is necessary 
(nor does it help!). Thus, a set of nonattacking rooks on a chessboard simply means 
a collection of "pieces" called rooks that occupy certain squares of the board, and no 
two of the rooks lie in the same row or in the same column. 

Example. How many possibilities are there for eight nonattacking rooks on an 8-by-8 
chessboard? 

An example of eight nonattacking rooks on an 8-by-8 board is the following: 

0 
0 

0 
0 

0 
0 

0 
0 

We give each square on the board a pair (i, j) of coordinates. The integer i desig­
nates the row number of the square, and the integer j designates the column number 

7It is the author's favorite kind of example to illustrate many ideas. 
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of the square. Thus, i and j are integers between 1 and 8. Since the board is 8-by-8 
and there are to be eight rooks on the board that cannot attack one another, there 
must be exactly one rook in each row. Thus, the rooks must occupy eight squares 
with coordinates 

(l,ir), (2,h),···, (8,j8)' 

But there must also be exactly one rook in each column so that no two of the numbers 
jl, j2, ... , j8 can be equal. More precisely, 

h,h,··· ,j8 

must be a permutation of {I, 2, ... , 8}. Conversely, if j 1, h, ... , j8 is a permutation of 
{I, 2, ... , 8}, then putting rooks in the squares with coordinates (1, jl), (2, h), ... , (8, j8) 
we arrive at eight non attacking rooks on the board. Thus, we have a one-to-one corre­
spondence between sets of 8 nonattacking rooks on the 8-by-8 board and permutations 
of {I, 2, ... ,8}. Since there are 8! permutations of {I, 2, ... ,8}, there are 8! ways to 
place eight rooks on an 8-by-8 board so that they are nonattacking. 

We implicitly assumed in the preceding argument that the rooks were indistin­
guishable from one another, that is, they form a multiset of eight objects all of one 
type. Therefore, the only thing that mattered was which squares we~e occupied by 
rqoks. If we have eight distinct rooks, say eight rooks each colored with one of eight 
different colors, then we have also to take into account which rook is in each of the 
eight occupied squares. Let us thus suppose that we have eight rooks of eight differ­
ent colors. Having decided which eight squares are to be occupied by the rooks (8! 
possibilities), we now have also to decide what the color is of the rook in each of the 
occupied squares. As we look at the rooks from row 1 to row 8, we see a permutation 
of the eight colors. Hence, having decided which eight squares are to be occupied (8! 
possibilities), we then have to decide which permutation of the eight colors (8! permu~ 
tations) we shall assign. Thus, the number of ways to have eight nonattacking rooks 
of eight different colors on an 8-by-8 board equals 

8!8! = (8!)2. 

Now suppose that, instead of rooks of eight different colors, we have one red (R) 
rook, three blue (B) rooks, and four (Y) yellow rooks. It is assumed that rooks of 
the same color are indistinguishable from one another.8 Now, as we look at the rooks 
from row 1 to row 8, we see a permutation of the colors of the multiset 

{1·R,3·B,4·Y}. 

The number of permutations of this multiset equals, by Theorem 2.4.2, 

8! 
1!3!4! . 

8Put another way, the only way we can tell one rook from another is by color. 
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Thus, the number of ways to place one red, three blue, and four yellow rooks on an 
8-by-8 board so that no rook can attack another equals 

,~_ (8!)2 
8' 1!3!4! - 1!3!4!' 

o 

The reasoning in the preceding example is quite general and leads immediately to 
the next theorem. 

Theorem 2.4.4 There are n rooks of k colors with nl rooks of the first color, n2 rooks 
of the second color, . . . , and nk rooks of the kth color. The number of ways to 
arrange these rooks on an n-by-n board so that no rook can attack another equals 

n! 
n! -:---:---.,. 

nl!n2!'" nk! 

o 

Note that if the rooks all have different colors (k = n and all n, = 1), the formula 
gives (n!)2 as an answer. If the rooks are all colored the same (k = 1 and ni = n), the 
formula gives n! as an answer. 

Let S be an n-element multiset with repetition numbers equal to nl, n2, .. . ,nk, so 
that n = ni + n2 + ... + nk. Theorem 2.4.2 furnishes a simple formula for the number 
of n-permutations of S. If r < n, there is, in general, no simple formula for the number 
of r-permutations of S . . Nonetheless a solution can be obtained by the technique of 
generating functions, and we discuss this in Chapter 7. In certain cases, we can argue 
as in the next example. 

Example. Consider the multiset S = {3 . a, 2· b, 4· c} of nine objects of three types. 
Find the number of 8-permutations of S. 

The 8-permutations of S can be partitioned into three parts: 

(i) 8-permutations of {2 . a, 2 . b,4 . c}, of which there are 

8! 
2!2!4! = 420; 

(ii) 8-permutations of {3· a, 1· b,4· c}, of which there are 

8! 
3!1!4! = 280; 

(iii) 8-permutations of {3 . a, 2· b, 3· c}, of which there are 

8! 
3!2!3! = 560. 
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Thus, the number of 8-permutations of S is 

420 + 280 + 560 = 1260. 

o 

2.5 Combinations of Multisets 

If S is a multiset, then an r-combination of S is an unordered selection of r of the 
objects of S. Thus, an r-combination of S (more precisely, the result of the selection) 
is itself a multiset, a submultiset of S of size r, or, for short, an r-submultiset. If 
S has n objects, then there is only one n-combination of S, namely, S itself. If S 
contains objects of k different types, then there are k 1-combinations of S. Unlike when 
discussing combinations of sets, we generally use combination rather than submultiset. 

Example. Let S = {2· a, 1· b, 3· c}. Then the 3-combinations of S are 

{2·a,1·b}, {2·a,1·c}, {1·a,1.b,1·c}, 

{1·a,2·c}, {1·b,2·c}, {3·c}. 

o 

We first count the number of r-combinations of a multiset all of whose repetition 
numbers are infinite (or at least r). 

Theorem 2.5.1 Let S be a multiset with objects of k types, each with an infinite 
repetition number. Then the number of r-combinations of S equals 

Proof. Let the k types of objects of S be aI, a2, ... , ak so that 

Any r-combination of S is of the form {Xl' aI, X2 . a2, ... , Xk . ad, where Xl, X2, ... , Xk 
are nonnegative integers with Xl + X2 + ... + Xk = r. Conversely, every sequence 
Xl, X2, .. · , Xk of nonnegative integers with Xl + X2 + ... + Xk = r corresponds to an 
r-combination of S. Thus, the number of r-combinations of S equals the number of 
solutions of the equation 

Xl + X2 + ... + Xk = r, 
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where Xl, X2, •.. ,Xk are nonnegative integers. We show that the number of these 
solutions equals the number of permutations of the multiset 

T = {r. 1, (k - 1) . *} 

of l' + k - 1 objects of two different types.9 Given a permutation of T, the k - 1 *'8 

divide the l' Is into k groups. Let there be Xl Is to the left of the first *, X2 Is between 
the first and the second *, ... , and Xk Is to the right of the last *. Then Xl, X2, ... ,Xk 

are nonnegative integers with Xl + X2 + ... + Xk = r. Conversely, given nonnegative 
integers Xl, X2, ... ,Xk with Xl +X2+' . '+Xk = 1', we can reverse the preceding steps and 
construct a permutation of T.lD Thus, the number of r-combinations of the multiset 
S equals the number of permutations of the multiset T, which by Theorem 2.4.2 is 

(1' + k - I)! = (1' + k - 1). 
r!(k - I)! l' 

o 

Another way of phrasing Theorem 2.5.1 is as follows: The number of r-combinations 
of k distinct objects, each available in unlimited supply, equals 

We note that Theorem 2.5.1 remains true if the repetition numbers of the k distinct 
objects of S are all at least r. 

Example. A bakery boasts eight varieties of doughnuts. If a box of doughnuts 
contains one dozen, how many different options are there for a box of doughnuts? 

It is assumed that the bakery has on hand a large number (at least 12) of each 
variety. This is a combination problem, since we assume the order of the doughnuts 
in a box is irrelevant for the purchaser's purpose. The number of different options for 
boxes equals the number of 12-combinations of a multiset with objects of 8 types, each 
having an infinite repetition number. By Theorem 2.5.1, this number equals 

o 

Example. What is the number of nondecreasing sequences of length l' whose terms 
are taken from 1,2, ... , k? 

9Equivalently, the number of sequences of Os and is of length r + k - 1 in which there are r is and 
k - lOs. 

lOFor example, if k = 4 and r = 5, then the permutation of T = {5· 1,3' *} given by *111 * *11 
corresponds to the solution of Xl + X2 + X3 + X4 = 5 given by Xl = 0, X2 = 3, X3 = 0, X4 = 2. 
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The nondecreasing sequences to be counted can be obtained by first choosing an 
r-combination of the multiset 

S = {oo . 1,00 . 2, ... ,00 . k} 

and then arranging the elements in increasing order. Thus, the number of such se­
quences equals the number of r-combinations of S, and hence, by Theorem 2.5.1, 
equals 

o 

In the proof of Theorem 2.5.1, we defined a one-to-one correspondence between 
r-combinations of a multiset S with objects of k different types and the nonnegative 
integral solutions of the equation 

Xl + X2 + ... + Xk = r. 

In this correspondence, Xi represents the number of objects of the ith type that are 
used in the r-combination. Putting restrictions on the number of times each type of 
object is to occur in the r-combination can be accomplished by putting restrictions on 
the Xi. We give a first illustration of this in the next example. 

Example. Let S be the multiset {1O. a, 10· b, 10· e, 10· d} with objects of four types, 
a, b, e, and d. What is the number of lO-combinations of S that have the property that 
each of the four types of objects occurs at least once? 

The answer is the number of positive integral solutions of 

where Xl represents the number of a's in a 10-combination, X2 the number of b's, X3 

the number of e's, and X4 the number of d's. Since the repetition numbers all equal 
10, and 10 is the size of the combinations being counted, we can ignore the repetition 
numbers of S. We then perform the changes of variable: 

YI = Xl - 1, Y2 = X2 - 1, Y3 = X3 - 1, Y4 = X4 - 1 

to get 

YI + Y2 + Y3 + Y4 = 6, 

where the y;'s are to be nonnegative. The number of nonnegative integral solutions of 
the new equation is, by Theorem 2.5.1, 

(:) = 84. o 
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Example. Continuing with the doughnut example following Theorem 2.5.1, we see 
that the number of different options for boxes of doughnuts containing at least one 
doughnut of each of the eight varieties equals 

(4+:-1) = (~1) =330. 

o 

General lower bounds on the number of times each type of object occurs in the 
combination also can be handled by a change of variable. We illustrate this in the 
next example. 

Example. What is the number of integral solutions of the equation 

Xl + X2 + X3 + X4 = 20, 

in which 
Xl ::::: 3, X2 ::::: 1, X3 ::::: 0 and X4::::: 57 

We introduce the new variables 

YI = Xl - 3, Y2 = X2 - 1, Y3 = X3, Y4 = X4 - 5, 

and our equation becomes 
YI + Y2 + Y3 + Y4 = 11. 

The lower bounds on the xi's are satisfied if and only if the Yi'S are nonnegative. The 
number of nonnegative integral solutions of the new equation, and hence the number 
of nonnegative solutions of the original equation, is 

o 

It is more difficult to count the number of r-combinations of a multiset 

with k types of objects and general repetition numbers nl, n2, . .. , nk. The number of 
r-combinations of S is the same as the number of integral solutions of 

Xl + X2 + ... + Xk = r, 

where 

We now have upper bounds on the Xi'S, and these cannot be handled in the same way 
as lower bounds. In Chapter 6 we show how the inclusion-exclusion principle provides 
a satisfactory method for this case. 
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2.6 Finite Probability 

In this section we give a brief and informal introduction to finite probability.ll As we 
will see, it all reduces to counting, and so the counting techniques discussed in this 
chapter can be used to calculate probabilities. 

The setting for finite probability is this: There is an experiment [ which when 
carried out results in one of a finite set of outcomes. We assume that each outcome is 
equally likely (that is, no outcome is more likely to occur than any other); we say that 
the experiment is carried out randomly. The set of all possible outcomes is called the 
sample space of the experiment and is denoted by S. Thus S is a finite set with, say, 
n elements: 

S = {S1' 82, ... ,sn}. 

When [ is carried out, each Si has a 1 in n chance of occuring, and so we say that the 
probability of the outcome 8i is l/n, written 

1 
Prob(8i) = -, (i = 1,2, ... ,n). 

n 

An event is just a subset E of the sample space S, but it is usually given descriptively 
and not by actually listing all the outcomes in E. 

Example. Consider the experiment [ of tossing three coins, where each of the coins 
lands showing either Heads (H) or Tails (T). Since each coin can come up either H or 
T, the sample space of this experiment is the set S of consisting of the eight ordered 
pairs 

(H,H,H), (H,H, T), (H,T,H), (H,T,T), 

(T, H, H), (T, H, T), (T, T, H), (T, T, T), 

where, for instance, (H, T, H) means that the first coin comes up as H, the second 
coin comes up as T, and the third coin comes up as H. Let E be the event that at 
least two coins come up H. Then 

E = {(H, H, H), (H,H, T), (H,T,H), (T,H,H)}, 

Since E consists of four outcomes out of a possible eight outcomes, it is natural to 
assign to E the probability 4/8 = 1/2. This is made more precise in the next definition. 
o 

The probability of an event E in an experiment with a sample space S is defined 
to be the proportion of outcomes in S that belong to E; thus, 

lEI 
Prob(E) = 1ST' 

11 As opposed to the continuous probability that is calculus based. 
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By this definition, the probability of an event E satisfies 

° ~ Prob(E) ~ 1, 

where Prob(E) = ° if and only if E is the empty event 0 (the impossible event) and 
Prob(E) = 1 if and only if E is the entire sample space S (the guaranteed event). 
Thus to compute the probability of an event E, we have to make two counts: count 
the number of outcomes in the sample space S and count the number of outcomes in 
the event E. 

Example. We consider an ordinary deck of 52 cards with each card having one of 13 
ranks 1,2, ... , 10, 11, 12, 13 and four suits Clubs (C), Diamonds (D), Hearts (H), and 
Spades (S). Usually, 11 is denoted as a Jack, 12 as a Queen, and 13 as a King. In 
addition, 1 has two roles: either as a 1 (low; below the 2) or as an Ace (high; above the 
King).12 Consider the experiment £ of drawing a card at random. Thus the sample 
space S is the set of 52 cards, each of which is assigned a probability of 1/52. Let E 
be the event that the card drawn is a 5. Thus 

E = {(C, 5), (D, 5), (H, 5), (S, 5)}. 

Since lEI = 4 and lSI = 52, Prob(E) = 4/52 = 1/13. o 

Example. Let n be a positive integer. Suppose we choose a sequence iI, i2,' .. , in 
of integers between 1 and n at random. (1) What is the probability that the chosen 
sequence is a permutation of 1,2, ... ,n? (2) What is the probability that the sequence 
contains exactly n - 1 different integers? 

The sample space S is the set of all possible sequences of length n each of whose 
terms is one of the integers 1,2, ... ,n. Hence lSI = nn because there are n choices for 
each of the n terms. 

(1) The event E that the sequence is a permutation satisfies lEI = n!. Hence 

n' Prob(E) = --...:. 
nn 

(2) Let F be the event that the sequence contains exactly n-l different integers. A 
sequence in F contains one repeated integer, and exactly one of the integers 1,2, ... ,n 
is missing in the sequence (so n - 2 other integers occur in the sequence). There are 
n choices for the repeated integer, and then n - 1 choices for the missing integer. The 

12For those who are either unfamiliar with card games or don't like them, here is a more abstract 
description: An ordinary deck of 52 cards is, abstractly, just the collection of the 52 ordered pairs 
(x, y), where x is one of four "suits" C, D, H, and S, and y is one of the thirteen ranks 1,2, ... ,13, 
where the smallest rank 1 can also be used as the largest rank (so we can think of a circle with 1 
following 13). 
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places for the repeated integer can be chosen in G) ways; the other n - 2 integers can 
be put in the remaining n - 2 places in (n - 2)! ways. Hence 

and 

( n) n!2 
IFI = n(n - 1) 2 (n - 2)! = 2!(n _ 2)!' 

n!2 
Prob(F) = 2!(n _ 2)!nn 

o 

Example. Five identical rooks are placed at random in nonattacking positions on an 
8-by-8 board. What is the probability that the rooks are both in rows 1,2,3,4,5 and 
in columns 4,5,6,7, 8? 

Our sample space S consist of all placements of five nonattacking rooks on the 
board and so 

( 8)2 8!2 
lSI = 5 . 5! = 3!25!· 

Let E be the event that the five rooks are in the rows and columns prescribed above. 
Then E has size 5!, since there are 5! ways to place five nonattacking rooks on a 5-by-5 
board. Hence we have 

5!23!2 1 
Prob(E) = -,2- = -3 3 . 

8. 1 6 
o 

Example. This is a multipart example relating to the card game Poker played with 
an ordinary deck of 52 cards. A poker hand consists of 5 cards. Our experiment 
£ is to select a poker hand at random. Thus the sample space S consists of the 
(552) = 2, 598, 960 possible poker hands and each has the same chance as being selected, 
namely 1/2,598,960. 

(1) Let E be the event that the poker hand is a full house; that is, three cards of one 
rank and two cards of a different rank (suit doesn't matter). To compute the 
probability of E, we need to calculate lEI. How do we determine the number of 
full houses? We use the multiplication principle thinking of four tasks: 

(a) Choose the rank with three cards. 

(b) Choose the three cards of that rank i.e., their 3 suits. 

(c) Choose the rank with two cards. 

(d) Choose the two cards of that rank i.e., their 2 suits. 

The number of ways of carrying these tasks out is as follows: 

(a) 13 
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(b) (~) = 4 

(c) 12 (after choice (a), 12 ranks remain) 

(d) @ = 6 

Thus lEI = 13·4·12·6 = 3,744 and 

Pr(E) = 3,744 i'::j 0.0014. 
2,598,960 
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(2) Let E be the event that the poker· hand is a straight; that is, five cards of 
consecutive ranks (suit doesn't matter), keeping in mind that the 1 is also the 
Ace. To compute lEI, we think of two tasks: 

(a) Choose the five consecutive ranks. 

(b) Choose the suit of each of the ranks. 

The number of ways of carrying out these two tasks is as follows: 

(a) 10 (the straights can begin with any of 1,2 .... , 10) 

(b) 45 (four possible suits for each rank) 

Thus lEI = 10.45 = 10,240 and 

10,240 
Pr(E) = 2,598,960 i'::j 0.0039. 

(3) Let E be the event that the poker hand is a straight flush; that is, five cards of 
consecutive ranks, all of the same suit. Using the reasoning in (b), we see that 
lEI = 10·4 = 40 and 

40 
Pr(E) = 2,598,960 i'::j 0.0000154. 

(4) Let E be the event that the poker hand consists of exactly two pairs; that is, two 
cards of one rank, two cards of a different rank, and one card of an additionally 
different rank. Here we have to be a littl€ careful since the first two mentioned 
ranks appear in the same way (as opposed to the full house, where there were 
three cards of one rank and two cards of a different rank). To compute lEI in 
this case, W€ think of three tasks (not si~ if we had imitated (1)): 

(a) Choose the two ranks occuring in the two pairs. 

(b) Choose the two suits for each of these two tanks. 

(c) Choose the remaining card. 
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The number of ways of carrying out these three tasks is as follows: 

(a) Ci) = 78 

(b) (~)(~) = 6 . 6 = 36 

(c) 44 

Thus lEI = 78 . 36 . 44 = 123,552, and 

123,552 
Pr(E) = 2,598,960 "'" 0.048, 

almost a 1 in 20 chance. 

(5) Let E be the event that the poker hand contains at least one Ace. Here we 
use our subtraction principle. Let E = S \ E be the complementary event of a 
poker hand with no aces. Then lEI = (~8) = 1,712,304. Thus lEI = lSI -lEI = 
2,598,960 - 1,712,304 = 886,656, and 

) 2,598,960 - 1,712,304 
Pr(E = 

2,598,960 

1 _ 1,712,304 
2,598,960 

886,656 
2,598,960 

~ 0.34. 

o 

As we see in the calculation in (5), our subtraction principle in terms of probability 
becomes 

Pr(E) = 1 - Pr(E), equivalently, Pr(E) = 1 - Pr(E). 

More probability calculations are given in the Exercises. 

2.7 Exercises 

1. For each of the four subsets of the two properties (a) and (b), count the number 
of four-digit numbers whose digits are either 1,2,3,4, or 5: 

(a) The digits are distinct. 

(b) The number is even. 
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Note that there are four problems here: 0 (no further restriction), {a} (property 
(a) holds), {b} (property (b) holds), {a,b} (both properties (a) and (b) hold). 

2. How many orderings are there for a deck of 52 cards if all the cards of the same 
suit are together? 

3. In how many ways can a poker hand (five cards) be dealt? How many different 
poker hands are there? 

4. How many distinct positive divisors does each of the following numbers have? 

(a) 34 x 52 X 76 x 11 

(b) 620 

(c) 1010 c 

5. Determine the largest power of 10 that is a factor of the following numbers 
(equivalently, the number of terminal Os, using ordinary base 10 representation): 

(a) 50! 

(b) 1000! 

6. How many integers greater than 5400 have both of the following properties? 

(a) The digits are distinct. 

(b) The digits 2 and 7 do not occur. 

7. In how many ways can four men and eight women be seated at a round table if 
there are to be two women between consecutive men around the table? 

8. In how many ways can six men and six women be seated at a round table if the 
men and women are to sit in alternate seats? 

9. In how many ways can 15 people be seated at a round table if B refuses to sit 
next to A? What if B only refuses to sit on A's right? 

10. A committee of five people is to be chosen from a club that boasts a membership 
of 10 men and 12 women. How many ways can the committee be formed if it is 
to contain at least two women? How many ways if, in addition, one particular 
man and one particular woman who are members of the club refuse to serve 
together on the committee? 

11. How many sets of three integers between 1 and 20 are possible if no two consec­
utive integers are to be in a set? 
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12. A football team of 11 players is to be selected from a set of 15 players, 5 of 
whom can play only in the backfield, 8 of whom can play only on the line, and 
2 of whom can play either in the backfield or on the line. Assuming a football 
team has 7 men on the line and 4 men in the backfield, determine the number 
of football teams possible. 

13. There are 100 students at a school and three dormitories, A, B, and C, with 
capacities 25, 35 and 40, respectively. 

(a) How many ways are there to fill the dormitories? 

(b) Suppose that, of the 100 students, 50 are men and 50 are women and that 
A is an all-men's dorm, B is an all-women's dorm, and C is co-ed. How 
many ways are there to fill the dormitories? 

14. A classroom has two rows of eight seats each. There are 14 students, 5 of whom 
always sit in the front row and 4 of whom always sit in the back row. In how 
many ways can the students be seated? 

15. At a party there are 15 men and 20 women. 

(a) How many ways are there to form 15 couples consisting of one man and 
one woman? 

(b) How many ways are there to form 10 couples consisting of one man and 
one woman? 

16. Prove that 

by using a combinatorial argument and not the values of these numbers as given 
in Theorem 3.3.1. 

17. In how many ways can six indistinguishable rooks be placed on a 6-by-6 board 
so that no two rooks can attack one another? In how many ways if there are 
two red and four blue rooks? 

18. In how many ways can two red and four blue rooks be placed on an 8-by-8 board 
so that no two rooks can attack one another? 

19. We are given eight rooks, five of which are red and three of which are blue. 

(a) In how many ways can the eight rooks be placed on an 8-by-8 chessboard 
so that no two rooks can attack one another? 

(b) In how many ways can the eight rooks be placed on a 12-by-12 chessboard 
so that no two rooks can attack one another? 
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20. Determine the number of circular permutations of {O, 1,2, ... ,9} in which 0 and 
9 are not opposite. (Hint: Count those in which 0 and 9 are opposite.) 

21. How many permutations are there of the letters of the word ADDRESSES? How 
many 8-permutations are there of these nine letters? 

22. A footrace takes place among four runners. If ties are allowed (even all four 
runners finishing at the same time), how many ways are there for the race to 
finish? 

23. Bridge is played with four players and an ordinary deck of 52 cards. Each player 
begins with a hand of 13 cards. In how many ways can a bridge game start? 
(Ignore the fact that bridge is played in partnerships.) 

24. A roller coaster has five cars, each containing four seats, two in front and two 
in back. There are 20 people ready for a ride. In how many ways can the ride 
begin? What if a certa:in two people want to sit in different cars? 

25. A ferris wheel has five cars, each containing four seats in a row. There are 20 
people ready for a ride. In how many ways can the ride begin? What if a certain 
two people want to sit in different cars? 

26. A group of mn people are to be arranged into m teams each with n players. 

(a) Determine the number of ways if each team has a different name. 

(b) Determine the number of ways if the teams don't have names. 

27. In how many ways can five indistinguishable rooks be placed on an 8-by-8 chess­
board so that no rook can attack another and neither the first row nor the first 
column is empty? 

28. A secretary works in a building located nine blocks east and eight blocks north 
of h.is home. Every day he walks 17 blocks to work. (See the map that follows.) 

(a) How many different routes are possible for him? 

(b) How many different routes are possible if the one block in the easterly 
direction, which begins four blocks east and three blocks north of his home, 
is under water (and he can't swim)? (Hint: Count the routes that use the 
block under water.) 
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.1 

29. Let S be a multiset with repetition numbers nI, n2, .. . , nk, where nI = 1. Let 
n = n2 + ... + nk. Prove that the number of circular permutations of S equals 

n! 

30. We are to seat five boys, five girls, and one parent in a circular arrangement 
around a table. In how many ways can this be done if no boy is to sit next to a 
boy and no girl is to sit next to a girl? What if there are two parents? 

31. In a soccer tournament of 15 teams, the top three teams are awarded gold, silver, 
and bronze cups, and the last three teams are dropped to a lower league. We 
regard two outcomes of the tournament as the same if the teams that receive 
the gold, silver, and bronze cups, respectively, are identical and the teams which 
drop to a lower league are also identical. How many different possible outcomes 
are there for the tournament? 

32. Determine the number of ll-permutations of the multiset 

S = {3· a,4· b,5· c}. 

33. Determine the number of lO-permutations of the multiset 

S = {3· a,4· b,5· c}. 

34. Determine the number of ll-permutations of the multiset 

S = {3 . a, 3· b, 3· c, 3· d}. 

35. List all 3-combinations and 4-combinations of the multiset 

{2. a, 1· b, 3· c}. 
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36. Determine the total number of combinations (of any size) of a multiset of objects 
of k different types with finite repetition numbers nl, n2, . .. ,nk, respectively. 

37. A bakery sells six different kinds of pastry. If the bakery has at least a dozen of 
each kind, how many different options for a dozen of pastries are there? What 
if a box is to contain at least one of each kind of pastry? 

38. How many integral solutions of 

satisfy Xl 2: 2, X2 2: 0, X3 2: -5, and X4 2: 8? 

39. There are 20 identical sticks lined up in a row occupying 20 distinct places as 
follows: 

11111111111111111111· 

Six of them are to be chosen. 

(a) How many choices are there? 

(b) How many choices are there if no two of the chosen sticks can be consecu­
tive? 

(c) How many choices are there if there must be at least two sticks between 
each pair of chosen sticks? 

40. There are n sticks lined up in a row, and k of them are to be chosen. 

(a) How many choices are there? 

(b) How many choices are there if no two of the chosen sticks can be consecu­
tive? 

(c) How many choices are there if there must be at least I sticks between each 
pair of chosen sticks? 

41. In how many ways can 12 indistinguishable apples and 1 orange be distributed 
among three children in such a way that each child gets at least one piece of 
fruit? 

42. Determine the number of ways to distribute 10 orange drinks, 1 lemon drink, 
and 1 lime drink to four thirsty students so that each student gets at least one 
drink, and the lemon and lime drinks go to different students. 

43. Determine the number of r-combinations of the multiset 
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44. Prove that the number of ways to distribute n different objects among k children 
equals kn. 

45. Twenty different books are to be put on five book shelves, each of which holds 
at least twenty books. 

(a) How many different arrangements are there if you only care about the 
number of books on the shelves (and not which book is where)? 

(b) How many different arrangements are there if you care about which books 
are where, but the order of the books on the shelves doesn't matter? 

(c) How many different arrangements are there if the order on the shelves does 
matter? 

46. (a) There is an even number 2n of people at a party, and they talk together 
in pairs, with everyone talking with someone (so n pairs). In how many 
different ways can the 2n people be talking like this? 

(b) Now suppose that there is an odd number 2n + 1 of people at the party 
with everyone but one person talking with someone. How many different 
pairings are there? 

47. There are 2n + 1 identical books to be put in a bookcase with three shelves. In 
how many ways can this be done if each pair of shelves together contains more 
books than the other shelf? 

48. Prove that the number of permutations of m A's and at most n B's equals 

( m+n+ 1). 
m+1 

49. Prove that the number of permutations of at most m A's and at most n B's 
equals 

( m +n+ 2) _ 1. 
m+1 

50. In how many ways can five identical rooks be placed on the squares of an 8-by-8 
board so that four of them form the corners of a rectangle with sides parallel to 
the sides of the board? 

51. Consider the multiset {n . a, 1, 2,3, ... , n} of size 2n. Determine the number of 
its n-combinations. 

52. Consider the multiset {n· a, n . b, 1, 2, 3, ... ,n + I} of size 3n + 1. Determine the 
number of its n-combinations. 



2.7. EXERCISES 67 

53. Find a one-to-one correspondence between the permutations of the set {l, 2, ... ,n} 
and the towers Ao C Al C A2 C .. , C An where IAkl = k for k = 0, 1,2, ... ,n. 

54. Determine the number of towers of the form 0 t;;; A ~ B t;;; {l, 2, ... ,n}. 

55. How many permutations are there of the letters in the words 

(a) TRISKAIDEKAPHOBIA (fear of the number 13)? 

(b) FLOCCINAUCINIHILIPILIFICATION (estimating something as worth­
less)? 

(c) PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS (a lung disease 
caused by inhaling fine particles of silica)? (This word is, by some accounts, 
the longest word in the English language.) 

(d) DERMATOGLYPHICS (skin patterns or the study of them)? (This word 
is the (current) longest word in the English language that doesn't repeat a 
letter; another word of the same length is UNCOPYRIGHTABLE.13) 

56. What is the probability that a poker hand contains a flush (that is, five cards of 
the same suit)? 

57. What is the probability that a poker hand contains exactly one pair (that is, a 
poker hand with exactly four different ranks)? 

58. What is the probability that a poker hand contains cards of five different ranks 
but does not contain a flush or a straight? 

59. Consider the deck of 40 cards obtained from an ordinary deck of 52 cards by 
removing the jacks (11s), queens (12s), and kings (13s), where now the 1 (ace) 
can be used to follow a 10. Compute the probabilities for the various poker 
hands described in the example in Section 3.6. 

60. A bagel store sells six different kinds of bagels. Suppose you choose 15 bagels at 
random. What is the probability that your choice contains at least one bagel of 
each kind? If one of the kinds of bagels is Sesame, what is the probability that 
your choice contains at least three Sesame bagels? 

61. Consider an 9-by-9 board and nine rooks of which five are red and four are blue. 
Suppose you place the rooks on the board in nonattacking positions at random. 
What is the probability that the red rooks are in rows 1,3,5,7, 9? What is 
the probability that the red rooks are both in rows 1,2,3,4,5 and in columns 
1,2,3,4,5? 

13 Anu Garg: The Dord, the Diglot, and An Avocado or Two, Plume, Penguin Group, New York 
(2007). 
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62. Suppose a poker hand contains seven cards rather than five. Compute the prob-
abilities of the following poker hands: 

(a) a seven-card straight 

(b) four cards of one rank and three of a different rank 

(c) three cards of one rank and two cards of each of two different ranks 

(d) two cards of each of three different ranks, and a card of a fourth rank 

(e) three cards of one rank and four cards of each of four different ranks 

(f) seven cards each of different rank 

63. Four (standard) dice (cubes with 1, 2,3, 4, 5, 6, respectively, dots on their six 
faces), each of a different color, are tossed, each landing with one of its faces up, 
thereby showing a number of dots. Determine the following probabilities: 

(a) The probability that the total number of dots shown is 6 

(b) The probability that at most two of the dice show exactly one dot 

(c) The probability that each die shows at least two dots 

(d) The probability that the four numbers of dots shown are all different 

(e) The probability that there are exactly two different numbers of dots shown 

64. Let n be a positive integer. Suppose we choose a sequence iI, i2 , •.. , in of integers 
between 1 and n at random. 

(a) What is the probability that the sequence contains exactly n - 2 different 
integers? 

(b) What is the probability that the sequence contains exactly n - 3 different 
integers? 



Chapter 3 

The Pigeonhole Principle 

We consider in this chapter an important, but elementary, combinatorial principle 
that can be used to solve a variety of interesting problems, often with surprising 
conclusions. This principle is known under a variety of names, the most common of 
which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox 
principleJ Formulated as a principle about pigeonholes, it says roughly that if a lot 
of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be 
occupied by two or more pigeons. A more precise statement is given below. 

3.1 Pigeonhole Principle: Simple Form 

The simplest form of the pigeonhole principle is the following fairly obvious assertion. 

Theorem 3.1.1 If n + 1 objects are distributed into n boxes, then at least one box 
contains two or more of the objects. 

Proof. The proof is by contradiction. If each of the n boxes contains at most one 
{)f the objects, then the total number of objects is at most 1 + 1 + ... + l(n Is) = n. 
Since we distribute n + 1 objects, some box contains at least two of the objects. 0 

Notice that neither the pigeonhole principle nor its proof gives any help in finding 
a box that contains two or more of the objects. They simply assert that if we examine 
each of the boxes, we will come upon a box that contains more than one object. The 
pigeonhole principle merely guarantees the existence of such a box. Thus, whenever 
the pigeonhole principle is applied to prove the existence of an arrangement or some 
phenomenon, it will give no indication of how to construct the arrangement or find an 
instance of the phenomenon other than to examine all possibilities. 

'The word shoebox is a mistranslation and folk etymology for the German Schubfach, which means 
"pigeonhole" (in a desk). 
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Notice also that the conclusion of the pigeonhole principle cannot be guaranteed if 
there are only n (or fewer) objects. This is because we may put a different object in 
each of the n boxes. Of course, it is possible to distribute as few as two objects among 
the boxes in such'a way that a box contains two objects, but there is no guarantee that 
a box will contain two or more objects unless we distribute at least n + 1 objects. The 
pigeonhole principle asserts that, no matter how we distribute n + 1 objects among n 
boxes, we cannot avoid putting two objects in the same box. . 

Instead of putting objects into boxes, we may think of coloring each object with 
one of n colors. The pigeonhole prinGiple asserts that if n + 1 objects are colored with 
n colors, then two objects have the salIi.e 'color. 

We begin with two simple applications: 

Application 1. Among 13 people there are 2 who have their birthdays in the same 
month, 0 

Application 2, There are n married couples. How many of the 2n people must be 
selected to guarantee that a married couple has been selected? 

To apply the pigeonhole principle in this case, think of n boxes, one corresponding 
to each of the n couples. If we select n + 1 people and put each of them in the box 
corresponding to the couple to which they belong, then some box contains two people; 
that is, we have selected a married couple. Two of the ways to select n people without 
getting a married couple are to select all the husbands or all the wives. Therefore, 
n + 1 is the smallest number that will guarantee a married couple has been selected. 
o 

There are other principles related to the pigeonhole principle that are worth stating 
formally: 

• If n objects are put into n boxes and no box is empty, then each box contains 
exactly one object. 

• If n objects are put into n boxes and no box gets more than one object, then each 
box has an object in it. 

Referring to Application 2, if we select n people in such a way that we have selected 
at least one person from each married couple, then we have selected exactly one person 
from each couple. Also, if we select n people without selecting more than one person 
from each married couple, then we have selected at least one (and, hence, exactly one) 
person from each couple. 

More abstract formulations of the three principles enunciated thus far are as fol­
lows: 

Let X and Y be finite sets and let f : X -> Y be a function from X to Y. 
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• If X has more elements than Y, then f is not one-to-one. 

• If X and Y have the same number of elements and f is onto, then f is one-to­
one. 

• If X and Y have the same number of elements and f is one-to-one, then f is 
onto. 

Application 3. Given m integers aI, a2, ... ,am, there exist integers k and I with 
o S k < ISm such that ak+1 + ak+2 + ... + al is divisible by m. Less formally, there 
exist consecutive a's in the sequence aI, a2, . .. ,am whose sum is divisible by m. 

To see this, consider the m sums 

If any of these sums is divisible by m, then the conclusion holds. Thus, we may 
suppose that each of these sums has a nonzero remainder when divided by m, and so 
a remainder equal to one of 1,2, ... ,m - 1. Since there are m sums and only m - 1 
remainders, two of the sums have the same remainder when divided by m. Therefore, 
there are integers k and I with k < I such that al + a2 + ... + ak and al + a2 + ... + al 

have the same remainder r when divided by m: 

al + a2 + ... + ak = bm + r, al + a2 + ... + al = em + r. 

Subtracting, we find that ak+l + ... + al = (e - b)m; thus, ak+1 + ... + al is divisible 
bym. 

To illustrate this argument,2 let m = 7 and let our integers be 2,4,6,3,5,5, and 
6. Computing the sums as before, we get 2,6,12,15,20, 25, and 31 whose remainders 
when divided by 7 are, respectively, 2,6,5, 1, 6,4, and 3. We have two remainders 
equal to 6, and this implies the conclusion that 6 + 3 + 5 = 14 is divisible by 7. 0 

Application 4. A chess master who has 11 weeks to prepare for a tournament decides 
to play at least one game every day but, to avoid tiring himself, he decides not to play 
more than 12 games during any calendar week. Show that there exists a succession of 
(consecutive) days during which the chess master will have played exactly 21 games. 

Let al be the number of games played on the first day, a2 the total number of games 
played on the first and second days, a3 the total number of games played on the first, 
second, and third days, and so on. The sequence of numbers al, a2, ... ,an is a strictly 
increasing sequence3 since at least one game is played each day. Moreover, al ;::: 1, 

2The argument actually contains a nice algorithm, whose validity relies on the pigeonhole principle, 
for finding the consecutive a's, which is more efficient than examining all sums of consecutive a's. 

3Each term of the sequence is larger than the one that precedes it. 
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and since at most 12 games are played during anyone week, a77 ~ 12 x 11 = 132.4 
Hence, we have 

1 ~ al < a2 < ... < a77 ~ 132. 

The sequence al + 21, a2 + 21, ... , an + 21 is also a strictly increasing sequence: 

22 ~ al + 21 < a2 + 21 < ... < a77 + 21 ~ 132 + 21 = 153. 

Thus each of the 154 numbers 

is an integer between 1 and 153. It follows that two of them are equal. Since no 
two of the numbers aI, a2, ... , an are equal and no two of the numbers al + 21, a2 + 
21, ... , a77 + 21 are equal, there must be an i and a j such that ai = aj + 21. Therefore, 
on days j + 1, j + 2, ... , i the chess master played a total of 21 games. 0 

Application 5. From the integers 1,2, ... ,200, we choose 101 integers. Show that, 
among the integers chosen, there are two such that one of them is divisible by the 
other. 

By factoring out as many 2s as possible, we see that any integer can be written in 
the form 2k x a, where k ;::: 0 and a is odd. For an integer between 1 and 200, a is one 
of the 100 numbers 1,3,5, ... ,199. Thus among the 101 integers chosen, there are two 
having a's of equal value when written in this form. Let these two numbers be 2T x a 
and 28 x a. If r < s, then the second number is divisible by the first. If r > s, then 
the first is divisible by the second. 0 

Let us note that the result of Application 5 is the best possible in the sense that 
we may select 100 integers from 1,2, ... ,200 in such a way that no one of the selected 
integers is divisible by any other (for instance, the 100 integers 101,102, ... , 199,200). 

We conclude this section with another application from number theory. First, we 
recall that two positive integers m and n are said to be relatively prime if their greatest 
common divisor5 is 1. Thus 12 and 35 are relatively prime, but 12 and 15 are not 
since 3 is a common divisor of 12 and 15. 

Application 6. (Chinese remainder theorem) Let m and n be relatively prime positive 
integers, and let a and b be integers where 0 ~ a ~ m - 1 and 0 ~ b ~ n - 1. Then 
there is a positive integer x such that the remainder when x is divided by m is a, 
and the remainder when x is divided by n is b; that is, x can be written in the form 
x = pm + a and also in the form x = qn + b for some integers p and q. 

4This is the only place where the assumption that at most 12 games are played during any of the 
11 calendar weeks is used. Thus, this assumption could be replaced by the assumption that at most 
132 games are played in 77 days. 

5 Also called greatest common factor or highest common factor. 
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To show this, we consider the n integers 

a,m + a,2m +a, ... , (n -l)m +a. 

Each of these integers has remainder a when divided by m. Suppose that two of them 
had the same remainder r when divided by n. Let the two numbers be im + a and 
jm + a, where 0 :S i < j :S n - 1. Then there are integers qi and qj such that 

im+ a = qin+r 

and 

jm + a = qjn + r. 
Subtracting the first equation from the second, we get 

(j - i)m = (qj - qi)n. 

The preceding equation tells us that n is a factor of the number (j - i)m. Since n has 
no common factor other than 1 with m, it follows that n is a factor of j - i. However, 
o :S i < j :S n - 1 implies that 0 < j - i :S n - 1, and hence n cannot be a factor of 
j - i. This contradiction arises from our supposition that two of the numbers 

a,m + a,2m + a, ... , (n - l)m +a 

had the same remainder when divided by n. We conclude that each of these n numbers 
has a different remainder when divided by n. By the pigeonhole principle, each of the 
n numbers 0, 1, ... , n - 1 occurs as a remainder; in particular, the number b does. Let 
p be the integer with 0 :S p :S n - 1 such that the number x = pm + a has remainder 
b when divided by n. Then, for some integer q, 

x = qn + b. 

So x = pm + a and x = qn + b, and x has the required properties. o 

The fact that a rational number alb has a decimal expansion that eventually 
repeats is a consequence of the pigeonhole principle, and we leave a proof of this fact 
for the Exercises. 

For further applications we need a stronger form of the pigeonhole principle. 

3.2 Pigeonhole Principle: Strong Form 

The following theorem contains Theorem 3.1.1 as a special case: 



74 CHAPTER 3. THE PIGEONHOLE PRINCIPLE 

Theorem 3.2.1 Let ql, q2, . .. ,qn be positive integers. If 

ql + q2 + ... + qn - n + 1 

objects are distributed into n boxes, then either the first box contains at least ql objects, 
or the second box contains at least q2 objects, ... , or the nth box contains at least qn 

objects. 

Proof. Suppose that we distribute ql + q2 + ... + qn - n + 1 objects among n boxes. 
If for each i = 1,2, ... , n the ith box contains fewer than qi objects, then the total 
number of objects in all boxes does not exceed 

Since this number is one less than the number of objects distributed, we conclude that 
for some i = 1,2, ... ,n the ith box contains at least qi objects. 0 

Notice that it is possible to distribute ql + q2 + ... + qn - n objects among n boxes 
in such a way that for no i = 1,2, ... , n is it true that the ith box contains qi or more 
objects. We do this by putting ql - 1 objects into the first box, q2 - 1 objects into the 
second box, and so on. 

The simple form of the pigeonhole principle is obtained from the strong form by 
taking ql = q2 = ... = qn = 2. Then 

ql + q2 + ... + qn - n + 1 = 2n - n + 1 = n + 1. 

In terms of coloring, the strong form of the pigeonhole principle asserts that if each of 
ql + q2 + ... + qn - n + 1 objects is assigned one of n colors, then there is an i such 
that there are (at least) qi objects of the ith color. 

In elementary mathematics the strong form of the pigeonhole principle is most 
often applied in the special case when ql, q2, ... ,qn are all equal to some integer r. We 
formulate this special case as a corollary. 

Corollary 3.2.2 Let nand l' be positive integers. If n(r -1) + 1 objects are distributed 
into n boxes, then at least one of the boxes contains l' or more of the objects. 

Another way to formulate the assertion in this corollary is as an averaging principle: 

If the average of n nonnegative integers ml, m2, ... ,mn is greater than l' - 1, 
that is, 

ml + m2 + ... + mn 1 
--''----=-----.:.: > l' - , 

n 
then at least one of the integers is greater than or equal to r. 
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The connection between the assertion in Corollary 3.2.2 and this averaging prin­
ciple is seen by taking n(r - 1) + 1 objects and putting them into n boxes. For 
i = 1,2, ... , n, let mi be the number of objects in the ith box. Then the average of 
the numbers ml, m2, ... , mn is 

ml + m2 + ... + mn = n(r - 1) + 1 = (r _ 1) + .!.. 
n n n 

Since this average is greater than r - 1, one of the integers mi is at least r. In other 
words, one of the boxes contains at least r objects. 

A different averaging principle is the following: 

If the average of n nonnegative integers ml, m2,.' ., mn is less than r + 1, that 
is, 

ml +m2+ ... +mn 
---''----=----~ < r + 1, 

n 
then at least one of the integers is less than r + 1. 

Application 7. A basket of fruit is being arranged out of apples, bananas, and 
oranges. What is the smallest number of pieces of fruit that should be put in the 
basket to guarantee that either there are at 'least eight apples or at least six bananas 
or at least nine oranges? 

By the strong form of the pigeonhole principle, 8 + 6 + 9 - 3 + 1 = 21 pieces of fruit, 
no matter how selected, will guarantee a basket of fruit with the desired properties. 
But 7 apples, 5 bananas, and 8 oranges, a total of 20 pieces of fruit, will not. 0 

The following is yet another averaging principle: 

• If the average of n nonnegative integers ml, m2, ... , mn is at least equal to r, 
then at least one of the integers ml, m2, ... , mn satisfies mi 2: r. 

Application 8. Two disks, one smaller than the other, are each divided into 200 
congruent sectors.6 In the larger disk, 100 of the sectors are chosen arbitrarily and 
painted red; the other 100 sectors are painted blue. In the smaller disk, each sector is 
painted either red or blue with no stipulation on the number of red and blue sectors. 
The small disk is then placed on the larger disk so that their centers coincide. Show 
that it is possible to align the two disks so that the number of sectors of the small disk 
whose color matches the corresponding sector of the large disk is at least 100. 

To see this, we observe that if the large disk is fixed in place, there are 200 possible 
positions for the small disk such that each sector of the small disk is contained in a 
sector of the large disk. We first count the total number of color matches over all of 

6Two hundred equal slices of a pie. 
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the 200 possible positions of the disks. Since the large disk has 100 sectors of each 
of the two colors, each sector of the small disk will match in color the corresponding 
sector of the large disk in exactly 100 of the 200 possible positions. Thus, the total 
number of color matches over all the positions equals the number of sectors of the 
small disk multiplied by 100, and this equals 20,000. Therefore, the average number 
of color matches per position is 20,000/200=100. So there must be some position with 
at least 100 color matches. 0 

We next present an application that was first discovered by Erdos and Szekeres.7 

Application 9. Show that every sequence aI, a2, ... ,an2+1 of n 2 + 1 real numbers 
contains either an increasing subsequence of length n + 1 or a decreasing subsequence 
of length n + 1. 

We first clarify the notion of a subsequence. If bl , b2, . .. ,bm is a sequence, then 
bil , bi2 , ... ,bik is a subsequence, provided that 1 :'S il < i2 < ... < ik :'S m. Thus 
b2, b4 , b5 , b6 is a subsequence of bl , b2, .. . ,b8 , but b2, b6, b5 is not. The subsequence 
bil , bi2 ,· .. ,bik is increasing (more properly not decreasing) if bi, :'S bi2 :'S ... :'S bik and 
decreasing if bil 2 bi2 2 ... 2 bik· 

We now prove the assertion. We suppose that there is no increasing subsequence 
of length n + 1 and show that there must be a decreasing subsequence oflength n + 1. 
For each k = 1,2, ... ,n2 + 1, let mk be the length of the longest increasing subsequence 
that begins with ak. Suppose mk :'S n for each k = 1,2, ... ,n2 + 1, so that there is no 
increasing subsequence of length n + 1. Since mk 2 1 for each k = 1,2, ... ,n2 + 1, the 
numbers ml, m2, ... , m n2+1 are n 2 + 1 integers each between 1 and n. By the strong 
form of the pigeonhole principle, n + 1 of the numbers ml, m2, . .. , m n2+1 are equal. 
Let 

mk, = mk2 = ... = mkn+l , 

where 1 :'S kl < k2 < ... < kn+l :'S n2 + 1. Suppose that for some i = 1,2, ... , n, 
ak. < ak.+ l · Then, since ki < ki+1 we could take a longest increasing subsequence 
beginning with akHl and put ak, in front to obtain an increasing subsequence beginning 
with aki. Since this implies that mki > mk,+l' we conclude that aki 2 aki+!. Since 
this is true for each i = 1,2, ... ,n, we have 

and we conclude that ak" ak2' ... ,akn+l is a decreasing subsequence of length n + 1. 
o 

An amusing formulation of Application 9 is the following: Suppose that n2 + 1 
people are lined up shoulder to shoulder in a straight line. Then it is always possible 
to choose n + 1 of the people to take one step forward so that, going from left to right, 

7p. Erdos and A. Szekeres, A Combinatorial Problem in Geometry, Compositio Mathematica, 2 
(1935),463-470. 
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either their heights are increasing or their heights are decreasing. It is instructive to 
read through the proof of Application 9 in these terms. 

3.3 A Theorem of Ramsey 

We now discuss a profound and important generalization of the pigeonhole principle 
called Ramsey's theorem, after the English logician Frank Ramsey.8 

The following is the most popular and easily understood instance of Ramsey's 
theorem: 

Of six (or more) people, either there are three, each pair of whom are 
acquainted, or there are three, each pair of whom are unacquainted. 

One way to prove this result is to examine all the different ways in which six people 
can be acquainted and unacquainted. This is a tedious task, but nonetheless one that 
can be accomplished with a little fortitude. There is, however, a simple and elegant 
proof that avoids consideration of cases. Before giving this proof, we formulate the 
result more abstractly as 

(3.1) 

What does this mean? First, by K6 we mean a set of six objects (e.g., people) and 
all of the 15 (unordered) pairs of these objects. We can picture K6 by choosing six 
points in the plane, no three of which are collinear, and then drawing the edge or line 
segment connecting each pair of points (the edges now represent the pairs). In general, 
we mean by Kn a set of n objects and all of the pairs of these objects.9 Illustrations 
for Kn (n = 1,2,3,4,5) are given in Figure 3.1. Notice that the picture of K3 is that 
of a triangle, and we often refer to K3 as a triangle . 

• • • 

Figure 3.1 

We distinguish between acquainted pairs and unacquainted pairs by coloring edges 
red for acquainted and blue for unacquainted. "Three mutually acquainted people" 

8Frank Ramsey was born in 1903 and died in 1930 when he was not quite 27 years of age. In spite 
of his premature death, he laid the foundation for what is now called Ramsey theory. 

gIn later chapters, Kn is called the complete graph of order n. 
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now means "a K3 each of whose edges is colored red: a red K3." Similarly, three 
mutually unacquainted people form a blue- K 3 . We can now explain the expression 
(3.1): 

K6 -> K 3, K3 is the assertion that no matter how the edges of K6 are 
colored with the colors red and blue, there is always a red K3 (three of the 
original six points with the three line segments between them all colored red) 
or a blue K3 (three of the original six points with the three line segments 
between them all colored blue), 'in short, a monochromatic triangle. 

To prove that K6 -> K 3, K3, we argue as follows: Suppose the edges of K6 have 
been colored red or blue in any way. Consider one of the points p of K6. It meets 
five edges. Since each of these five edges is colored red or blue, it follows (from the 
strong form of the pigeonhole principle) that either at least three of them are colored 
red or at least three of them are colored blue. We suppose that three of the five edges 
meeting the point p are red. (If three are blue, a similar argument works.) Let the 
three red edges meeting p join p to points a, b, and c, respectively. Consider the edges 
which join a, b, c in pairs. If all of these are blue, then a, b, c determine a blue K 3. If 
one of them, say the one joining a and b, is red, then p, a, b determine a red K 3 . Thus, 
we are guaranteed either a red K3 or a blue K 3. 

We observe that the assertion K5 -> K3, K3 is false. This is because there is some 
way to color the edges of K5 without creating a red K3 or a blue K 3. This is shown 
in Figure 3.2, where the edges of the pentagon (the solid edges) are the red edges and 
the edges of the inscribed pentagram (the dashed edges) are the blue edges. 

Figure 3.2 

We now state and prove Ramsey's theorem, although still not in its full generality. 

Theorem 3.3.1 If m 2: 2 and n 2: 2 are integers, then there is a positive integer p 
such that 

In words, Ramsey's theorem asserts that given m and n there is a positive integer 
p such that, if the edges of Kp are colored red or blue, then either there is a red Km 
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or there is a blue Kn. The existence of either a red Km or a blue Kn is guaranteed, 
no matter how the edges of Kp are colored. If Kp ~ K m, K n, then Kq -+ Km, Kn for 
every integer q ~ p. The Ramsey number r(m, n) is the smallest integer p such that 
Kp -+ K m, Kn. Thus Ramsey's theorem asserts the existence of the number r(m, n). 
By interchanging the colors red and blue, we see that 

r(m, n) = r(n, m). 

r(3,3) = 6. 

The Ramsey numbers r(2, n) and r(m,2) are easy to determine. We show that 
r.(2,n) = n: 

r(2, n) ::; n: If we color the edges of Kn either red or blue, then either some edge is 
colored red (and so we have a red K2) or all edges are blue (and so we have a blue 
Kn). 

r(2, n) > n - 1: If we color all the edges of Kn - 1 blue, then we have neither a red K2 
nor a blue K n . 

In a similar way, we show that r(m, 2) = m. The numbers r(2, n) and r(m, 2) with 
m, n ~ 2 are the trivial Ramsey numbers. 

Proof of Theorem 3.3.1. We show the existence of the numbers r( m, n) by using 
(double) induction on both integer parameters m ~ 2 and n ~ 2. If m = 2, we know 
that r(2, n) = n, and if n = 2, we know that r( m, 2) = m. We now assume that m ~ 3 
and n ~ 3, and take as our inductive assumption that both r(m -1, n) and r(m, n-1) 
exist. Let p = r(m -l,n) +r(m,n -1). We will show that Kp ---t Km,Kn for this 
integer p. 

Suppose that the edges of Kp have been colored red or blue in any way. Consider 
one of the points x of Kn. Let Rx be the set of points that are joined to x by a red 
edge, and let Ex be the set of points that ar€ joined to x by a blue edge. Then 

IRxl + IExl = p - 1 = r(m - 1, n) + r(m, n - 1) - 1, 

implying that 

(1) IRxl ~ r(m -l,n), or 

(2) IExl ~ r(m,n-1). 

(If both (1) and (2) failed, then IRxl + IExl ::; rem - 1, n) - 1 + r(m, n -1) - 1 = p- 2, 
a contradiction.) 

Suppose that (1) holds. Let q = IRxl so that q ~ r(m - 1, n). Then considering 
Kq on the points of R x, we see that either there are m - 1 points of Kq (and so of 
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Kp) all of whose edges are colored red (that is, a red Km-l) or there are n points all 
of whose edges are colored blue (that is, a blue Kn). If the second possibility holds, 
we are done since we have a blue Kn. If the first possibility holds, we are also done 
since we can take the red K m - 1 and add the point x to it to obtain a red K m , since 
all edges joining x to the points in Rx are colored red. 

A similar argument works when (2) holds. We conclude by induction that the 
numbers r(m,n) exist for all integers m,n 2:: 2. 0 

Our proof of Theorem 3.3.1 not only shows that the Ramsey numbers r( m, n) exist, 
but also that they satisfy the inequality 

Let 

r(m,n) S r(m -l,n) + r(m,n - 1) (m,n 2:: 3). 

f(m,n) = (m+n-2) (m,n2::2). 
m-1 

Then, using Pascal's formula, we get that 

(m + n - 2) = (m + n - 3) + (m + n - 3) . 
m-1 m-1 m-2 

Hence 

f(m,n) = f(m -l,n) + f(m,n - 1) (m,n 2:: 3), 

(3.2) 

a relation similar to that of (3.2) but with equality: Since r(2,n) = n = f(2,n) and 
r(m,2) = m = f(m, 2), we conclude that the Ramsey number r(m, n) satisfies 

( ) (m + n - 2) _ (m + n - 2) r m,n < - . 
- m-1 n-1 

The following list lO contains known facts about nontrivial Ramsey numbers r(m, n): 

laThe paper "Small Ramsey Numbers" by S.P. Radziszowski, Electronic Journal of Combinatorics, 
Dynamic Survey #1, contains this and other information; see http://www.combinatorics.org. 
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r(3,3) = 6, 
r(3,4) = r(4,~) = 9, 
r(3,5) = r(5, 3) = 14, 
r(3,6) = r(6, 3) = 18, 
r(3,7) = r(7, 3) = 23, 
r(3,8) = r(8, 3) = 28, 
r(3,9) = r(9, 3) = 36, 
40 S r(3, 10) = r(lO, 3) S 43, 
r(4,4)=18, 
r(4,5) = r(5,4) = 25, 
35 S r(4,6) = r(6,4) S 41 
43 S r(5, 5) S 49 
58 S r(5,6) = r(6, 5) S 87 
102 S r(6, 6) S 165. 

Notice that the fact that r(3, 10) lies between 40 and 43 implies that 

and 
K39 -r K3, K lO · 

81 

Thus, there is no way to color the edges of K43 without creating either a red K3 or a 
blue K lO ; there is a way to color the edges of K39 without creating either a red K3 or a 
blue K lO , but neither of these conclusions is known to be true for K40, K 41 , and K42 . 
The assertion 43 S r(5, 5) S 49 implies that K59 --t K5, K5 and that there is a way to 
color the edges of K42 without creating a monochromatic K5. 

Ramsey's theorem generalizes to any number of colors. We give a very brief intro­
duction. If nl, n2, and n3 are integers greater than or equal to 2, then there exists an 
integer p such that 

In words, if each of the edges of Kp is colored red, blue, or green, then either there is a 
red Knl or a blue Kn2 or a green K n3 . The smallest integer p for which this assertion 
holds is the Ramsey number r(nl' n2, n3). The only nontrivial Ramsey number of this 
type that is known is 

r(3, 3, 3) = 17. 

Thus K17 --t K3, K3, K3 but K16 -r K3, K3,'K3 . The Ramsey numbersr(nl,n2, ... ,nk) 
are defined in a similar way, and Ramsey's theorem in its full generality for pairs asserts 
that these numbers exist; that is, there is an integer p such that 



82 CHAPTER 3. THE PIGEONHOLE PRINCIPLE 

There is an even more general form of Ramsey's theorem in which pairs (subsets 
of two elements) are replaced by subsets of t elements for some fixed integer t ~ 1. 
Let 

denote the collection of all subsets of t elements of a set of n elements. Generalizing 
our preceding notation, we obtain the general form of Ramsey's theorem: 

Given integers t ~ 2 and integers ql, q2, ... , qk ~ t, there exists an integer p such 
that 

K t -> Kt Kt K t , 
P ql ' q2 ' .•• , qk . 

In words, there exists an integer p such that if each of the t-element subsets of a p­
element set is assigned one of k colors CI, C2, ... , Ck, then either there are ql elements, 
all of whose t-element subsets are assigned the color CI, or there are q2 elements, all 
of whose t-element subsets are assigned the color C2, ... , or there are qk elements, all 
of whose t-element subsets are assigned the color Ck. The smallest such integer p is 
the Ramsey number 

Suppose t = 1. Then rl(ql,q2,'" ,qk) is the smallest number p such that, if the 
elements of a set of p elements are colored with one of the colors CI, C2, ... ,Ck, then 
either there are ql elements of color CI, or q2 elements of color C2, ... ,or qk elements 
of color Ck. Thus, by the strong form of the pigeonhole principle, 

This demonstrates that Ramsey's theorem is a generalization of the strong form of the 
pigeonhole principle. 

The determination of the general Ramsey numbers rt(ql, q2, .. . ,qk) is a difficult 
problem. Very little is known about their exact values. It is not difficult to see that 

and that the order in which ql, q2, ... ,qk are listed does not affect the value of the 
Ramsey number. 

3.4 Exercises 

1. Concerning Application 4, show that there is a succession of days during which 
the chess master will have played exactly k games, for each k = 1,2, ... ,21. 
(The case k = 21 is the case treated in Application 4.) Is it possible to conclude 
that there is a succession of days during which the chess master will have played 
exactly 22 games? 



3.4.' EXERCISES 83 

,2. * Concerning Application 5, show that if 100 integers are chosen from 1,2, ... ,200, 
,and one of the integers chosen is less than 16, then there are two chosen numbers 
such that one of them is divisible by the other. 

3. Generalize Application 5 by choosing (how many?) integers from the set 

{l, 2, ... ,2n}. 

4. Show that if n + 1 integers are chosen from the set {I, 2, ... , 2n}, then there are 
always two which differ by 1. 

5. Show that if n + 1 distinct integers are chosen from the set {l, 2, ... , 3n}, then 
there are always two which differ by at most 2. 

6. Generalize Exercises 4 and 5. 

7. * Show that for any given 52 integers there exist two of them whose sum, or else 
whose difference, is divisible by 100. 

8. Use the pigeonhole principle to prove that the decimal expansion of a rational 
number min eventually is repeating. For example, 

34,478 
-- = 0.34512512512512512· ... 
99,900 

9. In a room there are 10 people, none of whom are older than 60 (ages are given in 
whole numbers only) but each of whom is at least 1 year old. Prove that we can 
always find two groups of people (with no common person) the sum of whose 
ages is the same. Can 10 be replaced by a smaller number? 

10. A child watches TV at least one hour each day for seven weeks but, because of 
parental rules, never more than 11 hours in anyone week. Prove that there is 
some period of consecutive days in which the child watches exactly 20 hours of 
TV. (It is assumed that the child watches TV for a whole number of hours each 
day.) 

11. A student has 37 days to prepare for an examination. From past experience she 
knows that she will require no more than 60 hours of study. She also wishes to 
study at least 1 hour per day. Show that no matter how she schedules her study 
time (a whole number of hours per d!1y, however), there is a succession of days 
during which she will have studied exactly 13 hours. 

12. Show by example that the conclusion of the Chinese remainder theorem (Appli­
cation 6) need not hold when m and n are not relatively prime. 
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13. * Let S be a set of six points in the plane, with no three of the points collinear. 
Color either red or blue each of the 15 line segments determined by the points of 
S. Show that there are at least two triangles determined by points of S which 
are either red triangles or blue triangles. (Both may be red, or both may be 
blue, or one may be red and the other blue.) 

14. A bag contains 100 apples, 100 bananas, 100 oranges, and 100 pears. If I pick 
one piece of fruit out of the bag every minute, how long will it be before I am 
assured of having picked at least a dozen pieces of fruit of the same kind? 

15. Prove that, for any n + 1 integers al, a2, ... ,an+1, there exist two of the integers 
ai and aj with i =f. j such that ai - aj is divisible by n. 

16. Prove that in a group of n > 1 people there are two who have the same number 
of acquaintances in the group. (It is assumed that no one is acquainted with 
oneself. ) 

17. There are 100 people at a party. Each person has an even number (possibly 
zero) of acquaintances. Prove that there are three people at the party with the 
same number of acquaintances. 

18. Prove that of any five points chosen within a square of side length 2, there are 
two whose distance apart is at most J2. 

19. (a) Prove that of any five points chosen within an equilateral triangle of side 
length 1, there are two whose distance apart is at most ~. 

(b) Prove that of any 10 points chosen within an equilateral triangle of side 
length 1, there are two whose distance apart is at most ~. 

(c) Determine an integer mn such that if mn points are chosen within an equi­
lateral triangle of side length 1, there are two whose distance apart is at 
most lin. 

20. Prove that r(3, 3, 3) :s: 17. 

21. * Prove that r(3, 3, 3) 2: 17 by exhibiting a coloring, with colors red, blue, and 
green, of the line segments joining 16 points with the property that there do not 
exist three points such that the three line segments joining them are all colored 
the same. 

22. Prove that 
r(~ :s: (k + 1)(r~) - 1) + 2. 

k+l k 

Use this result to obtain an upper bound for 

r~. 
n 
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23. The line segments joining 10 points are arbitrarily colored red or blue. Prove 
that there must exist three points such that the three line segments joining them 
are all red, or four points such that the six line segments joining them are all 
blue (that is, 1'(3,4) -:; 10). 

24. Let q3 and t be positive integers with q3 2: t. Determine the Ramsey number 
1't(t, t, q3). 

25. Let ql, q2,· .. , qko t be positive integers, where ql 2: t, q2 2: t, . .. , qk 2: t. Let m 
be the largest of ql, q2, .. . , qk· Show that 

Conclude that, to prove Ramsey's theorem, it is enough to prove it in the case 
that ql = q2 = ... = qk· 

26. Suppose that the mn people of a marching band are standing in a rectangular 
formation of m rows and n columns in such a way that in each row each person 
is taller than the one to his or her left. Suppose that the leader rearranges the 
people in each column in increasing order of height from front to back. Show 
that the rows are still arranged in increasing order of height from left to right. 

27. A collection of subsets of {I, 2, ... ,n} has the property that each pair of subsets 
has at least one element in common. Prove that there are at most 2n - l subsets 
in the collection. 

28. At a dance party there are 100 men and 20 women. For each i from 1,2, ... , 100, 
the ith man selects a group of a, women as potential dance partners (his "dance 
list," if you will), but in such a way that given any group of 20 men, it is always 
possible to pair the 20 men with the 20 women, with each man paired with a 
woman on his dance list. What is the smallest sum al + a2 + ... + awo for which 
there is a selection of dance lists that will guarantee this? 

29. A number of different objects have been distributed into n boxes B l , B2," . ,Bn­
All the objects from these boxes are removed and redistributed into n + 1 new 
boxes Bi, B2, ... , B~+l' with no new box empty (so the total number of objects 
must be at least n + 1). Prove that there are two objects each of which has the 
property that it is in a new box that contains fewer objects than the old box 
that contained it. 
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Chapter 4 

Generating Permutations and 

(om bi nations 

In this chapter we explore some features of permutations and combinations that are 
not directly related to counting. We discuss some ordering schemes for them and 
algorithms for carrying out these schemes. In case of combinations, we use the subset 
terminology as discussed in Section 2.3. We also introduce the idea of a relation 
on a set and discuss two important instances, those of partial order and equivalence 
relation. 

4.1 Generati ng Perm utations 

The set {I, 2, ... ,n} consisting of the first n positive integers has n! permutations, 
which, even if n is only moderately large, is quite enormous. For instance, 15! is 
more than 1, 000, 000, 000, 000. A useful and readily computable approximation to n! 
is given by Stirling '8 formula, 

n! ~ v27rn (;) n, 

where 7r = 3.141 ... , and e = 2.718 ... is the base of the natural logarithm. As n 
grows without bound, the ratio of n! to v27rn (;) n approaches 1. A proof of this can 
be found in many texts on advanced calculus and in an article by Feller. 1 

Permutations are of importance in many different circumstances, both theoreti­
cal and applied. For sorting techniques in computer science they correspond to the 
unsorted input .data. We consider in this section a simple but elegant algorithm for 
generating all the permutations of {I, 2, ... ,n}. 

'w. Feller, A Direct Proof of Stirling's Formula, Amer. Math. Monthly, 74 (1967), 1223-1225. 
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Because of the large number of permutations of a set of n elements, for such an 
algorithm to be effective on a computer the individual steps must be simple to perform. 
The result of the algorithm should be a list containing each of the permutations of 
{I, 2, ... , n} exactly once. The algorithm to be described has these features. It was 
independently discovered by Johnson2 and Trotter3 and was described by Gardner in 
a popular article.4 The algorithm is based on the following observation: 

If the integer n is deleted from a permutation of {I, 2, ... ,n}, the result is 
a permutation of {I, 2, ... ,n - I}. 

The same permutation of {I, 2, ... ,n - I} can result from different permutations of 
{I, 2, ... ,n}. For instance, if n = 5 and we delete 5 from the permutation 3,4,1,5,2, 
the result is 3,4,1,2. However 3,4,1,2 also results when 5 is deleted from 3,5,4,1,2. 
Indeed there are exactly 5 permutations of {I, 2, 3, 4, 5} which yield 3,4,1,2 upon the 
deletion of 5, namely, 

which we can also write as 

53412 
35412 
34512 
34152 
34 1 25, 

34125 
34152 
34512 
35412 
534 1 2. 

More generally, each permutation of {I, 2, ... ,n -I} results from exactly n permu­
tations of {I, 2, ... ,n} upon the deletion of n. Looked at from the opposite viewpoint, 
given a permutation of {I, 2, ... ,n - I}, there are exactly n ways to insert n into 
this permutation to obtain a permutation of {I, 2, ... ,n}. Thus, given a list of the 
(n - I)! permutations of {I, 2, ... ,n - I}, we can obtain a list of the n! permutations 
of {I, 2, ... ,n} by systematically inserting n into each permutation of {I, 2, ... n - I} 
in all possible ways. We now give an inductive description of such an algorithm; it 
generates the permutations of {I, 2, ... ,n} from the permutations of {I, 2, ... ,n - I}. 
Thus, starting with the unique permutation 1 of {I}, we build up the permutations 
of {1,2}, then the permutations of {I, 2, 3}, and so on until finally we obtain the 
permutations of {I, 2, ... ,n}. 

28. M. Johnson, Generation of Permutations by Adjacent Transpositions, Mathematics of Compu­
tation, 17 (1963), 282-285. 

3H. F. Trotter, Algorithm 115, Communications of the Association for Computing Machinery, 5 
(1962), 434-435. 

4M. Gardner, Mathematical Games, Scientific American, November (1974), 122-125. 
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n = 2: To generate the permutations of {I, 2}, write the unique permutation of {I} 
twice and "interlace" the 2: 

1 2 
2 1 

The second permutation is obtained from the first by switching the two numbers. 

n = 3: To generate the permutations of {I, 2, 3}, write each of the permutations of 
{1,2} three times in the order generated above, and interlace the 3 with them as 
shown: 

123 
132 

312 
321 

231 
213 

It is seen that each permutation other than the first is obtained from the preceding 
one by switching two adjacent numbers. When the 3 is fixed, as it is from the third 
to the fourth permutation in the sequence of generation, the switch comes from a 
corresponding switch for n = 2. We note that by switching 1 and 2 in the last 
permutation generated, we obtain the first one, namely, 123. 

n = 4: To generate the permutations of {I, 2, 3, 4}, write each of the permutations of 
1,2,3 four times in the order generated above, and interlace the 4 with them. 

Again we observe that each permutation is obtained from the preceding one by 
switching two adjacent numbers. When the ~ is fixed, as it is between the 4th and 
5th, the 8th and 9th, the 12th and 13th, the 16th and 17th, and the 20th and 21st 
permutations in the sequence of generation, the switch comes from a corresponding 
switch for n = 3. Also, by switching 1 and 2 in the last permutation generated, we 
obtain the first permutation 1234. 
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1 2 3 4 
1 2 4 3 
1 4 2 3 

4 1 2 3 
4 1 3 2 

1 4 3 2 
1 3 4 2 
1 3 2 4 
3 1 2 4 
3 1 4 2 
3 4 1 2 

4 3 1 2 
4 3 2 1 

3 4 2 1 
3 2 4 1 
3 2 1 4 
2 3 1 4 
2 3 4 1 
2 4 3 1 

4 2 3 1 
4 2 1 3 

2 4 1 3 
2 1 4 3 
2 1 3 4 

It should now be clear how to proceed for any n. It readily follows by induc­
tion on n, using our earlier remarks, that the algorithm generates all permutations of 
{I, 2, ... ,n} exactly once. Moreover, each permutation other than the first is obtained 
from the preceding one by switching two adjacent numbers. The first permutation 
generated is 12· .. n. This is so for n = 1 and follows by induction, since, in the algo­
rithm, n is first put on the extreme right. Provided that n ~ 2, the last permutation 
generated is always 213· .. n. This observation can be verified by induction on n as 
follows: If n = 2, the last permutation generated is 21. Now suppose that n ~ 3 and 
that 213· .. (n - 1) is the last permutation generated for {I, 2, ... ,n - I}. There are 
(n - I)!, an even number, of permutations of {I, 2, ... n - I}, and it follows that, in 
applying the algorithm, the integer n ends on the extreme right. Hence, 213··· n is 
the last permutation generated. Since the last permutation is 213· .. n, by switching 
1 and 2 in the last permutation the first permutation results. Thus the algorithm is 
cyclical in nature. 

To generate the permutations of {I, 2, ... ,n} in the manner just described, we must 
first generate the permutations of {I, 2, ... ,n - I}. To generate the permutations of 
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{I, 2, ... ,n - I}, we must first generate the permutations of {I, 2, ... ,n - 2}, and so 
on. We would like to be able to generate the permutations one at a time, using only 
the current permutation in order to generate the next one. We next show how it is 
possible to generate in this way the permutations of {I, 2, ... ,n} in the same order 
as above. Thus, rather than having to retain a list of all the permutations, we can 
simply overwrite the current permutation with the one that follows it. To do this, we 
need to determine which two adjacent integers are to be switched as the permutations 
appear on the list. The particular description we give is taken from Even.5 

Given an integer k, we assign a direction to it by writing an arrow above it pointing 

to the left or to the right: k or k. Consider a permutation of {I, 2, ... ,n} in which 
each of the integers is given· a direction. The integer k is called mobile if its arrow 
points to a smaller integer adjacent to it. For example, in 

263 154 

only 3,5, and 6 are mobile. It follows that the integer 1 can never be mobile since 
there is no integer in {I, 2, ... ,n} smaller than 1. The integer n is mobile, except in 
two cases: 

(1) n is the first integer and its arrow points to the left: n ... , 

(2) n is the last integer and its arrow points to the right: ... n. 
This is because n, being the largest integer in the set {I, 2, ... ,n}, is mobile whenever 
its arrow points to an integer. We can now describe the algorithm for generating the 
permutations of {I, 2, ... , n} directly. 

Algorithm for generating the permutations of 
{I, 2, ... , n} 

Begin with 12 n. 

While there exists a mobile integer, do the following: 

(1) Find the largest mobile integer m. 

(2) Switch m and the adjacent integer to which its arrow points. 

(3) Switch the direction of all the arrows above integers p with p > m. 

We illustrate the algorithm for n = 4. The results are displayed in two columns, with 
the first column giving the first 12 permutations: 

5S. Even, Algorithmic Combinatorics, Macmillan, New York (1973). 
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1 2 3 4 4 3 2 1 
~ ~ ~ 

1 2 4 3 3 4 2 1 

1 4 2 3 3 2 4 1 
<- ~ <- ~ 

4 1 2 3 3 2 1 4 
~ ~ 

4 1 3 2 2 3 1 4 
~ ~ 

1 4 3 2 2 3 4 1 
~ ~ 

1 3 4 2 2 4 3 1 
~ 

1 3 2 4 4 2 3" 1 
~ ~ 

3 1 2 4 4 2 1 3 
<- ~ 

3 1 4 2 2 4 1 3 
~ 

3 4 1 2 2 1 4 3 
<- ~ 

4 3 1 2 2 1 3 4 

-+------+---+ 

Since no integer is mobile in 2 1 3 4, the algorithm stops. 
That this algorithm generates the permutations of {1, 2, ... ,n}, and in the same 

order as our previous method, follows by induction on n. We don't give a formal 
E:02f\-a~ we only illustrate the inductive step from n = 3 to n = 4. We begin with 

1 2 3 4, with 4 the largest mobile integer. The integer 4 remains mobile until it 
reaches the extreme left. At that point 4 has been inserted in all possible ways in the 
permutation 123 of {1, 2, 3}. Now 4 is no longer mobile. The largest mobile integer is 

3, which is the same as the largest mobile integer in 123. Then 3 and 2 switch places 
and 4 changes direction. The switch is the same switch that would have occurred in 

123. The result is now 413 2; now 4 is mobile again and remains mobile until it 
reaches the extreme right. Again a switch takes place, which is the same switch that 

would have occurred in 13 2. The algorithm continues like this, and 4 is interlaced 
in all possible ways with each permutation of {I, 2, 3}. 

It is possible to determine, for a given permutation of {1, 2, ... ,n}, at which step 
the permutation occurs in the preceding algorithm. Conversely, it is possible to deter­
mine which permutation occurs at a given step. For a clear analysis of this, we refer 
to the book by Even.6 

Given a positive integer n, we have described an algorithm to generate all the n! 
permutations of {1, 2, ... ,n}. To conclude this section, we say a few brief words about 
generating a random permutation i 1i2 ... in of {1, 2, ... ,n}; that is, we want to generate 
one permutation of {I, 2, ... ,n} in such a way that each of the n! permutations has 
an equal chance, namely lin!, of being generated. Let A = {1, 2, ... ,n}. One obvious 

60p . cit. 
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way to do this is to choose an integer at random from A (so each of the integers in A 
has a probability of l/n of being chosen) and call this integer il. Then remove i l from 
A and choose an integer at random from the remaining n - 1 elements (so now each 
integer left in A has a probability of l/(n -1) of being chosen) and call this integer i2 . 

Continue this process of choosing an integer in A at random and removing it. When 
A becomes empty, we have a permutation iIi2' .. in of 1,2, ... ,n whose probability of 
being chosen is 

1 1 1 1 1 1 

n n-l n-2 2 1 n!' 

and hence a random permutation. 7 Another possible way, known as the Knuth shuffle, 
for generating a random permutation is as follows: Start with the identity permutation 
12 ... n and, sequentially, for each k = 1,2, ... , n - 1, randomly choose one of the 
positions k, k + 1, ... ,n and switch the integers in position k and the chosen position.8 

4.2 Inversions in Permutations 

In this section we discuss a method of describing a permutation by means of its in­
versions discovered by Hall.9 The notion of an inversion is an old one, and it plays an 
important role in the theory of determinants of matrices. 

Let i Ii2 ... in be a permutation of the set {1, 2, ... ,n}. The pair (ik' il) is called 
an inversion if k < I and ik > il' Thus, an inversion in a permutation corresponds to 
a pair of numbers that are out of their natural order. For example, the permutation 
31524 has four inversions, namely (3,1), (3, 2), (5, 2), (5,4). The only permutation of 
{1, 2, ... ,n} with no inversions is 12 ... n. For a permutation i I i 2 ... in, we let aj 
denote the number of inversions whose second component is j. In other words, 

aj equals the number of integers that precede j in the permutation but are 
greater than j; it measures how much j is out of order. 

The sequence of numbers 

is called the inversion sequence of the permutation iIi2" . in. The number al + a2 + 
... + an measures the disorder of a permutation. 

7Those with more knowledge of probability than given in this book will have recognized that we 
have cheated a little here by multiplying the individual probabilities. We can justify this as follows: 
In choosing the first k integers, there are n(n - 1)··· (n - k + 1) possible outcomes with, each outcome 
having the same chance of being chosen, and so a 1 in n(n - 1) .. · (n - k + 1) chance, as any other. 
When k = n we get lin!. . 

8Note that we allow k as one of the possible positions and when k is chosen as the position, no 
switch actually occurs. If we didn't allow k, we could never end up with the identity permutation and 
hence we would not have a random generation scheme. 

9M. Hall, Jr., Proceedings Symposium in Pure Mathematics, American Mathematical Society, Prov­
idence, 6 (1963), 203. 
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Example. The inversion sequence of the permutation 31524 is 

1,2,0,1,0. 

o 

The inversion sequence at, a2, ... , an of the permutation ZlZ2 ... in satisfies the 
conditions 

° :=::: al :=::: n - 1, ° :=::: a2 :=::: n - 2, ... , ° :=::: an-I:=::: 1, an = 0. 

This is so because for each k = 1,2, ... , n, there are n-k integers in the set {I, 2, ... , n} 
which are greater than k. Using the multiplication principle, we see that the number 
of sequences of integers b1, b2 , ... , bn , with 

o:=::: b1 :=::: n - 1, o:=::: b2 :=::: n - 2, ... , ° :=::: bn- 1 :=::: 1, bn = 0, (4.1) 

equals n x (n - 1) x ... x 2 x 1 = n!. 
Thus, there are as many permutations of {I, 2, ... , n} as there are possible inversion 

sequences. This suggests (but does not yet prove!) that different permutations of 
{I, 2, ... , n} have different inversion sequences. If we can show that each sequence 
of integers b1, b2, ... , bn satisfying (4.1) is the inversion sequence of a permutation of 
{I, 2, ... , n}, then it follows (from the pigeonhole principle) that different permutations 
have different inversion sequences. 

Theorem 4.2.1 Let. b1 , b2, . .. , bn be a sequence of integers satisfying 

° :=::: b1 :=::: n - 1, ° :=::: b2 :=::: n - 2, ... ° :=::: bn-l :=::: 1, bn = 0. 

Then there exists a unique permutation of {I, 2, ... , n} whose inversion sequence is 
b1 ,b2,oo.,bn . 

Proof. We describe two methods for uniquely constructing a permutation whose 
inversion sequence is b1 , b2 , ... , bn . 

Algorithm I 

Construction of a permutation from its inversion sequence 

n: Write down n. 

n - 1: Consider bn - 1 . We are given that ° :=::: bn- 1 :=::: 1. If bn - 1 = 0, then n - 1 must be 
placed before n. If bn - 1 = 1, then n - 1 must be placed after n. 
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- 2: Consider bn-2. We are given that 0 ::; bn-2 ::; 2. If bn- 2 = 0, then n - 2 must be 
placed before the two numbers from step n - 1. If bn - 2 = 1, then n - 2 must be 
placed between the two numbers from step n - 1. If bn - 2 = 2, then n - 2 must 
be placed after the two numbers from step n - 1. 

- k: (general step) Consider bn-k. We are given that 0 ::; bn- k ::; k. In steps n 
through n - k + 1, the k numbers n, n - 1, ... , n - k + 1 have already been placed 
in the required order. If bn-k = 0, then n - k must be placed before all the 
numbers from step n - k + 1. If bn - k = 1, then n - k must be placed between 
the first two numbers .... If bn-k = k, then n - k must be placed after all the 
numbers. 

1: We must place 1 after the b1st number in the sequence constructed in step 2. 

Steps n, n - 1, n - 2, ... , 1, when carried out, determine the unique permutation 
of {I, 2, ... ,n} whose inversion sequence is bl, b2, ... ,bn . The disadvantage of this 
algorithm is that the location of each integer in the permutation is not known until 
the very end; only the relative positions of the integers remain fixed throughout the 
algorithm. 

In the second algorithm,lO the positions of the integers 1,2, ... ,n in the permuta­
tion are determined. 

Algorithm II 

Construction of a permutation from its inversion sequence 

We begin with n empty locations, which we labell, 2, ... ,n from left to right. 

1: Since there are to be b1 integers that precede 1 in the permutation, we must put 
1 in location number bl + 1. 

2: Since there are to be b2 integers that precede 2 and are larger than 2 in the 
permutation, and since these integers have not yet been inserted, we must leave 
exactly b2 empty locations for them. Thus, counting from the left, we put 2 in 
the (b2 + l)st empty location. 

lOThis algorithm was brought to my attention by J. Csima. 
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k: (general step) Since there are to be bk integers that precede k in the permutation, 
and since these integers have not yet been inserted, we must leave exactly bk 
empty locations for them. We observe that the number of empty locations at 
the beginning of this step is n - (k - 1) = n - k + 1. Counting from the left, 
we put k in the (bk + l)st such empty location. Since bk ::; n - k, we have 
bk + 1 ::; n - k + 1 and so such an empty location can be determined. 

n: We put n in the one remaining empty location. 

Carrying out the steps 1,2, ... , n in the order described, we obtain the unique 
permutation of {I, 2, ... ,n} whose inversion sequence is b1, b2 , •. . ,bn . 0 

Example. Determine the permutation of {I, 2, 3, 4, 5, 6, 7, 8} whose inversion sequence 
is 5,3,4,0,2,1,1,0. 

The steps in the two algorithms in the proof of Theorem 4.2.1, when carried out 
for the given inversion sequence, yield the following results: 

Algorithm I 

8: 8 
7: 87 
6: 867 
5: 8657 
4: 48657 
3: 486537 
2: 4862537 
1 : 48625137 

Thus, the permutation is 48625137. 

Algorithm II 

1 : 1 
2: 2 1 
3: 2 1 3 
4: 4 2 1 3 
5: 4 2 5 1 3 
6: 4 6 2 5 1 3 
7: 4 6 2 5 1 3 7 
8: 4 8 6 2 5 1 3 7 

(1) (2) (3) (4) (5) (6) (7) (8) 

Again, the permutation is 48625137. 0 
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It follows from Theorem 4.2.1 that the correspondence which associates the in­
version sequence to each permutation is a one-to-one correspondence between the 
permutations of {I, 2, ... , n} and the sequences of integers b1 , b2, ... , bn satisfying 

o ::; bl ::; n - 1, 0 ::; b2 ::; n - 2, ... ,0::; bn- 1 ::; 1, bn = O. 

Thus, a permutation is uniquely specified by specifying its inversion sequence. Think 
of it as a code for the permutation. In the proof of Theorem 4.2.1, we have given two 
methods to break this code. 

There is a subtle distinction worth making between a permutation and its inversion 
sequence. In choosing a permutation of {I, 2, ... , n}, we have to make n choices, one 
for each term of the permutation. We choose the first term, in anyone of n ways, 
then the second term, in anyone of n - 1 ways, but notice that while the number of 
choices for the second term is always n - 1, the actual possible choices for the second 
term depend on what was chosen for the first term (we cannot choose whatever has 
already been chosen). A similar situation occurs for the choice of the kth term. We 
have n - (k - 1) choices for the kth term, but the actual choices depend on what has 
already been chosen for the first k - 1 terms. 

The preceding description can be contrasted with choosing an inversion sequence 
b1,b2 , ... ,bn for a permutation of {1,2, ... ,n}. For bl, we can choose any of the n 
integers 0,1, ... , n - 1. For b2 , we can choose any of the n - 1 integers 0,1, ... , n - 2, 
and it does not matter what our choice for b1 is. In general, for bk , we can choose 
any of the n - (k - 1) integers 0, 1, ... , n - k, and it does not matter what our choices 
for b1, b2, ... , bk - 1 are. Thus, the inversion sequence replaces dependent choices by 
independent choices. 

It is customary to call a permutation il i2 ... in of {I, 2, ... , n} even or odd according 
to whether its number of inversions is even or odd. The sign of the permutation 
is then defined to be + 1 or -1 according to whether it is even or odd. The sign 
of a permutation is important in the theory of determinants of matrices, where the 
determinant of an n x n matrix 

(i,j=1,2, ... ,n) 

is defined to be 
det(A) = LE(ili2 ... in)alila2i2···anin, 

the summation extending over all permutations ili2 ... in of the set {I, 2, ... , n}, and 
E(ili2'" in) is equal to the sign of i1i2 ... inY 

If the permutation i 1 i2 ... in has inversion sequence b1 , b2, ... , bn and k = b1 + b2 + 
... t bn is the number of inversions, then 'il i2 ... in can be brought to 12 ... n by k 

11Thinking of an n X n matrix as an n-by-n chessboard in which the squares are occupied by 
numbers, the terms in the summation for the formula for the determinant correspond to the n! ways 
to place n non attacking rooks on the board. 
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successive switches of adjacent numbers. We first switch 1 successively with the b1 

numbers to its left. We then switch 2 successively with the b2 numbers to its left which 
are greater than 2, and so on. In this way, we arrive at 12 ... n after b1 + b2 + ... + bn 

switches. 

Example. Bring the permutation 361245 to 123456 by successive switches of adjacent 
numbers. 

The inversion sequence is 220110. The results of successive switches are as follows: 

3 6 1 2 4 5 
3 1 6 2 4 5 
1 3 6 2 4 5 
1 3 2 6 4 5 
1 2 3 6 4 5 
1 2 3 4 6 5 
1 2 3 4 5 6 

0 

This procedure is one instance of a sorting procedure common in computer science. 
The elements of a permutation i1 i2 ... in correspond to the unsorted data. For more 
efficient sorting techniques and their analysis, consult Knuth. 12 

4.3 Generating Combinations 

Let S be a set of n elements. For reasons that will be clear shortly, we take the set S 
in the form 

S= {Xn-l"",Xl,XO}. 

We now seek an algorithm that generates all of the 2n combinations of S, thus, all 
2n subsets of S. This means that we want a systematic procedure that lists all the 
subsets of S. The resulting list should contain all the subsets of S (and only subsets 
of S) with no duplications. Thus, according to Theorem 2.3.4, there will be 2n subsets 
on the list. 

Given a subset A of S, then each element x either belongs or does not belong to 
A. If we use 1 to denote that an element belongs and 0 to denote that an element 
does not belong, then we can identify the 2n subsets of S with the 2n n-tuples 

12D. E. Knuth, Sorting and Searching. Volume 3 of The Art of Computer Progmmming, 2nd edition, 
Addison-Wesley, Reading, MA (1998). 
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of Os and IS.13 We let the ith term ai of the n-tuple correspond to the element Xi 

for each i = 0, 1, ... , n - 1. For example, when n = 3, the 23 = 8 subsets and their 
corresponding 3-tuples are given as follows: 

a2 al ao 
0 0 0 0 

{xo} 0 0 1 
{xr} 0 1 0 

{Xl,XO} 0 i 1 
{X2} 1 0 0 

{X2,XO} 1 0 1 
{X2,Xr} 1 1 0 

{X2, Xl, Xo} 1 1 1 

Example. Let S = {X6,X5,X4,X3,X2,Xl,XO}. The 7-tuple corresponding to the sub­
set {X5, X4, X2, xo} is 0110101. The subset corresponding to the 7-tuple 1010001 is 
{X6,X4,XO}' 0 

Because of this identification of subsets of a set of n elements with n-tuples of Os 
and Is, to generate the subsets of a set of n elements, it suffices to describe a systematic 
procedure for writing in a list the 2n n-tuples of Os and Is. Now, each such n-tuple 
can be regarded as a base 2 numeraP4 For example, 10011 is the binary numeral for 
the integer 19 since 

In general, given an integer m from 0 up to 2n - 1, it can be expressed in the form 

m = an-l x 2n- 1 + an -2 x 2n- 2 + ... + al x 21 + ao x 2°, 

where each ai is 0 or 1. Its binary numeral .is 

Conversely, since 
2n - l + 2n - 2 + ... + 21 + 20 = 2n - 1, 

every expression of the preceding form has value equal to an integer between 0 and 
2n - 1. The n-tuples of Os and Is are thus in one-to-one correspondence with the 
integers 0,1, ... ,2n - 1. Note that, in writing the binary numeral for an integer 
between 0 and 2n - 1, our convention is to use exactly n digits and thus to include, if 
necessary, some initial Os that are not normally included. 

13In the language of Section 3.3, we identify the subsets with the n-permutations of the multiset 
{n·D,n·l}. 

l4See also Section 1.7. 
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Example. Let n = 7. The number 29 is between 0 and 27 - 1 = 127 and can be 
expressed as 

29 = 0 x 26 + 0 x 25 + 1 X 24 + 1 X 23 + 1 x 22 + 0 x 21 + 1 x 20 . 

Thus, 29 has a binary numeral of seven digits given by 0011101 and corresponds to 
the subset {X4, X3, X2, xo} of the set 

o 
How do we generate the 2n subsets of S = {Xn-l, . .. , Xl, xo}? Equivalently, how 

do we generate the 2n n-tuples of Os and Is? The answer is now simple. We write 
down the numbers from 0 to 2n - 1 in increasing order by size, but in binary form, 
adding 1 each time, using base 2 arithmetic. This is how the 3-tuples of Os and Is were 
generated earlier. 

Example. Generate the 4-tuples of Os and Is. 

Number Binary Numeral 
0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 011 1 
8 1000 
9 1001 

10 1010 
11 1011 
12 1100 
13 110 1 
14 1110 
15 1111 

0 

Example. If we use the base 2 arithmetic scheme just described, what is the subset 
of {X6,X5,X4,X3,X2,Xl,XO} immediately following the subset {X6,X4,X2,Xl,XO}? 

The subset {X6,X4,X2,Xl,XO} corresponds to the binary numeral 1010111. Using 
base 2 arithmetic, we see that the next subset corresponds to 

+ 
1 0 101 1 1 

1 
101 1 000 
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and thus is the subset {X6,X4,X3}. Since 

1 X 26 + 0 X 25 + 1 X 24 + 0 X 23 + 1 X 22 + 1 X 21 + 1 x 20 = 87, 

the subset {X6, X4, X2, Xl, xo} is the 87th on the list. The subset that is 88th on the list 
is {X6,X4,X3}' Note that the places on the list of all subsets are numbered beginning 
with 0 and ending with 2n - 1. The subset occupying the Oth place is always the 
empty set. When we say, for instance, the 5th subset on the list, we mean the subset 
on the list corresponding to the number 5, and not the subset corresponding to the 
number 4. Five subsets precede the 5th subset on the list. If this is not yet clear, the 
next example should clarify our convention. 0 

Example. Which subset of S = {X6,X5,X4,X3,X2,Xl,XO} is 108th on the list? 

We first find the base 2 numeral for 108: 

108 = 1 x 26 + 1 X 25 + 0 X 24 + 1 X 23 + 1 X 22 + 0 X 21 + 0 x 20 . 

Hence, the base 2 numeral for 108 is 

1101100. 

Thus, the subset is {X6, x5, X3, X2}. Which subset immediately precedes this one? We 
simply subtract in base 2: 

1101100 
1 

1 1 0 1 0 1 1. 

This corresponds to the subset {X6, X5, X3, Xl, xo}. o 

We now describe in compact form our algorithm for generating the subsets of a 
set of n elements. The description is in terms of n-tuples of Os and Is. The rule of 
succession given in the algorithm is a consequence of addition using base 2 arithmetic. 

Base 2 Algorithm for Generating the Subsets of 

{Xn-l, ... , Xl, Xo} 

Begin with an-I" . alaO = 0·· ·00. 

While an-I" . alaO =F 1·· . 11, do the following: 

(1) Find the smallest integer j (between n - 1 and 0) such that aj = O. 

(2) Replace aj with 1 and replace each of a)-I, ... , ao (which, by our choice of j, all 
equal 1) with O. 
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The algorithm comes to an end when an-I'" alaO = 1···11, which is the last 
binary n-tuple on the resulting list. 

The ordering of the n-tuples of Os and Is produced by the base 2 generation 
scheme is called the lexicographic ordering of n-tuples. In this ordering, an n-tuple 
an-I" . alaO occurs earlier on the list than another n-tuple bn- l ... blbo provided that, 
starting at the left, the first position in which they disagree, say position j, we have 
aj = 0 and bj = 1. (Why? Because this is equivalent to saying that the number 
whose base 2 numeral is given by an-I' .. alaO is smaller than the number whose base 
2 numeral is given by bn- l ··· blbo.) Thinking of the n-tuples as "words" of length n 
in an alphabet of two "letters," 0 and 1, in which 0 is the first letter of the alphabet 
and 1 is the second letter, the lexicographic ordering is the order in which these words 
would occur in a dictionary. 

Viewing the n-tuples as subsets of the set {Xn-l,' .. ,XI, xo}, we see that for each j 
with n-l > j, all the Sll bsets of {x j, ... , Xl, xo} precede those subsets which contain at 
least one of the elements Xn-l, ... ,Xj+l. For this reason, the lexicographic ordering on 
n-tuples of Os and Is, when viewed as an ordering of the subsets of {Xn-l, ... ,Xl, xo}, 
is sometimes called the squashed ordering of subsets. In the squashed ordering we 
list all the subsets of the current elements before introducing a new element. The 
squashed ordering of the subsets of {X3 = 4, X2 = 3, Xl = 2, Xo = I} is given below 
and corresponds to our earlier (lexicographic) listing of the binary 4-tuples. Notice 
how, in this ordering, all the subsets that do not contain 4 come before those that do. 
Of the subsets that ·do not contain 4, those that do not contain 3 come before those 
that do. Of the subsets that contain neither 4 nor 3, those that do not contain 2 come 
before those that do. 

o 
1 
2 

1,2 
3 

1,3 
2,3 

1,2,3 
4 

1,4 
2,4 

1,2,4 
3,4 

1,3,4 
2,3,4 

1,2,3,4. 

Subsets of {l, 2, 3, 4} in the squashed ordering. 
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Notice how, in this ordering, all the subsets that do not contain 4 come before those 
that do. Of the subsets that do not contain 4, those that do not contain 3 come before 
those that do. Of the subsets that contain neither 4 nor 3, those that do not contain 
2 come before those that do. 

The immediate successor of a subset in the squashed ordering of subsets (equiva­
lently, the immediate successor of an n-tuple in the lexicographic ordering of n-tuples) 
may differ greatly from the subset itself. The subset A = {X6, X4, X3} (equivalently, the 
7-tuple lO11000) which follows the subset B = {X6,X4,X2,XI,XO} (equivalently, the 
7-tuple lO10111) differs from B in four instances, since A contains X3 (and B doesn't) 
while B contains X2,XI, and Xo (and A doesn't). This suggests consideration of the 
following question: Is it possible to generate the subsets of a set of n elements in a 
different order so that the immediate successor of a subset differs from it as little as 
possible? Here as little as possible means that the immediate successor of a subset is 
obtained by either including a new element or deleting an old element, but not both; 
in short, one in or one out. Such a generation scheme can be important for many 
reasons, not the least of which is that there would be a smaller chance of error in 
generating all the subsets. 

Example. Let S = {Xn-l,' .. , Xl, xo}, and consider the following lists of the subsets 
of S and the corresponding n-tuples for n = 1,2,3. 

o 
{xo} 

o 
1 

o 
{xo} 

{XI,XO} 

{xd 
{x2,xd 

{X2, Xl, Xo} 

{X2,XO} 

{X2} 

o 
{xo} 

{XI,XO} 

{xd 

000 
001 
011 
010 
110 
11 1 
101 
100 

00 
01 
1 1 
10 

In each list, the transition from one subset to the next is obtained by inserting a new 
element or removing an element already present, but not both. In terms of n-tuples 
of Os and Is, we change a 0 to a lora 1 to a 0, but not both. 0 

We now make a further identification, this time a geometric one. We regard an 
n-tuple of Os and Is as the coordinates of a point in n-dimensional space. Thus, for 
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n = 1, the identification is with points on a line; for n = 2, it is with points in 2-space 
or a plane; for n = 3, it is with points in three-dimensional space. 

o 
• 

Figure 4.1 

1 
• 

Example. Let n = 1. The I-tuples of Os and Is correspond to the endpoints or 
corners of a unit line segment, as shown in Figure 4.1. 0 

Example. Let n = 2. The 2-tuples of Os and Is correspond to the corners of a unit 
square, as shown in Figure 4.2. 0 

Figure 4.2 

Example. Let n = 3. The 3-tuples of Os and Is correspond to the corners of a unit 
cube, as shown in Figure 4.3. 0 

110 

010 / 011/ 

111 

V 100 / 
101 

000 
001 

FIgure 4.3 

Notice that in all three examples there is an edge between two corners precisely 
when their coordinates differ in only one place. This is precisely the feature we are 
looking for in generating the n-tuples of Os and Is. 

We can generalize to any n. The unit n-cube (a I-cube is a line segment, a 2-cube 
is a square, a 3-cube is an ordinary cube) has 2n corners whose coordinates are the 2n 

n-tuples of Os and Is. There is an edge of the n-cube joining two corners precisely when 
the coordinates of the corners differ in only one place. An algorithm for generating the 
n-tuples of Os and Is which has the property that the successor of an n-tuple differs 
from it in only one place corresponds to a walk along the edges of an n-cube that visits 
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every corner exactly once. Any such walk (or the resulting list of n-tuples) is called 
a Gray code of order n. 15 If it is possible to traverse one more edge to get from the 
terminal corner to the initial corner of the walk, then the Gray code is called cyclic. 
The lists for n = 1,2, and 3 in the examples are cyclic Gray codes. They have an 
additional property that makes them quite special, and we now investigate it. 

a 
• 

Figure 4.4 

1 
• 

Let us begin with the unit I-cube and the Gray code, which starts at 0 and ends at 
1, as shown in Figure 4.4. We build a unit 2-cube by taking two copies of the I-cube 
and joining corresponding corners. We attach a 0 to the coordinates of one copy and a 
1 to the coordinates of the other: We obtain a cyclic Gray code for the 2-cube by first 
following the Gray code on one copy of the I-cube, crossing over to the other copy, 
and then following the Gray code for the I-cube in the reverse direction, as shown on 
the left in Figure 4.5. 

111 ------
101 

000 

Figure 4.5 
We build a unit 3-cube in a similar way from the unit 2-cube. We take two copies 

of the 2-cube and join corresponding corners. We attach a 0 to the coordinates of one 
copy and a 1 to the coordinates of the other. We obtain a cyclic Gray code for the 
3-cube by first following the Gray code on one copy of the 2-cube, crossing over to the 
other copy, and then following the Gray code for the 2-cube in the reverse direction, 
as shown on the right in Figure 4.5. 

We may continue in this manner to construct inductively a Gray code of order n 
for any integer n 2: 1. The Gray code constructed in this way is called the reflected 
Gray code. The n-cube is a convenient vi~ual device and, as we shall see, need not be 
introduced in order to obtain the reflected Gray code of order n. The reflected Gray 

l5In 1878, the French engineer Emile Baudot demonstrated the use of a Gray code in a telegraph. 
It was the Bell Labs researcher Frank Gray who first patented these codes in 1953. 
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code for n = 4 is as follows: 
0 0 0 0 
0 0 0 1 
0 0 1 1 
0 0 1 0 
0 1 1 0 
0 1 1 1 
0 1 0 1 
0 1 0 0 
1 1 0 0 
1 1 0 1 
1 1 1 1 
1 1 1 0 
1 0 1 0 
1 0 1 1 
1 0 0 1 
1 0 0 0 

The general inductive definition of the reflected Gray code of ·order n is the follow-
ing: 

(1) The reflected Gray code of order 1 is ~ 

(2) Suppose n > 1 and the reflected Gray code of order n - 1 has been constructed. 
To construct the reflected Gray code of order n, we first list the (n - I)-tuples 
of Os and Is in the order given by the reflected Gray code of order n - 1, and 
attach a 0 at the beginning (i.e. on the left) of each (n - I)-tuple. We then list 
the (n - I)-tuples in the order which is the reverse of that given by the reflected 
Gray code of order n - 1, and attach a 1 at the beginning. 

It follows from this inductive definition that the reflected Gray code of order n 
begins with the n-tuple 00· . ·0 and ends with the n-tuple 10··· O. It is therefore 
cyclic, since 00 ... 0 and 10··· 0 differ in only one place. 

Since the reflected Gray codes have been defined inductively, to construct the 
refiected Gray code of order n, we first construct the reflected Gray code of order 
n - 1. So, for instance, to construct the reflected Gray code of order 6, we first 
construct the reflected Gray code of order 5. To do that we must first construct the 
reflected Gray code of order 4, and so on. Therefore, to construct the reflected Gray 
code of order 6, using the inductive definition, we must construct sequentially the 
reflected Gray codes of orders 1, 2, 3, 4, and 5. We now describe an algorithm that 
enables us to construct the reflected Gray code of order n directly. To do this we need 
a rule of succession, which tells us which place to change (from a 0 to a 1 or a 1 to 
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a 0) in going from one n-tuple to the next in the reflected Gray code. This rule of 
succession is provided in the next algorithm. 

If an-lan-2' .. ao is an n-tuple of Os and Is, then 

is the number of its Is (and thus equals the size of the subset to which it corresponds). 

Algorithm for generating the n-tuples of Os and Is 
in the reflected Gray code order 

Begin with the n-tuple an-lan-2 ... ao = 00· .. O. 

While the n-tuple an-lan-2 ... ao =f. 10···0, do the following: 

(1) Compute a(an-lan-2" . ao) = an-l + an-2 + ... + ao. 

(2) If a(an-lan-2' .. ao) is even, change ao (from 0 to 1 or 1 to 0). 

(3) Else, determine j such that aj = 1 and ai = 0 for all i with j > i (i.e., the first 
1 from the right), and then change aj+1 (from 0 to 1 or 1 to 0). 

We note that if, in step (3), we have an-lan-2' .. ao =f. 10· . ·0, then j ::; n - 2, so 
that j + 1 ::; n - 1 and aj+l is defined. We also note that in step (3) we may have 
j = 0, that is, ao = 1; in this case there is no i with i < j, and we change al as 
instructed in step (3). 

You may wish to check that this algorithm does give the Gray code of order 4 as 
already presented. 

Theorem 4.3.1 The preceding algorithm for generating the n-tuples of Os and Is 
produces the reflected Gray code of order n for each positive integer n. 

Proof. We prove the theorem by induction on n. It is clear that the algorithm applied 
to n = 1 produces the reflected Gray code of order 1. Let n > 1, and assume that 
the algorithm appli~d to n - 1 produces the reflected Gray of order n - 1. The first 
2n - 1 n-tuples of the reflected Gray code of order n consist of the (n - I)-tuples of 
the reflected Gray code of order n - 1 with a 0 attached at the beginning of each 
(n - I)-tuple. Since the (n - I)-tuple 10· ··0 occurs last in the reflected Gray code 
of order n - 1, it follows that the rule of succession applied to the first (2n - 1 - 1) 
n-tuples of the reflected Gray code of orde~ n has the same effect as applying the rule 
of succession to all but the last (n - I)-tuple of the reflected Gray code of order n - 1 
and then attaching a O. Hence it is a consequence of the inductive hypothesis that the 
rule of succession produces the first half of the reflected Gray code of order n. The 



108 CHAPTER 4. GENERATING PERMUTATIONS AND COMBINATIONS 

2n - l st n-tuple of the reflected Gray code of order n is OlO· .. O. Since O'(OlO· . ·0) = 1, 
an odd number, the rule of succession applied to 010· .. 0 gives 110· . ·0, which is the 
(2n - l + l)st n-tuple of the reflected Gray code of order n. 

Consider now two consecutive n-tuples in the second half of the reflected Gray 
code of order n: 

1 an-2'" ao 
1 bn- 2 ·•• boo 

Then an-2 ... ao immediately follows bn-2" . bo in the reflected Gray code of order 
n-l: 

bn - 2 .•. bo 
an-2'" ao· 

Now C7(an 2'" ao) and C7(bn- 2 ··· bo) are of opposite parity. One is even and the 
other is odd. Also, C7(lan-2'" ao) and 0'(an -2'" ao) are of opposite parity, and 
so are C7(lbn_. 2 .•• bo) and C7(bn - 2 ·· . bo). Suppose that C7(bn- 2 ·· . bo) is even. Then 
C7(an -2'" ao) is odd and C7(lan-2 ... ao) is even. Using the induction assumption, we 
see that an-2' .. ao is obtained from bn -2 ... bo by changing boo The rule of succession 
applied to lan-2 ... ao instructs us to change ao, and this gives Ibn - 2 ... bo as desired. 
Now suppose that 0'(bn-2" . bo) is odd. Then 0'(an-2' .. an) is even and 0'(lan -2'" ao) 
is odd. The rule of succession applied to lan -2 ... ao has the opposite effect from the 
rule of succession applied to bn - 2 ... boo Hence, it also follows by the induction assump­
tion that the rule of succession applied to lan-2'" ao gives Ibn- 2 ··· bo, as desired. 
Therefore, the theorem holds by induction. 0 

Example. Determine the 8-tuples that are successors of 10lO0110, 00011111, and 
OlOlOlOO in the reflected Gray code of order 8. 

Because 0'(lOlO0110) = 4 is an even number, lO100111 follows 10100110. Because 
0'(00011111) = 5is an odd number, then in step (3) of the algorithm j = 0 so that 
00011101 follows 00011111. Since 0'(OlOlO100) = 3, 01011100 follows OlOlOlO0. 0 

We have described two linear orderings of the 2n binary n-tuples: the lexicographic 
order obtained, starting with 00· .. 0, by using base 2 arithmetic; and the reflected 
Gray code order, which also starts with 00··· O. The lexicographic order corresponds 
to the integers from 0 to 2n - 1 in base 2, and we can think of the reflected Gray 
code order as listing the binary n-tuples in a specified order from 0 to 2n - 1. Let 
an-l ... alaO be a binary n-tuple. We can say explicitly in what place this binary 
n-tuple occurs on the list in Gray code or·der. For i = 0, 1, ... ,n - 1, let 

if an-l + ... + ai is even, and 
if an-l + ... + ai is odd. 
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Then an-I" . alaO is in the same place on the Gray code order list as bn- l ... blbo is 
on the lexicographic order list. Put another way, an-I' .. alaO is in place 

k = bn - I x 2n - l + ... + bI X 2 + bo x 20 

on the Gray code order list. We leave this verification as an exercise. 

4.4 Generating r-Subsets 

In Section 4.3, we described two orderings for the subsets of a set of n elements and 
corresponding algorithms based on a rule of succession for generating the subsets. We 
now consider only the subsets of a fixed size r and seek a method to generate these 
subsets. One way to do this is to generate all subsets and then go through the list 
and select those that contain exactly r elements. This is obviously a very inefficient 
approach. 

Example. In Section 4.3, we listed all the 4-subsets of {I, 2, 3, 4} in the squashed 
ordering. Selecting the 2-subsets from among them, we get the squashed ordering of 
the 2-subsets of {I, 2, 3, 4}: 

1,2 
1,3 
2,3 
1,4 
2,4 
3,4. 

o 

In this section, we develop an algorithm for a lexicographic ordering of the r-subsets 
of a set of n elements, where r is a fixed integer with 1 :s r :s n. We now take our set 
to be the set 

S={1,2, ... ,n} 

consisting of the first n positive integers. This gives us a natural order, 

1 < 2 < ... < n, 

on the elements of S. Let A and B be two r-su bsets of the set {I, 2, ... , n}. Then 
we say that A precedes B in the lexicogmphic order provided that the smallest integer 
which is in their union AU B, but not in their intersection An B (that is, in one but 
not both of the sets), is in A. 

Example. Let 5-subsets A and B of {I, 2, 3, 4, 5, 6,7, 8} be given by 

A = {2,3,4, 7,8}, B = {2, 3, 5, 6, 7}. 
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The smallest element that is in one, but not both, of the sets is 4 (4 is in A). Hence 
A precedes B in the lexicographic order. 0 

How is this a lexicographic order in the sense used in the preceding section and 
in the sense used in a dictionary? We think of the elements of S as the letters of 
an alphabet, where 1 is the first letter of the alphabet, 2 is the second letter, and 
so on. We want to think of the r-subsets as "words" of length r over the alphabet 
S and then impose a dictionary-type order on the words. But the letters in a word 
form an ordered sequence (e.g., part is not the same word as tmp), and for subsets, 
as we have learned, order doesn't matter. Since order doesn't matter in a subset, let 
us agree that, whenever we write a subset of {I, 2, ... , n}, we write the integers in it 
from smallest to largest. Thus, we agree that an r-subset of S = {I, 2, ... , n} is to be 
written in the form 

aI, a2, ... , ar , where 1 ::; al < a2 < ... < ar ::; n. 

Let us also agree, for convenience, to write this r-subset as 

without commas; that is, as a word of length r. We now have established a convention 
for writing subsets that allows us to regard a subset as a word. But note that not all 
words are allowed. The only words that will be in our dictionary are those that have r 
letters from our alphabet 1,2, ... , n and for which the letters are in strictly increasing 
order (in particular, there are no repeated letters in our words). 

Example. We return to our previous example and now, with our established conven­
tions, write A = 23478 and B = 23567. We see that A and B agree in their first two 
letters and disagree in their third letter. Since 4 < 5 (4 comes earlier in our alphabet 
than 5), A precedes B in the lexicographic order. 0 

Example. We consider the lexicographic order of the 5-subsets of {I, 2, 3, 4, 5,6,7,8, 9} 
The first 5-subset is 12345; the last 5-subset is 56789. What 5-subset immediately fol­
lows 12389 (in our dictionary)? Among the 5-subsets that begin with 123, 12389 is the 
last. Among the 5-subsets that begin with 12 and don't have a 3 in the third position, 
12456 is the first. Thus, 12456 immediately follows 12389. 0 

We generalize this example and determine, for all but the last word in our dictio­
nary, the word that immediately follows it. 

Theorem 4.4.1 Let ala2'" ar be an r-subset of {I, 2, ... , n}. The first r-subset in 
the lexicogmphic ordering is 12·· . r. The last r-subset in the lexicographic ordering is 
(n-r+1)(n-r+2).·· n. Assume that ala2'" ar =1= (n-r+1)(n-r+2)··· n. Let k be 
the largest integer such that ak < nand ak + 1 is different from each of ak+1,'" , ar . 

Then the r-subset that is the immediate successor of ala2 ... ar in the lexicogmphic 
ordering is 
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Proof. It follows from the definition of the lexicographic order that 12· .. r is the first 
and (n - r + 1)(n - r + 2) ... n is the last r-subset in the lexicographic ordering. Now 
let ala2'" a r be any r-subset other than the last, and determine k as indicated in the 
theorem. Then 

where 
ak + 1 < n - r + k + 1. 

Thus ala2'" ar is the last r-subset that begins with al ... ak-Iak. The r-subset 

is the first r-subset that begins al ... ak-Iak + 1 and hence is the immediate successor 
of ala2 ... ar' 0 

From Theorem 4.4.1, we conclude that the next algorithm generates the r-subsets 
of {I, 2, ... , n} in lexicographic order. 

Algorithm for generating the r-subsets of {1,2, ... ,n} 
in lexicographic order 

Begin with the r-subset ala2'" a r = 12··· r. 
While ala2'" ar i= (n - r + 1)(n - r + 2)· .. n, do the following: 

(1) Determine the largest integer k such that ak + 1 ::; nand ak + 1 is not one of 
aI, a2,···, ar' 

(2) Replace ala2 '" ar with the r-subset 

Example. We apply the algorithm to generate the 4-subsets of S = {I, 2, 3, 4, 5, 6} 
and obtain the following (using three columns): 

1234 1256 2345 
1235 1345 2346 
1236 1346 2356 
1245 1356 2456 
1246 1456 3456. 

0 

Combining the algorithm for generating permutations of a set with that for generat­
ing r-subsets of an n-element set, we obtain an algorithm for generating r-permutations 
of an n-element set. 
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Example. Generate the 3-permutations of {I, 2, 3, 4}. We first generate the 3-subsets 
in lexicographic order: 123, 124, 134, 234. For each 3-subset, we then generate all of 
its permutations: 

123 124 134 234 
132 142 143 243 
312 412 413 423 
321 421 431 432 
231 241 341 342 
312 214 314 324. 

0 

We conclude by determining the position of each r-subset in the lexicographic order 
of the r-subsets of {I, 2, ... ,n}. 

Theorem 4.4.2 The r-subset ala2 ... ar of {I, 2, ... ,n} occurs in place number 

in the lexicographic order of the r-subsets of {I, 2, ... , n}. 

Proof. We first count the number of r-subsets that come after ala2 ... ar: 

(1) There are (n~al) r-subsets whose first element is greater thap al that come after 
ala2' .. ar' 

(2) There are C.-=-~2) r-subsets whose first element is al but whose second element 
is greater than a2 that come after al a2 ... ar. 

- 1) There are (n-~r-l) r-subsets that begin al'" ar-2 but whose (1' - l)st element 
is greater than ar-l that come after ala2 ... ar' 

(1') There are (nIar) r-subsets that begin al ... ar-l but whose rth element is greater 
than ar that come after ala2'" ar' 

Subtracting the number of r-subsets that come after aja2'" ar from the total 
number (~) of r-subsets, we find that the place of ala2 ... ar is as given in the theorem. 
o 

Example. In which place is the subset 1258 among the 4-subsets of {I, 2, 3,4,5,6,7, 8} 
in lexicographic order? 

We apply Theorem 4.4.2 and find that 1258 is in place 

G) -G) -e) -G) -G) = 12. 

o 
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4.5 Partial Orders and Equivalence Relations 

In this chapter we have defined various "natural" orders on the sets of permutations, 
subsets, and r-rubsets of a finite set, namely, the orders determined by the generating 
schemes. These orders are "total orders" in the sense that there is a first object, a 
second object, a third object, ... , a last object. There is a more general notion of 
order, called partial order, which is extremely important and useful in mathematics. 
Perhaps the two partial orders which are not total orders that are most familiar are 
those defined by containment of one set in another and divisibility of one integer by 
another. These are partial orders in the sense that, given any two sets, neither need 
be a subset of the other, and given any two integers, neither need be divisible by the 
other. 

To give a precise definition of a partial order, it is important to know what is 
meant in mathematics by a relation. Let X be a set. A relation on X is a subset R 
of the set X x X of ordered pairs of elements of X. We write aRb (a is related to b), 
provided that the ordered pair (a, b) belongs to R; we also write a ~ b whenever ( a, b) 
is not in R (a is not related to b). 

Example. Let X = {I, 2, 3, 4, 5, 6}. Write alb to mean that a is a divisor of b 
(equivalently, b is divisible by a). This defines a partial order on X and we have, for 
example, 2 1 6 and 3 y5. 

Now consider the collection P(X) of all subsets of X. For A and B in P(X), we 
write as usual A C;;; B, read A is contained in B, provided that every element of A 
is also an element of B. This defines a relation on P(X) and we have, in particular, 
that, {I} C;;; {1,3} and {1,2} g; {2,3}. 0 

The following are special properties that a relation R on a set X may have: 

1. R is reflexive, provided that x R x for all x in X. 

2. R is irreflexive, provided that x ~ x for all x in X. 

3. R is symmetric, provided that, for all x and y in X, whenever we have x R y we 
also have y R x. 

4. R is antisymmetric, provided that, for all x and y in X with x # y, whenever 
we have x R y, we also have y ~x. Equivalently, for all x and y in X, x R y and 
y R x together imply that x = y. 

5. R is transitive, provided that, for all x,y,z in X, whenever we have xRy and 
y Rz, we also have x Rz. 

Example. The relations of subset, C;;;, and divisibility, I, as used in the previous 
example are reflexive and transitive. The relation of subset is also antisymmetric, as 
is that of divisibility provided we consider only positive integers. 
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The relation of proper subset, C, defined by A c B, provided that every element 
of A is also an element of B and A =1= B, is irreflexive, antisymmetric, and transitive. 
The relation of less than or equal, ::;, on a set of numbers, is refiexive, antisymmetric, 
and transitive, while the relation of less than, <, is irrefiexive, antisymmetric, and 
transitive. 0 

A partial order on a set X is a reflexive, antisymmetric, and transitive relation 
R. A strict partial order on a set X is an irreflexive, antisymmetric, and transitive 
relation. Thus, S;;;, ::;, and I are partial orders, while C and < are strict partial orders. 16 

If a relation R is a partial order, we generally use the usual inequality symbol "::;" 
instead of R;17 the relation < defined by a < b if and only if a ::; b and a =1= b is then 
a strict partial order. (Conversely, starting from a strict partial order < on X, the 
relation::; defined by a ::; b if and only if a < b or a = b is a partial order.) 

A set X on which a partial order::; is defined is usually called a partially ordered 
set (or more simply, a poset) and denoted by (X, ::;). 

If R is a relation on a set X, then for x and y in X, x and yare compamble, 
provided that either x R y or y R x; x and yare incompamble otherwise.18 A partial 
order R on a set X is a total order, provided that every pair of elements of X is 
comparable. The standard relation::; on a set of numbers is a total order.19 

If X is a finite set and we list the elements of X in some linear order aI, a2, . .. ,an 
~ permutation of X), then by defining ai ::; aj provided that i ::; j (that is, provided 
that ai comes before aj in the permutation), it can be checked that we obtain a total 
order on X. We now show that every total order on X arises in this way. 

Theorem 4.5.1 Let X be a finite set with n elements. Then there is a one-to-one cor­
respondence between the total orders on X and the permutations of X. In particular, 
the number of different total orders on X is n!. 

Proof. We show by induction on n that each total order::; on X corresponds to a 
permutation aI, a2, ... ,an of X with al < a2 < ... < an- If n = 1, this is trivial. Let 
n > 1. We first show that there is a minimal element of X; that is, an element al 

such that b ::; al implies that b = al (equivalently, there is no element x with x < ad. 
Let a be any element of X. If a is not a minimal element, then there is an element 
b such that b < a. If b is not a minimal element, there is an element c such that 
c < b so that c < b < a. Continuing like this and using the fact that X is a finite set, 

16The relation is divisible by but does not equal is also a strict partial order. 
17It is important, then, to be aware that a :'0: b does not mean that a and b are numbers with a no 

bigger than b. The symbol ":'0:" now becomes an abstract symbol for a partial order. 
18Think of the phrase "x and yare incomparable" as an abstract version of the common phrase 

"one cannot compare apples and oranges," and so apples and oranges are incomparable. 
19This is one reason why we should be careful to distinguish between the abstract symbol ":'0:" for 

a partial order and the standard relation ":'0:" on numbers; the latter is a total order where any two 
numbers a and b are comparable (either a :'0: b or b :'0: a), but this property does not hold for a general 
partial order. 
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eventually we locate a minimal element al. Suppose there is an element x 1= al of X 
such that al 1- x. Since we have a total order, we must have x < aI, contradicting the 
minimality of al. Hence, al < x for all x in X different from al. Applying induction 
to the set of n - 1 elements of X different from aI, we conclude that these elements 
can be ordered a2, a3, ... , an with a2 < a3 < ... < an· Hence, aI, a2, a3, ... , an is a 
permutation of the elements of X with al < a2 < a3 < ... < an. 0 

As a consequence of Theorem 4.5.1, a finite totally ordered set is often denoted as 
al < a2 < ... < an, or simply as a permutation aI, a2,· .. , an· 

A partially ordered set can be represented geometrically. To illustrate this, we 
need to define the cover relation of a partially ordered set (X, :s). Let a and b be in 
X. Then a is covered by b (also expressed as b covers a), denoted a <c b, provided 
that a < b and no element x can be squeezed between a and b; that is, there does 
not exist an element x such that both a < x and x < b hold. If X is a finite set, 
then, by transitivity, the partial order :S is uniquely determined by its cover relation. 
Thus, the cover relation is an efficient way to describe a partial order. It follows from 
Theorem 4.5.1 that, if (X,:S) is a totally ordered set, then the elements of X can be 
listed as Xl, X2, ... , Xn such that Xl <c X2 <c .. , <c Xn. It is for this reason that a 
totally ordered set is also called a linearly ordered set. 

A diagram (sometimes called the Hasse diagram) of a finite partially ordered set 
(X, :S) is obtained by taking a point in the plane for each element of X, being careful 
to put the point for x below the point for y if x <c y, and connecting x and y by a 
line segment if and only if x is covered by y. (We put x below y to signify that x is 
covered by y.) 

I 
Figure 4.6 

Example. A totally ordered set of five elements is represented by the diagram, shown 
in Figure 4.6, of five vertical points, with four vertical line segments connecting the 
points. 0 

Example. The partially ordered set of subsets of the set {I, 2, 3} ordered by contain­
ment is represented by the diagram, shown in Figure 4.7, of a cube "sitting" on one 
of its corners. o 
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{1, 2, 3} 

{1,2} {2,3} 

{1 } {3} 

o 

Figure 4.7 

Example. The set of the first eight positive integers, partially ordered by "is a divisor 
of," is represented by the diagram in Figure 4.8. 0 

8 

4 6 

2 7 

Figure 4.8 

Let ::;1 and ::;2 be two partial orders on the same set X. Then the partially ordered 
set (X, ::;2) is an extension of the partially ordered set (X, ::;d, provided that whenever 
a ::;1 b holds, a ::;2 b also holds. In particular, an extension of a partially ordered set 
has more comparable pairs. We show that every finite partially ordered set (X, ::;) has 
a linear extension; that is, an extension which is a linearly ordered set. This means 
that it is possible to list the elements of X in a linear order Xl, X2, ... , Xn so that x, 
is listed before Xj whenever Xi < Xj; that is, if Xi < Xj, then i < j (here i < j means 
that i is a smaller integer than j). 

Theorem 4.5.2 Let (X,::;) be a finite partially ordered set. Then there is a linear 
extension of (X, ::;). 

Proof. There is a very simple algorithm for listing the elements of X in a linear order 
Xl, X2, ... , Xn to obtain a linear extension of (X, ::;): 

Algorithm for a linear extension of a partially ordered set 

(1) Choose a minimal element Xl of X (with respect to the partial order ::;). 
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(2) Delete Xl from X and choose a minimal element X2 from among the remaining 
n - 1 elements. 

(3) Delete X2 from X, and choose a minimal element X3 from among the remaining 
n - 2 elements. 

(4) Delete X3 from X, and choose a minimal element X4 from among the remaining 
n - 3 elements. 

(n) Delete Xn-l from X, leaving exactly one element X n . 

We show that Xl, X2, . .. , Xn is a linear extension of (X, S) by arguing by contra­
diction. Suppose there are Xi and Xj such that X, < Xj but j < i. Then, in step (j) 
of the preceding algorithm, when we chose Xj, Xi was among the remaining elements, 
and since Xi < Xj, Xj was not a minimal element as required by the algorithm. Thus, 
Xl, X2,· .. , Xn is a linear extension of (X, s). 0 

Example. Let X = {I, 2, ... , n} be the set consisting of the first n positive integers, 
and consider the partially ordered set (X, I), where, as before, I means "is a divisor of." 
Since, if i I j, then i is smaller than j, it follows that 1,2, ... , n is a linear extension 
of (X, S). 0 

Example. Let X be a set of n elements, and consider the partially ordered set 
(P(X),~) of all subsets of X partially ordered by containment. Since A <;;; B implies 
that IAI S IBI, it follows that, if we start with the empty set and list all the one-element 
subsets in some order, then the two-element subsets in some order, then the three­
element subsets in some order, and so on, we obtain a linear extension of (P(X), ~). 
For instance, if n = 3 and X = {I, 2, 3}, then 

0,{1},{2}, {3},{1,2}, {1,3}, {2,3},{1,2,3} 

is a linear extension of (P(X), <;;;). o 

We continue our discussion of partially ordered sets in Chapter 5. 

We now define another special class of relations. Let X be a set. A relation R on 
X is an equivalence relation provided that it is reflexive, symmetric, and transitive. 
(Thus, an equivalence relation differs from a partial order only in that an equivalence 
relation is symmetric and a partial order is antisymmetric.) A relation that is an 
equivalence relation is usually denoted by"",". If a'" b, then we say that a is equivalent 
to b. Just as a partial order can be considered as a generalization of the usual order "s" 
of numbers, an equivalence relation can be considered as a generalization of equality 
"=" of numbers. We now show that equivalence relations on X naturally correspond 
to partitions of X into nonempty sets. 
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Let", be an equivalence relation on X. For each a in X, the equivalence class of 
a is the set 

[aJ={x:x",a} 

of all elements of X that are equivalent to a. Since a '" a, the equivalence class of a 
contains a and thus is nonempty. 

Example. Let X be a set of people, and define a relation R on X by aRb provided 
that a and b have the same age. Then it is easy to check that R is an equivalence 
relation, and the equivalence class of person a is the subset of X consisting of all people 
with the same age as a. Observe that two equivalence classes that have a common 
person are, in fact, identical; thus the distinct equivalence classes partition X. The 
next theorem verifies that this phenomenon holds for all equivalence relations. 0 

Theorem 4.5.3 Let", be an equivalence relation on a set X. Then the distinct 
equivalence classes partition X into nonempty parts. Conversely, given any partition 
of X into nonempty parts, there is an equivalence relation on X whose equivalence 
classes are the parts of the partition. 

Proof. First let ""," be an equivalence relation on X. We need to show that the 
different equivalence classes are pairwise disjoint and that their union is X. Each 
equivalence class is nonempty, and each element of X is contained in an equivalence 
class (the equivalence class of a contains a). It remains only to show that the distinct 
equivalence classes are pairwise disjoint, or, equivalently, that if two equivalence classes 
have a nonempty intersection, then they are identical sets. Suppose raj n [bJ f. 0, and 
let c be an element common to both raj and [bJ. Then c '" a (and so a '" c) and 
c '" b (and so b '" c). Let x be contained in [aJ. Then x '" a. Since a '" c and c '" b, 
transitivity implies that a '" b and then that x '" b; hence x is contained in [bJ. We 
conclude that raj ~ [bJ. In a similar way we conclude that [bJ <;;: raj and hence that 
raj = [bJ. 

Conversely, let AI, A 2 , . .. ,As be a partition of X into non empty sets. For x and 
y in X, define x '" y if and only if x and yare in the same part of the partition. Then 
it is straightforward to check that ""," is an equivalence relation on X whose distinct 
equivalence classes are AI, A2 , . .. , As. See Exercise 44. 0 

Example. Consider the set of n! permutations of 1,2, ... ,n. Define a relation R 
on this set by i l i2 ... in R hh ... jn provided that there is an integer k such that 
j132 . .. jn = ik ... inil ... ik-l· This defines an equivalence relation (Check it!) where 
the set of equivalence classes are in one-to-one correspondence with the set of circular 
permutations of 1,2, ... ,n. 0 

4.6 Exercises 

1. Which permutation of {I, 2, 3, 4, 5} follows 31524 in using the algorithm de­
scribed in Section 4.1? Which permutation comes before 31524? 
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2. Determine the mobile integers in 

48316725. 

3. Use the algorithm of Section 4.1 to generate the first 50 permutations {I, 2, 3, 4, 5}, 

starting with 12'3 '45. 
4. Prove that in the algorithm of Section 4.1, which generates directly the permu­

tations of {I, 2, ... , n}, the directions of 1 and 2 never change. 

5. Let ili2" . in be a permutation of {I, 2, ... , n} with inversion sequence bl , b2 , .•. , b 
and let k = bl + b2 + ... + bn. Show by induction that we cannot bring iri2 ... in 
to 12· .. n by fewer than k successive switches of adjacent terms. 

6. Determine the inversion sequences of the following permutations of {I, 2, ... ,8}: 

(a) 35168274 

(b) 83476215 

7. Construct the permutations of {I, 2, ... ,8} whose inversion sequences are 

(a) 2,5,5,0,2,1,1,0 

(b) 6,6,1,4,2,1,0,0 

8. How many permutations of {I, 2, 3, 4, 5, 6} have 

(a) exactly 15 inversions? 

(b) exactly 14 inversions? 

(c) exactly 13 inversions? 

9. Show that the largest number of inversions of a permutation of {I, 2, ... , n} 
equals n(n -1) /2. Determine the unique permutation with n(n -1) /2 inversions. 
Also determine all those permutations with one fewer inversion. 

10. Bring the permutations 256143 and 436251 to 123456 by successive switches of 
adjacent numbers. 

11. Let S = {X7, X6, ... , Xl, xo}. Determine the 8-tuples of Os and Is corresponding 
to the following subsets of S: 

(a) {X5,X4,X3} 

(b) {X7,X5,X3,XI} 

(c) {X6} 
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12. Let S = {X7, X6, ... , Xl, xo}. Determine the subsets of S corresponding to the 
following 8-tuples: 

(a) 00011011 

(b) 01010101 

(c) 00001111 

13. Generate the 5-tuples of Os and Is by using the base 2 arithmetic generating 
scheme and identify them with subsets of the set {X4, X3, X2, Xl, Xo}. 

14. Repeat Exercise 13 for the 6-tuples of Os and Is. 

15. For each of the following subsets of {X7, X6, ... , Xl, xo}, determine the subset 
that immediately follows it by using the base 2 arithmetic generating scheme: 

(a) {X4,XI,XO} 

(h) {X7,X5,X3} 

(c) {X7, X5, X4, X3, X2, Xl, xo} 

(d) {xo} 

16. For each of the subsets (a), (b), (c), and (d) in the preceding exercise, deter­
mine the subset that immediately precedes it in the base 2 arithmetic generating 
scheme. 

17. Which subset of {X7, X6, ... , Xl, xo} is 150th on the list of subsets of S when the 
base 2 arithmetic generating scheme is used? 200th? 250th? (As in Section 4.3, 
the places on the list are numbered beginning with 0.) 

18. Build (the corners and edges of) the 4-cube, and indicate the reflected Gray code 
on it. 

19. Give an example of a noncyclic Gray code of order 3. 

20. Give an example of a cyclic Gray code of order 3 that is not the reflected Gray 
code. 

21. Construct the reflected Gray code of order 5 by 

(a) using the inductive definition, and 

(b) using the Gray code algorithm. 

22. Determine the reflected Gray code of order 6. 

23. Determine the immediate successors of the following 9-tuples in the reflected 
Gray code of order 9: 
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(a) 010100110 

(b) 110001100 

(c) 111111111 

121 

24. Determine the predecessors of each of the 9-tuples in Exercise 23 in the reflected 
Gray code of order 9. 

25. * The reflected Gray code of order n is properly called the reflected binary Gray 
code since it is a listing of the n-tuples of Os and Is. It can be generalized 
to any base system, in particular the ternary and decimal system. Thus, the 
reflected decimal Gray code of order n is a listing of all the decimal numbers of 
n digits such that consecutive numbers in the list differ in only one place and the 
absolute value of the difference is 1. Determine the refleCted decimal Gray codes 
of orders 1 and 2. (Note that we have not said precisely what a reflected decimal 
Gray code is. Part of the problem is to discover what it is.) Also, determine the 
reflected ternary Gray codes of orders 1,2, and 3. 

26. Generate the 2-subsets of {I, 2, 3, 4, 5} in lexicographic order by using the algo­
rithm described in Section 4.4. 

27. Generate the 3-subsets of {I, 2, 3, 4, 5, 6} in lexicographic order by using the 
algorithm described in Section 4.4. 

28. Determine the 6-subset of {I, 2, ... ,1O} that immediately follows 2,3,4,6,9,10 
in the lexicographic order. Determine the 6-subset that immediately precedes 
2,3,4,6,9,,10. 

29. Determine the 7-subset of {I, 2, ... , 15} that immediately follows 1,2,4,6,8,14,15 
in the lexicographic order. Then determine the 7-subset that immediately pre­
cedes 1,2,4,6,8,14,15. 

30. Generate the inversion sequences of the permutations of {I, 2, 3} in the lexico­
graphic order, and write down the corresponding permutations. Repeat for the 
inversion sequences of permutations of {I, 2, 3, 4}. 

31. Generate the 3-permutations of {I, 2, 3, 4, 5}. 

32. Generate the 4-permutations of {I, 2, 3, 4, 5, 6}. 

33. In which position does the subset 2489 occur in the lexicographic order of the 
4-subsets of {I, 2, 3, 4, 5, 6, 7, 8, 9}? 

34. Consider the r-subsets of {I, 2, ... , n} in lexicographic order. 

(a) What are the first (n - r + 1) r-subsets? 
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(b) What are the last (r + 1) r-subsets? 

35. The complement A of an r-subset A of {I, 2, ... , n} is the (n - r )-subset of 
{I, 2, ... , n}, consisting of all those elements that do not belong to A. Let 
M = (~), the number of r-subsets and, at the same time, the number of (n - r)­
subsets of {I, 2, ... , n}. Prove that, if 

are the r-subsets in lexicographic order, then 

AAf, ... ,A3,A2,Al 

are the (n - r )-subsets in lexicographic order. 

36. Let X be a set of n elements. How many different relations on X are there? How 
many of these relations are reflexive? Symmetric? Antisymmetric? Reflexive 
and symmetric? Reflexive and anti-symmetric? 

37. Let R' and R" be two partial orders on a set X. Define a new relation R on X 
by x R y if and only if both x R' y and x R" y hold. Prove that R is also a partial 
order on X. (R is called the intersection of R' and R".) 

38. Let (Xl, ::::1) and (X2, ::::2) be partially ordered sets. Define a relation T on the 
set 

by 
(Xl, X2) T (x~, x~) if and only if Xl ::::1 x~ and X2 ::::2 x~. 

Prove that (Xl x X 2 , T) is a partially ordered set. (Xl x X2, T) is called the direct 
product of (Xl,::::Il and (X2, ::::2) and is also denoted by (Xl,::::Il x (X2, ::::2). 
More generally, prove that the direct product (Xl, ::::1) x (X2 , ::::2) x· .. x (Xm, ::::m) 
of partially ordered sets is also a partially ordered set. 

39. Let (J,::::) be the partially ordered set with J = {O, I} and with 0 < 1. By 
identifying the subsets of a set X of n elements with the n-tuples of Os and 
Is, prove that the partially ordered set (X, <;;;;) can be identified with the n-fold 
direct product 
(J,::::) x (J,::::) x .. , x (J,::::) (n factors). 

40. Generalize Exercise 39 to the multiset of all combinations of the multiset X = 
{nl' aI, n2' a2, ... , nm · am}. (Part of this exercise is to determine the "natural" 
partial order of these multisets.) 

41. Show that a partial order on a finite set is uniquely determined by its cover 
relation. 
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42. Describe the cover relation for the partial order ~ on the collection P(X) of an 
subsets of a set X. 

43. Let X = {a, b, c, d, e, J} and let the relation R on X be defined by aRb, b R c, 
c R d, aRe, e R f, f R d. Verify that R is the cover relation of a partially ordered 
set, and determine all the linear extensions of this partial order. 

44. Let AI, A2 , ... , As be a partition of a set X. Define a relation R on X by x Ry 
if and only if x and y belong to the same part of the partition. Prove that R is 
an equivalence relation. 

45. Define a relation R on the set Z of all integers by aRb if and only if a = ±b. Is 
R an equivalence relation on Z? If so, what are the equivalence classes? 

46. Let m be a positive integer and define a relation R on the set X of all nonnegative 
integers by aRb if and only if a and b have the same remainder when divided by 
m. Prove that R is an equivalence relation on X. How many different equivalence 
classes does this equivalence relation have? 

47. Let IIn denote the set of all partitions of the set {I, 2, ... ,n} into nonempty sets. 
Given two partitions 7r and a in fIn, define 7r :S a, provided that each part of 7r is 
contained in a part of a. Thus, the partition 7r can be obtained by partitioning 
the parts of a. This relation is usually expressed by saying that 7r is a refinement 
of a. 

(a) Prove that the relation of refinement is a partial order on fIn-

(b) By Theorem 4.5.3, we know that there is a one-to-one correspondence be­
tween fIn and the set An of all equivalence relations on {I, 2, ... ,n}. What 
is the partial order on An that corresponds to this partial order on fIn? 

(c) Construct the diagram of (fIn,:S) for n = 1,2,3, and 4. 

48. Consider the partial order :S on the set X of positive integers given by "is a 
divisor of." Let a and b be two integers. Let c be the largest integer such that 
c :S a and c :S b, and let d be the smallest integer such that a :S d and b :S d. 
What are c and d? 

49. Prove that the intersection R n S of two equivalence relations Rand S on a set 
X is also an equivalence relation on X. Is the union of two equivalence relations 
on X always an equivalence relation? 

50. Consider the partially ordered set (X,~) of subsets of the set X = {a, b, c} of 
three elements. How many linear extensions are there? 

5l. Let n be a positive integer, and let Xn be the set of n! permutations of {I, 2, ... ,n} 
Let 7r and a be two permutations in X n , and define 7r :S a provided that the set 
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of inversions of 7r is a subset of the set of inversions of (J'. Verify that this defines 
a partial order on X n , called the inversion poset. Describe the cover relation for 
this partial order and then draw the diagram for the inversion poset (H4, ::;). 

52. Verify that a binary n-tuple an-I' .. alaO is in place k in the Gray code order 
list where k is determined as follows: For i = 0,1, ... ,n - 1, let 

bi = { ~ if an-l + ... + ai is even, and 
if an-l + ... + ai is odd. 

Then 
k = bn - l x 2n - 1 + ... + bl X 2 + bo x 2°. 

Thus, an-I'" alaO is in the same place in the Gray code order list of binary 
n-tuples as bn - l ... blbo is in the lexicographic order list of binary n-tuples. 

53. Continuing with Exercise 52, show that an-I'" alaO can be recovered from 
bn-l ... blbo by an-l = bn - l , and for i = 0,1, ... ,n - 1, 

ai = { ~ if bi + bi +1 is even, and 
if bi + bi +1 is odd. 

54. Let (X,::;) be a finite partially ordered set. By Theorem 4.5.2 we know that 
(X,::;) has a linear extension. Let a and b be incomparable elements of X. 
Modify the proof of Theorem 4.5.2 to obtain a linear extension of (X,::;) such 
that a < b. (Hint: First find a partial order ::;' on X such that whenever x ::; y, 
then x ::;' y and, in addition, a ::;' b.) 

55. Use Exercise 54 to prove that a finite partially ordered set is the intersection of 
all its linear extensions (see Exercise 37). 

56. The dimension of a finite partially ordered set (X,::;) is the smallest number of 
its linear extensions whose intersection is (X, ::;). By Exercise 55, every partially 
ordered set has a dimension. Those that have dimension 1 are the linear orders. 
Let n be a positive integer and let il, i2, ... ,in be a permutation (J' of {I, 2, ... ,n} 
that is different from 1, 2, ... ,n. Let X = {(I, i l ), (2, i2),' .. , (n, in)}. Now define 
a relation R on X by (k, ik) R (I, il) if and only if k ::; 1 (ordinary integer inequal­
ity) and ik ::; il (again ordinary inequality); that is, (ik' iz) is not an inversion of 
(J'. Thus, for instance, if n = 3 and (J' = 2,3,1, then X = {(I, 2), (2, 3), (3, I)}, 
and (1,2) R (2, 3), but (1,2) ,R. (3,1). Prove that R is a partial order on X 
and that the dimension of the partially ordered set (X, R) is 2, provided that 
iI, i2, ... ,in is not the identity permutation 1,2, ... ,n. 

57. Consider the set of all permutations ili2 ... ,in of 1,2, ... ,n such that ik =f k for 
k = 1,2, ... ,n. (Such permutations are called demngements and are discussed in 
Chapter 6.) Describe an algorithm for generating a random derangement (modify 
the algorithm given in Section 4.1 for generating a random permutation). 
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58. Consider the complete graph Kn defined in Chapter 2, in which each edge is 
colored either red or blue. Define a relation on the n points of Kn by saying 
that one point is related to another point provided that the edge joining them is 
colored red. Determine when this relation is an equivalence relation, and, when 
it is, determine the equivalence classes. 

59. Let n :2: 2 be an integer. Prove that the total number of inversions of all n! 
permutations of 1,2, ... ,n equals 

_ ,n(n-1) 
- n. 4 . 

(Hint: Pair up the permutations so that the number of inversions in each pair is 
n(n - 1)/2.) 





Chapter 5 

The Binomial Coefficients 

The numbers (~) count the number of k-subsets of a set of n elements. They have 
many fascinating properties and satisfy a number of interesting identities. Because 
of their appearance in the binomial theorem (see Section 5.2), they are called the 
binomial coefficients. In formulas arising in the analysis of algorithms in theoretical 
computer science, the binomial coefficients occur over and over again, so a facility 
for manipulating them is useful. In this chapter, we discuss some of their elementary 
properties and identities. We prove a useful theorem of Sperner and then continue our 
study of partially ordered sets and prove an important theorem of Dilworth. 

5.1 Pascal's Triangle 

The binomial coefficients (~) have been defined in Section 2.3 for all nonnegative 
integers k and n. Recall that (~) = 0 if k > n and that (~) = 1 for all n. If n is 
positive and 1 :S k :S n, then 

( n) = n! = n(n - 1) ... (n - k + 1) 
k k!(n-k)! k(k-1)· .. 1· 

(5.1) 

In Section 2.3, we noted that 

This relation is valid for all integers k and n V{ith 0 :S k :S n. We also derived Pascal's 
formula, which asserts that 

( n) = (n - 1) (n - 1) 
k k + k-l . 
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By using Pascal's formula and the initial information 

(~) = 1 and (~) = 1, (n:2: 0), 

the binomial coefficients can be calculated without recourse to the formula (5.1). When 
the binomial coefficients are calculated in this way, the results are often displayed in 
an infinite array known as Pascal's triangle. This array, which appeared in Blaise 
Pascal's Traite du triangle anthmetique in 1653, is illustrated in Figure 5.1. 

n\k 0 1 2 3 4 5 6 7 8 " . 

0 1 
1 1 1 
2 1 2 1 
3 1 3 3 1 
4 1 4 6 4 1 
5 1 5 10 10 5 1 
6 1 6 15 20 15 6 1 
7 1 7 21 35 35 21 7 1 
8 1 8 28 56 70 56 28 8 1 

: 

Figure 5.1 Pascal's triangle 

Each entry in the triangle, other than those equal to 1 occurring on the boundary 
of the triangle, is obtained by adding together two entries in the row above: the one 
directly above and the one immediately to the left. This is in accordance with Pascal's 
formula. For instance, in row n = 8, we have 

G) = 56 = 35 + 21 = C) + G)' 
Many of the relations involving binomial coefficients can be discovered by careful 

examination of Pascal's triangle. The symmetry relation 

is readily noticed in the triangle. The identity 
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of Theorem 3.3.2 is discovered by adding the numbers in a row of Pascal's triangle. 
The numbers G) = n in column k = 1 are the counting numbers. The numbers 
(~) = n( n - 1)/2 in column k = 2 are the so-called triangular numbers, which equal 
the number of dots in the triangular arrays of dots illustrated in Figure 5.2 . 

• 
• • • 

3 
• 

• 
• • 

• 
6 

• 

Figure 5.2 

• 
• • 

• • • 
• • • • 

10 

The numbers (~) = n(n - l)(n - 2)/3! in column k = 3 are the so-called tetrahedral 
numbers, and they equal the number of dots in tetrahedral arrays of dots (think 
of stacked cannon balls). Try now to examine Pascal's triangle for other relations 
involving binomial coefficients. 

Another interpretation can be given to the entries of Pascal's triangle. Let n be a 
nonnegative integer and let k be an integer with 0 ::; k ::; n. Define 

p(n, k) 

as the number of paths from the top left corner (the entry (~) = 1) to the entry G), 
where in each path we move from one entry to the entry in the next row immediately 
below it or immediately to its right. The two types of moves allowed in going from 
one entry to the next on the path are illustrated in Figure 5.3. 

I~ 
(a) (b) 

Figure 5.3 

We define p(O,O) to be 1, and, for each nonnegative integer n, we have 

p(n,O) = 1 (we must move straight down to reach (~} 

and 

p(n,n)=l (we must move diagonally to reach (~)). 

We note that each path from (g) to G) is either 



130 CHAPTER 5. THE BINOMIAL COEFFICIENTS 

(1) a path from (g) to (n;;l) followed by one vertical move of type (a) or 

(2) a path from (g) to (~=D followed by one diagonal move of type (b). 

Thus, .by the addition principle, we have 

p(n,k) = p(n -1,k) +p(n -1,k -1), 

a Pascal-type relation for the numbers p(n, k). The numbers p(n, k) are computed in 
exactly the same way as the binomial coefficients G), starting with the same initial 
values. Hence, for all integers nand k with 0 ::; k ::; n, 

p(n, k) = (~). 

Consequently, the value of an entry (~) of Pascal's triangle represents the number of 
paths from the top left corner to that entry, using only moves of types (a) and (b). 
Therefore, we have another combinatorial interpretation of the numbers G). 

5.2 The Binomial Theorem 

The binomial coefficients receive their name from their appearance in the binomial 
theorem. The first few cases of this theorem should be familiar algebraic identities. 

Theorem 5.2.1 Let n be a positive integer. Then, for all x and y, 

In summation notation, 

First proof. Write (x + y)n as the product 

(x + y)(x + y) ... (x + y) 

of n factors each equal to x + y. We completely expand this product, using the 
distributive law, and group like terms. Since, for each factor (x + y), we can choose 
either x or y in multiplying out (x + y)n, there are 2n terms that result, and each can 
be arranged in the form xn-kyk for some k = 0, 1, ... ,n. We obtain the term xn-kyk 
by choosing y in k of the n factors and x (by default) in the remaining n - k factors. 
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Thus, the number of times the term xn-kyk occurs in the expanded product equals 
the number (~) of k-subsets of the set of n factors. Therefore, 

Second proof. The proof is by induction on n. It's more cumbersome and helps us 
appreciate the combinatorial viewpoint given in the first proof. If n = 1, the formula 
becomes 

(x + y)l = t G)Xl-kyk = G)xlyO + G)XOyl = X + y, 
k=O 

and this is clearly true. We now assume that the formula is true for a positive integer 
n and prove that it is true when n is replaced by n + 1. We write 

(x + yt+1 = (x + y)(x + y)n, 
which, by the induction assumption, becomes 

(x+y)n+l = (x+Y)(~G)xn-kyk) 

x (~(~)xn-kyk) +y (~(~)xn-kyk) 

t (~)xn+l-kyk + t (~)xn-kyk+1 
k=O k=O 
(~)xn+l + t G)xn+1-kyk 

k=l 

+ y: G)xn-kyk+l + (~)yn+l. 
k=O 

Replacing k by k - 1 in the last summation, we obtain 

Hence, 
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which, using Pascal's formula, becomes 

(x + y)n+l = Xn+1 + t (n; 1) xn+l-kyk + yn+l. 

k=l 

Since (ntl) = (~!D = 1, we may rewrite this last equation and obtain 

This is the binomial theorem with n replaced by n + 1, and the theorem holds by 
induction. 0 

The binomial theorem can be written in several other equivalent forms: 

(x + y)n = t (n: k)xn- kyk , 
k=O 

(x + yt t (n: k)xkyn- k , 
k=O 

(x + yt = t (~)xkyn-k. 
k=O 

The first of these follows from Theorem 5.2.1 and the fact that 

The other two follow by interchanging x with y. 

The case y = 1 occurs sufficiently often to record it now as a special case. 

Theorem 5.2.2 Let n be a positive integer. Then, for all x, 

The special cases n = 2,3,4 of the binomial theorem are 

(x + y)2 

(x + y)3 

(x + y)4 

x 2 + 2xy + y2, 

x 3 + 3x2y + 3xy2 + y3, and 

X4 + 4x3y + 6x2y2 + 4xy3 + y4. 
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We note that the coefficients that occur in these expansions are the numbers in the 
row of Pascal's triangle. From Theorem 5.2.1 and the construction of Pascal's triangle, 
this is always the case. 

We now consider some additional identities satisfied by the binomial coefficients. 
The identity 

(n and k positive integers) 

follows immediately from the fact that (~) = 0 if k > nand 

The identity 

n(n - 1)· .. (n - k + 1) 
k(k - 1) ... 1 

for 1::; k::; n. 

(5.2) 

(5.3) 

has already been proved as Theorem 3.3.2, but it also follows from the binomial the­
orem by setting x = y = 1. If we set x = 1, y = -1 in the binomial theorem, then we 
obtain the alternating sum 

(5.4) 

Thansposing the terms with a negative sign, we can also write this as 

(5.5) 

The identity (5.5) can be interpreted as follows: If S is a set of n elements, then the 
number of subsets of S with an even number of elements equals the number of subsets 
of S with an odd number of elements. Indeed, since the two sums are equal and, by 
(5.3), add up to 2n , both have the value 2n - l ; that is, 

(5.6) 

(5.7) 

We can verify these identities by combinatorial reasoning as follows: Let S = 
{Xl, X2, ... ,xn } be a set of n elements. We can think of subsets of S as resulting from 
the following decision process: 
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(1) we consider Xl and decide either to put it in or leave it out (two choices); 

(2) we consider X2 and decide either to put it in or leave it out (two choices); 

(n) we consider Xn and decide either to put it in or leave it out (two 
choices). 

We have n decisions to make each with two choices. Thus, there are 2n subsets as 
we know by (5.3). 

Now suppose we want to choose a subset with an even number of elements. Then 
as before we have two choices for each of Xl, ... , Xn-l. But when we get to Xn, we have 
only one choice. For if we have chosen an even number of the elements Xl, X2, ... , Xn-l, 

we must leave Xn out; if we have chosen an odd number of the elements Xl, X2, •.. , Xn-l, 

we must put Xn in. Hence, the number of subsets of S with an even number of elements 
equals 2n-l. Since the left side of (5.6) also counts the number of subsets of S with 
an even number of elements, (5.6) holds. In a similar way we verify (5.7). (However, 
now that we know that both (5.3) and (5.6) hold, so does (5.7).) 

Using identities (5.2) and (5.3), we can derive the following identity: 

(5.8) 

To see this, we first note that it follows from (5.2) that (5.8) is equivalent to 

( n - 1) (n - 1) (n - 1) n 0 + n 1 + ... + n n _ 1 = n2n -1, (n 2 1). (5.9) 

But now, by (5.3), with n replaced by n - 1, 

n +n +···+n (n - 1) (n - 1) (n - 1) 
o 1 n- 1 

2n - 1 n . 

Thus, (5.9) and hence (5.8) hold. Another way to verify (5.8) is the following: By the 
binomial theorem, 
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If we differentiate both sides with respect to x, we obtain 

Substituting x = 1, we get (5.8). 

A number of interesting identities can be derived by successive differentiation and 
multiplication of the binomial expansion by x. For brevity we use the summation 
notation now. We begin with 

(5.10) 

Differentiating both sides of (5.10) with respect to x, we get 

(5.11 ) 

Substituting x = 1 in (5.11), we get 

which is identity (5.8) again. Multiplying (5.11) by x, we get 

(5.12) 

Differentiating both sides of (5.12) with respect to x, we now get 

n [(1 + x)n-l + (n - l)x(l + x)n-2] = t k2 G)xk - 1 . 

k=l 

(5.13) 

Substituting x = 1 in (5.13), we obtain 

(5.14) 

hence, 

(5.15) 
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By alternately differentiating with respect to x and multiplying by x, starting from 
(5.10), we can obtain an identity for 

for any positive integer p, but this gets increasingly complicated as p gets large. 
An identity for the sum of the squares of the numbers in the rows of Pascal's 

triangle is 

(5.16) 

Identity (5.16) can be verified by combinatorial reasoning. Let S be a set with 2n 
elements. The right side of (5.16) counts the number of n-subsets of S. We partition S 
into two subsets, A and B, of n elements each. We use this partition of S to partition 
the n-subsets of S. Each n-subset of S contains a number k of elements of A, and the 
,emaining n - k elements come from B. Here, k may be any integer between 0 and n. 
We partition the n-subsets of S into n + 1 parts, 

where Ck consists of those n-subsets which contain k elements from A and n - k 
elements from B. By the addition principle, 

(5.17) 

An n-subset in Ck is obtained by choosing k elements from A (there are (~) choices) and 
then (n - k) elements from B (there are (n~k) choices). Hence, by the multiplication 
principle, 

Substituting this into (5.17), we obtain 

and this proves (5.16). (A generalization of this identity, called the Vandermonde 
convolution, is given in Exercise 25.) 

We now extend the domain of definition of the numbers G) to allow n to be any 
real number and k to be any integer (positive, negative, or zero). 



5.2. THE BINOMIAL THEOREM 137 

Let r be a real number and let k be an integer. We then define the binomial 
coefficient m by 

For instance, 

{ 
r(r-1)···(r-k+1) 

G) = ~ k! 

if k 2: 1 

if k = 0 
if k ::; -l. 

C~2) (5/2)(3/2)(1/2)( -1/2) -5 
4! 128' 

(~8) (-8)( -9) 
= 36, 

2 

C~2) 1, and 

(!2) = o. 

Pascal's formula and formula (5.2), namely, 

(r) = (r-1) (r-1) d k(r) = (r-1) k k +k-1 an k r k_1, 
are now valid for all rand k. Each of these formulas can be verified by direct substi­

tution. By iteration of Pascal's formula, we can obtain two summation formulas for 
the binomial coefficients. 

Consider Pascal's formula, 

with k equal to a positive integer. We can apply Pascal's formula to either of the 
binomial coefficients on the right and obtain an expression for (~) as a sum of three 
binomial coefficients. Suppose we repeatedly apply Pascal's formula to the last bino­
mial coefficient that appears in it (the one with the smaller lower argument). We then 
obtain 
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The last term (r~;-l) has value ° and can be deleted. If we replace r with r + k + 1 
in the summation above and transpose terms, we obtain 

(5.18) 

Identity (5.18) is valid for all real numbers r and all integers k. Notice that in (5.18) 
the upper argument starts with some number r, the lower argument starts with 0, 
and these arguments are successively increased by 1; the sum is then the binomial 
coefficient whose upper argument is 1 more than the last upper argument and whose 
lower argument is the last lower argument. 

Now suppose we repeatedly apply Pascal's formula to the first binomial coefficient 
that appears in it. For simplicity, we now assume that r is a positive integer n, and 
we also assume that k is a positive integer. 

Using the fact that (~) = ° (and so we can drop this term), replacing n with n + 1, 
and replacing k with k + 1, we obtain 

(5.19) 

The identity (5.19) is valid for all positive integers k and n. It is important to 
understand that this identity is just an iterated form of Pascal's formula. Of course. 
the first nonzero term in (5.19) is (~) = l. 

If we take k = 1 in (5.19), we obtain. 

(n + l)n 
1+2+···+(n-l)+n= 2 ' 
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the formula for the sum of the first n positive integers. 

The identities (5.18) and (5.19) can be proved formally by mathematical induction 
and Pascal's formula. These are left as exercises. Some other identities for the binomial 
coefficients are given in the exercises. 

5.3 Unimodality of Binomial Coefficients 

If we examine the binomial coefficients in a row of Pascal's triangle, we notice that 
the numbers increase for a while and then decrease. A sequence of numbers with this 
property is called unimodal. Thus, the sequence So, S1, S2,' .. ,Sn is unimodal, provided 
that there is an integer t with 0 ::; t ::; n, such that 

The number St is the largest number in the sequence. The integer t is not necessarily 
unique because the largest number may occur in the sequence more than once. For 
inst~nce, if So = 1, S1 =3, S2 = 3, and S3 = 2, then 

(t = 2) 

but also 
(t = 1). 

Theorem 5.3.1 Let n be a positive integer. The sequence of binomial coefficients 

G), G), G),···, (~) 
is a unimodal sequence. More precisely, if n is even, 

and if n is odd, 

(~)< G) < ... < (n~2), 

(n~2) > ... > (n: 1) > (~), 

(~) < (7) < ... < Cn -~1)/2) = Cn +n1)/2)' 

((n +n1)/2) > ... > (n: 1) > G)' 
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Proof. We consider the quotient of successive binomiai coefficients in the sequence. 
Let k be an integer with 1 ::::: k ::::: n. Then 

Hence, 

according to 

( nk ) _ n! 
k!(n-k)! 

V':l) - (k 1)!(~! k+1)! 

n-k+1 
k 

k < n - k + 1, k = n - k + 1 or k > n - k + 1. 

Now, k < n - k + 1 if and only if k < (n + 1) /2. If n is even, then, since k is an integer, 
k < (n + 1) /2 is equivalent to k ::::: n/2. If n is odd, then k < (n + 1) /2 is equivalent to 
k::::: (n - 1)/2. Hence, the binomial coefficients increase as indicated in the statement 
of the theorem. We now observe that k = n - k + 1 if and only if 2k = n + 1. If n is 
even, 2k # n + 1 for any k. If n is odd, then 2k = n + 1, for k = (n + 1)/2. Thus, for 
n even, no two consecutive binomial coefficients in the sequence are equal. For n odd, 
the only two consecutive binomial coefficients of equal value are 

That the binomial coefficients decrease as indicated in the statement of the theorem 
follows in a similar way. 0 

For any real number x, let Lx J denote the greatest integer that is less than or equal 
to x. The integer Lx J is called the floor of x. Similarly, the ceiling of x is the smallest 
integer IX 1 that is greater than or equal to x. For instance, 

L2.5J =2, L3J =3, L-1.5J =-2 

and 

12.51 = 3, 131 = 3, 1-1.51 = -1. 

We also have 

liJ = fil =i, ifniseven, 

and 

lnj n - 1 rnl n + 1. . 2" = -2- and 2" = -2-' If n IS odd. 
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Corollary 5.3.2 For n a positive integer, the largest of the binomial coefficients 

is 

Proof. The corollary follows from Theorem 5.3.1 and the preceding observations 
about the floor and ceiling functions. 0 

To conclude this section we discuss a generalization of Theorem 5.3.1 called Sperner' 
theorem. 1 Let S be a set of n elements. An antichain2 of S is a collection A of subsets 
of S with the property that no subset in A is contained in another. For example, if 
S={a,b,c,d}, then 

A = {{a,b},{b,c,d},{a,d},{a,c}} 

is an antichain. One way to obtain an antichain on a set S is to choose an integer 
k ::; n and then take Ak to be the collection of all k-subsets of S. Since each subset 
in Ak has k elements, no subset in Ak can contain another; hence, Ak is an antichain. 
It follows from Corollary 5.3.2, that such an antichain contains at most 

sets. For example, if n = 4 and S = {a, b, c, d}, the 2-subsets of S give the antichain 

C2 = {{a,b},{a,c},{a,d},{b,c},{b,d},{c,d}} 

of size 6. Can we do better by choosing subsets of more than one size? The negative 
answer to this question is the conclusion of Sperner's theorem. Before stating that 
theorem, we introduce a new concept. 

A collection C of subsets of S is a chain provided that for that each pair of subsets 
in C, one is contained in the other: 

If n = 5 and S = {I, 2, 3, 4, 5}, examples of chains, written using the containment 
relation, are 

{2} C {2,3,5} C {1,2,3,5} 

and 
o C {3} C {3,4} C {1,3,4} C'{1,3,4,5} C {1,2,3,4,5}. 

1 E. Sperner, Ein Satz iiber U ntermengen einer endlichen Menger [A theorem about subsets of finite 
sets], Math. Zeitschrijt, 27 (1928), 544-548. 

2In anticipation of the concept of chain to be defined shortly. 
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The second example is an example of a maximal chain in that it contains one subset 
of 8 of each possible size; equivalently, it is not possible to squeeze more subsets into 
the chain. In general, if 8 = {I, 2, ... , n}, a maximal chain is a chain 

where IAil = i for i = 0,1,2 ... , n. Each maximal chain of 8 is obtained as follows: 

(0) Start with the empty set. 

(1) Choose an element il in 8 to form Al = {iI}. 

(2) Choose an element i2 =F i l to form A2 = {il.i2}. 

(3) Choose an element i3 =F i l ,i2 to form A3 = {il ,i2,ia}. 

(n) Choose an element in =F iI, i2,·.·, in-l to form An = {iI, i2,···, in}. Obviously, 
An ={1,2, ... ,n}. 

Note that carrying out these steps is equivalent to choosing a permutation iI, i2, ... , in 

of {I, 2, ... , n}, and there is a one-to-one correspondence between maximal chains of 
8 = {1,2, ... ,n} and permutations of {1,2, ... ,n}. In particular, the number of 
maximal chains equals n!. More generally, given any A C 8 with 181 = k, the number 
of maximal chains containing A equals k!(n - k) (k! to get to A; (n - k)! to get from 
Ato {1,2, ... ,n}). 

It is a consequence of the definitions of chain and anti chain that a chain can contain 
at most one member of any antichain, that is, a chain and an antichain intersect in at 
most one member. 

Theorem 5.3.3 Let 8 be a set of n elements. Then an antichain on 8 contains at 
most (l~J) sets. 

Proof. 3 Let A be an antichain. We count in two different ways the number f3 of 
ordered pairs (A, C) such that A is in A, and C is a maximal chain containing A. 
Focusing first on one maximal chain C, since each maximal chain contains at most 
one subset in the antichain A, f3 is at most the number of maximal chains; that is, 
(3 ::; n!. Focusing now on one subset A in the antichain A, we know that, if IAI = k, 

3This elegant proof is due to D. Lubell, A Short Proof of Sperner's Theorem, J. Combinator-wl 
Theory, 1 (1966),299. 
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there are at most k!(n - k)! maximal chains C containing A. Let Qk be the number 
of subsets in the antichain A of size k so that IAI = I:~=o Qk. Then 

n 

j3 = L Qkk!(n - k)!, 
k=O 

and, since j3 ::; n!, we calculate that 

n L Qkk!(n - k)! ::; n! 
k=O t k!(n - k)! < 1 Qk , 

n. 
k=O 

n 

L~ 
k=O G) 

::; 1. 

By Corollary 5.3.2, G) is maximum when k = l n/2 J, and we get that 

as was to be proved. o 

If n is even, it can be shown that the only antichain of size (l~J) is the antichain 

of all ?,-subsets of S. If n is odd, the only antichains of this size are the antichain of 
all n;- -subsets of S and the antichain of all nIl-subsets of S. See Exercises 30-32. 

A stronger conclusion than that given in Theorem 5.3.3 can be obtained with a 
little more work. This is discussed in Section 5.6. 

5.4 The Multinomial Theorem 

The binomial theorem gives a formula for (x + y)n for each positive integer n. It can 
be generalized to give a formula for (x + y + z)n or, more generally, for the nth power 
of the sum of t real numbers: (Xl + X2 + ... + Xt)n. In the general formula, the role of 
the binomial coefficients is taken over by numbers called the multinomial coefficients, 
which are defined by 

( nl n2 ~ .. nt ) -, nl!n2~:' . nt!' 

Here, nl, n2,'" ,nt are nonnegative integers with 

(5.20) 
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Recall from Section 3.4 that (5.20) represents the number of permutations of a mul­
tiset of objects of t different types with repetition numbers nl, n2, ... ,nt, respectively. 
The binomial coefficient (~), for nonnegative nand k and having the value 

n! 
(k = 0,1, ... ,n) 

k!(n - k)!' 

in this notation becomes 

and represents the number of permutations of a multiset of objects of two types with 
repetition numbers k and n - k, respectively. 

In the same notation, Pascal's formula for the binomial coefficients with nand k 
positive is 

n-l 
n-k-l 

Pascal's formula for the multinomial coefficients is 

+ ( ni n2 ~ ~ 1 ... nt ) + ... + ( ni n2 ~ ~ ~t _ 1 ) . (5.21) 

Formula (5.21) can be verified by direct substitution, using the value of the multinomial 

coefficients in (5.20). For instance, let t = 3 and let nl, n2, and n3 be positive integers 
with ni + n2 + n3 = n. Then 

(n - I)! + (n - I)! + (n - I)! 
(nl - 1)!n2!n3! nl!(n2 - 1)!n3! nl!n2!(n3 - I)! 
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In the Exercises, a hint is given for a combinatorial verification of (5.21). 

Before stating the general theorem, we first consider a special case. Let Xl, X2, X3 

be real numbers. If we completely multiply out 

and collect like terms (you are urged to do so), we obtain the sum 

The terms that appear in the preceding sum are all the terms of the form x7' X~2 X~3 , 
where nl, n2, n3 are nonnegative integers with nl + n2 + n3 = 3. The coefficient of 
x7' X~2 X~3 in this expression is readily checked to be equal to 

More generally, we have the following multinomial theorem: 

Theorem 5.4.1 Let n be a positive integer. For all Xl, X2, .. · ,Xt, 

where the summation extends over all nonnegative integral solutions nl, n2, ... , nt of 
nl + n2 + '" + nt = n. 

Proof. We generalize the first proof of the binomial theorem. We write (Xl + X2 + 
... + Xt)n as a product of n factors, each equal to (Xl + X2 + ... + Xt). We completely 
expand this product, using the distributive law, and collect like terms. For each of 
the n factors, we choose one of the t numbers Xl, X2, .. . , Xt and form their product. 
There are t n terms that result in this way, and each can be arranged in the form 
x~' X~2 ... x~t , where nl, n2, ... , nt are nonnegative integers summing to n. We obtain 
the term x7' X~2 ... x~t by choosing Xl in nl of the n factors, X2 in n2 of the remaining 
n - nl factors, ... , Xt in nt of the remaining n - nl - ... - nt-l factors. By the 
multiplication principle, the number of time~ the term x~' X~2 ... x~t occurs is given 
by 
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We have already seen in Section 3.4 that this number equals the multinomial coefficient 

n! 

and this proves the theorem. o 

Example. When (Xl + X2 + X3 + X4 + X5)7 is expanded, the coefficient of XiX3Xlx5 

equals 

( 7) 7! 
201 3 1 = 2!O!l!3!1! = 420. 

o 

Example. When (2XI - 3X2 + 5X3)6 is expanded, the coefficient of X1X2X~ equals 

( 3 ~ 2 ) 23(_3)(5)2 = -36,000. 

o 

The number of different terms that occur in the multinomial expansion of (Xl + 
X2 + ... + xt)n equals the number of nonnegative integral solutions of 

It follows from Section 3.5 that the number of these solutions equals 

For instance, (Xl + X2 + X3 + X4)6 contains 

different terms if multiplied out completely. The total number of terms equals 46 . 

5.5 Newton's Binomial Theorem 

In 1676, Isaac Newton generalized the binomial theorem given in Section 5.2 to obtain 
an expansion for (x+y)<>, where Q is any real number. For general exponents, however, 
the expansion becomes an infinite series, and questions of convergence need to be 
considered. We shall be satisfied with stating the theorem and considering some 
special cases. A proof of the theorem can be found in most advanced calculus texts. 
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Theorem 5.5.1 Let a be a real number. Then, for all x and y with 0 ~ Ixl < Iyl, 

where 

( a) = a(a -1)··· (a - k + 1). 
k k! 

If a is a positive integer 71, then for k > 71, (~) = 0, and the preceding expansion 
becomes 

(x + yt = t G)xkyn-k. 
k=O 

This agrees with the binomial theorem of Section 5.2. 
If we set z = x/y, then (x +y)'" = y"'(z + I)"'. Thus, Theorem 5.5.1 can be stated 

in the equivalent form: For any z with Izl < 1, 

Suppose that 71 is a positive integer and we choose a to be the negative integer -71. 

Then 

Thus, for Izl < 1, 

-n( -71 - 1) ... (-71 - k + 1) 
k! 

k n(n + 1)· .. (n + k - 1) 
(-1) k! 

(_ll(n+~-l). 

Replacing z by -z, we obtain 

( _ )-n = 1 = 2:00 (71 + k - 1) k 
1 z () k z. l-z n 

k=O 

If 71 = 1, then (n+Z-l) = (~) = 1, and we obtain 

(5.22) 



148 CHAPTER 5. THE BINOMIAL COEFFICIENTS 

(Izl < 1) 

and 
1 00 

-" Zk 1-z ~ 
k=O 

(Izl < 1). (5.23) 

The binomial coefficient (n+~-l) that occurs in the expansion (5.22) is of a type 
that has occurred before in counting problems, and this suggests a possible combina­
torial derivation of (5.22). We start with the infinite geometric series (5.23). Then 

122 --- = (1 + z + z + ... ) ... (1 + z + z + ... ) (n factors). (5.24) 
(1 - z)n 

We obtain a term zk in this product by choosing zk 1 from the first factor, Zk2 from 
the second factor, ... , zkn from the nth factor, where k1, k2, . .. , kn are nonnegative 
integers summing to k: 

Thus, the number of different ways to get zk, that is, the coefficient of zk in (5.24), 
equals the number of nonnegative integral solutions of 

and we know this to be 

The binomial theorem can be used to obtain square roots to any desired accuracy. 
If we take a = !, then 

while, for k > 0, 

(~) = 1, 

!(!-1) ... (!-k+1) 
k! 

(_1)k-l 1 x 2 x 3 x 4 x ... x (2k - 3) x (2k - 2) 

2k 2 x 4 x ... x (2k - 2) x (k!) 

(_1)k-l (2k-2)! 

k x 22k- 1 (k - 1)!2 

(_1)k-l (2k - 2) 
k X 22k - 1 k - 1 . 
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Thus, for Izl < 1, 

For example, 

(1 + z)I/2 = 1 + ~ (_I)k-1 (2k - 2)zk 
L....J k X 22k - 1 k - 1 
k=l 

1 1 (2) 2 1 (4) 3 1 + "2 z - 2 X 23 1 z + 3 X 25 2 z - .... 

v'26 V16 + 4 = 4Vl + 0.25 

4 (1 + ~(0.25) - ~(0.25)2 + 116 (0.25)3 - ... ) 

4.472 .... 
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In Chapter 7 we shall apply the general binomial theorem in the solution of certain 
recurrence relations by generating functions. 

5.6 More on Partially Ordered Sets 

In Section 5.4, we discussed the notions of anti chain and chain in the special partially 
ordered set P(X) of all subsets of a set X. In the current section, we extend these 
notions to partially ordered sets in general, and prove some basic theorems. 

Let (X,::;) be a finite partially ordered set. An antichain is a subset A of X no 
pair of whose elements is comparable. In contrast, a chain is a subset C of X each 
pair of whose elements is comparable. Thus, a chain C is a totally ordered subset 
of X, and hence, by Theorem 4.5.2, the elements of a chain can be linearly ordered: 
Xl < X2 < ... < Xt. We usually present a chain by writing it in a linear order in this 
way. It follows immediately from definitions that a subset of a chain is also a chain 
and that a subset of an antichain is also an antichain. The important relationship 
between anti chains and chains, following from their definitions, is that 

IA n CI ::; 1 if A is an antichain and C is a chain. 

Example. Let X = {I, 2, ... , 10}, and consider the partially ordered set (X, I) whose 
partial order I is "is divisible by." Then {4, 6, 7, 9, 1O} is an antichain of size 5 since 
no integer in this set is divisible by any other, while 1 1 2 ·1 4 1 8 is a chain of size 4. 
There are no antichains of size 6 and no chains of size 5. 0 

Let (X,::;) be a finite partially ordered set. We now consider partitions of X into 
chains and also into antichains. Surely, if there is a chain C of size r, then, since no 
two elements of C can belong to the same antichain, X cannot be partitioned into 
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fewer than r antichains. Similarly, if there is an antichain A of size s, then, since no 
two elements of A can belong to the same chain, X cannot be partitioned into fewer 
that s chains. Our primary goal in this section is to prove two theorems that makes 
more precise this connection between antichains and chains. In spite of the "duality" 
between chains and antichains,4 the proof of one of these theorems is quite short and 
simple while that of the other is less so. 

Recall that a minimal element of.a partially ordered set is an element a such that 
no element x satisfies x < a. A maximal element is an element b such that no element 
y satisfies b < y. The set of all minimal elements of a partially ordered set forms an 
antichain, as does the set of all maximal elements. 

Theorem 5.6.1 Let (X,~) be a finite partially ordered set, and let r be the largest 
size of a chain. Then X can be partitioned into r but no fewer antichains. 

Proof. As already noted, X cannot be partitioned into fewer than r antichains. Thus, 
it suffices to show that X can be partitioned into r antichains. Let X I = X and let 
Al be the set of minimal elements of X. Delete the elements of Al from Xl to get 
X 2. For each element of X2, there is an element bf Al that is below it in the partial 
order. Let A2 be the set of minimal elements of X2. Delete the elements of A2 from 
X2 to get X3' For each element of X3, there is an el!'lment of A2 that is below it in the 
partial order. Let A3 be the set of minimal elements of X 3. We continue like this until 
we get to the first integer p such that Xp "f 0 but X p+l = 0. Then AI, A2, ... , Ap is a 
partition of X into antichains. Diagrammatically, we have 

Ap 

where for each element of Aj there is an element of Aj - l below it in the partial order 
(2 ~ j ~ p). Starting with an element ap of Ap , we can obtain a chain 

al < a2 < ... < ap, 

where al is in AI, a2 is in A2, .. , , ap is in Ap. Since r is the largest size of a chain, 
r 2: p. Since X is partitioned into p antichains, r ~ p. Hence r = p and the theorem 
is proved. 0 

'In a chain every pair of elements -is comparable; in an antichain every pair of elements is incom­
parable. 
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To illustrate Theorem 5.6.1, let X = {I, 2, ... , n} and consider the partially ordered 
set of all subsets of X partially ordered by inclusion. Then the largest size of a chain 
is n + 1; in fact, 

o c {I} C {1,2} C {I, 2, 3} C ... C {I, 2, ... , n} 

is such a chain. The collection P(X) of all subsets of X can be partitioned into 
n + 1 antichains, namely, the antichains consisting of all subsets of X of size k for 
k = 0, 1,2, ... , n. 

The "dual" theorem is generally known as Dilworth's theorem. 

Theorem 5.6.2 Let (X,~) be a finite partially ordered set, and let m be the largest 
size of an antichain. Then X can be partitioned into m but no fewer chains. 

Proof.5 As already noted, X cannot be partitioned into fewer than m chains. Thus it 
suffices to show that X can be partitioned into m chains. We prove this by induction 
on the number n of elements in X. If n = 1, then the conclusion holds trivially. 
Assume that n > 1. 

We consider two cases: 

Case 1. There is an antichain A of size m that is neither the set of all maximal 
elements nor the set of all minimal elements of X. 

In this case, let 

A+ = {x : x in X with a ~ x for some a in A}, 

the set of elements of X at or above some element of A, and let 

A- = {x : x in X with x ~ a for some a in A}, 

the set of elements of X at or below some element of A. Thus, A+ consists of all ele­
ments "above" A, and A-consists of all elements "below" A. The following properties 
hold: 

1. A+ =f. X (and thus IA+I < IXI), since there is a minimal element not in A; 

2. A- =f. X (and thus lA-I < IX!), since there is a maximal element not in A; 

3. A+ n A- = A, since, if there were an element x in A+ n A- not in A, then we 
would have al < x < a2 for some elements al and a2 in A, contradicting the 
assumption that A is an anti chain; 

4. A+ U A- = X, since, if there were an element x not in A+ U A-, A u {x} would 
be an antichain of larger size than A. 

5This particularly simple proof is taken from M. A. Perles, A Proof of Dilworth's Decomposition 
Theorem for Partially Ordered Sets, Ismel J. Math., 1 (1963), 105-107. 
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We apply the induction assumption to the smaller partially ordered sets A+ and A­
and conclude that A+ can be partitioned into m chains Ell E2, ... , Em, and A- can be 
partitioned into m chains F l , F2, .. . , Fm. The elements of A are the maximal elements 
of A-and so the last elements on the chains F1 , F2, ... , F m; the elements of A are also 
the minimal elements of A + and so the first elements on the chains E l , E2, ... , Em. 
We "glue" the chains together in pairs to form m chains that partition X. 

Case 2. There are at most two antichains of size m, and these are one or both of the 
set of all maximal elements and the set of all minimal elements. Let x be a minimal 
element and y a maximal element with x :S y (x may equal y). Then the largest size 
of an anti chain of X - {x, y} is m - 1. By the induction hypothesis, X - {x, y} can 
be partitioned into m - 1 chains. These chains, together with the chain x :S y, give a 
partition of X into m chains. 0 

Now consider the partially ordered set P(X) of all subsets of a set X = {l, 2, ... , n} 
of n elements. By Theorem 5.3.3. the largest size of an antichain of P(X) is the largest 
binomial coefficient (liJ)' Hence by Theorem 5.6.2, the collection of all subsets of X 

can be partitioned into (l i J) chains. Each chain will have to contain exactly one 

subset of X of size (liJ)' We now show how to construct such a partition into chains. 
Once we have done this, we will have another proof of Sperner's theorem. 

Here are partitions into chains for n = 1,2,3: 

n = 1: 

n =2: 

n = 3: 

o C {I}; 

o C {1} C {1,2}, 

{2}; 

o C {I} C {1,2} C {1,2,3}, 

{2} C {2,3}, 

{3} C {I, 3}. 

We can obtain a chain partition for the subsets of {1,2,3,4} from that shown for 
{I, 2, 3} as follows: .We take each chain with more than one subset in it (for n = 3 all 
chains shown have this property) and make two chains for n = 4: 
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(1) The first obtained by attaching at the end, the subset obtained by appending 4 
to the last subset of the chain, 

(2) The second obtained by appending 4 to all but the last subset of the chain (and 
deleting that last subset). 

Thus, the chain 

becomes 

the chain 

becomes 

and the chain 

becomes 

o C {I} C {1,2} C {1,2,3} 

o C {I} C {1,2} C {1,2,3} C {1,2,3,4} and 

{4} C {1,4} C {1,2,4}; 

{2} C {2,3} 

{2} C {2,3} C {2, 3, 4} and 

{2,4}; 

{3} C {1,3} 

{3} C {1,3} C {1,3,4} and 

{3,4}. 

Consequently, we have a chain partition of 6 = (~) chains of the subsets of {I, 2, 3, 4}. 
The chains in this partition for n = 4 have two properties: Each subset in a chain has 
one more element than the subset that precedes it (when there is a preceding subset). 
The size of the first subset in a chain plus the size of the last subset in the chain is 
n = 4. Similar properties hold for the chain partitions given for n = 1,2 and, 3. A 
chain partition of the subsets of {I, 2, ... , n} is a symmetric chain partition, provided 
that 

(1) Each subset in a chain has one more element than the subset that precedes it in 
the chain; and 

(2) The size of the first subset in a chain plus the size of the last subset in the chain 
equals n. (If the chain contains only one subset, then it is both first and last, so 
twice its size is n; that is, its size is n/2 and n is even.) 
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Each chain in asymmetric chain partition must contain exactly one Ln/2J-subset (and 
exactly one r n/21-subset); hence, the number of chains in a symmetric chain partition 
equals 

A symmetric chain decomposition for {I, 2, ... ,n} can be obtained inductively from a 
symmetric chain decomposition of {I, 2, ... ,n - I}, as previously illustrated for n = 3. 
We -take each chain 

in a symmetric chain partition for {I, 2, ... ,n - I} and, depending on whether k = 
lor> 1, obtain one or two chains for {I, 2, ... ,n}: 

Al C A2 C ... C Ak C Ak U {n}, where IAII + IAk U {n}1 = n 

and 
Al U {n} C ... C A k- l U {n} where IAI U {n}1 + IAk- 1 U {n}1 = n. 

(If k = 1, the second chain does not occur.) Every subset of {I, 2, ... , n} occurs in 
exactly one of the chains constructed in this way; hence, the resulting collection of 
chains forms a symmetric chain partition for {I, 2, ... ,n}. 

The number of chains in a symmetric chain partition of {I, 2, ... ,n} is 

Thus, the number of subsets in an antichain of {I, 2, ... , n} is at most equal to 

Thus we have a more "constructive" proof of Sperner's theorem. 

5.7 Exercises 

1. Prove Pascal's formula by substituting the values of the binomial coefficients as 
given in equation (5.1). 

2. Fill in the rows of Pascal's triangle corresponding to n = 9 and 10. 

3. Consider the sum of the binomial coefficients along the diagonals of Pascal's 
triangle running upward from the left. The first few are 1,1,1 + 1 = 2,1 + 2 = 
3, 1 + 3 + 1 = 5, 1 + 4 + 3 = 8. Compute several more of these diagonal sums, 
and determine how these sums are related. (Compare them with the values of 
the counting function f in Exercise 4 of Chapter 1.) 
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4. Expand (x + y)5 and (x + y)6 using the binomial theorem. 

5. Expand (2x - y)7 using the binomial theorem. 

6. What is the coefficient of x 5y13 in the expansion of (3x - 2y)lB? What is the 
coefficient of x By9? (There is not a misprint in this last question!) 

7. Use the binomial theorem to prove that 

Generalize to find the sum 

for any real number r. 

8. Use the binomial theorem to prove that 

9. Evaluate the sum 

10. Use combinatorial reasoning to prove the identity (5.2). 

11. Use combinatorial reasoning to prove the identity (in the form given) 

( n) _ (n - 3) = (n - 1) + (n - 2) + (n - 3). 
k k k-l k-l k-l 

(Hint: Let S be a set with three distinguished elements a, b, and c and count 
certain k-subsets of S.) 

12. Let n be a positive integer. Prove that 

if n is odd 
if n = 2m. 

(Hint: For n = 2m, consider the coefficient of xn in (1 - x2)n = (1 + x )n(1- x)n.) 
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13. Find one binomial coefficient equal to the following expression: 

14. Prove that 

(r) = _r (r -1) 
k r - k k 

for r a real number and k an integer with r =1= k. 

15. Prove, that for every integer n > 1, 

16. By integrating the binomial expansion, prove that, for a positive integer n, 

1+- +- + ... +-- - . 1 (n) 1 (n) 1 (n) _ 2n+1 - 1 
2 1 3 2 n+1 n n+1 

17. Prove the identity in the previous exercise by using (5.2) and (5.3). 

18. Evaluate the sum 

1 (n) 1 (n) 1 (n) n 1 (n) 1 - - + - - - + ... + (-1) -- . 
2 1 3 2 4 3 n+1 n 

19. Sum the series 12 + 22 + 32 + ... + n 2 by observing that 

and using the identity (5.19). 

20. Find integers a, b, and c such that 

for all m. Then sum the series 13 + 23 + 33 + ... + n 3. 

21. Prove that, for all real numbers r and all integers k, 
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22. Prove that, for all real numbers r and all integers k and m, 

23. Every day a student walks from her home to school, which is located 10 blocks 
east and 14 blocks north from home. She always takes a shortest walk of 24 
blocks. 

(a) How many different walks are possible? 

(b) Suppose that four blocks east and five blocks north of her home lives her 
best friend, whom she meets each day on her way to schoo!. Now how many 
different walks are possible? 

(c) Suppose, in addition, that three blocks east and six blocks north of her 
friend's house there is a park where the two girls stop each day to rest and 
play. Now how many different walks are there? 

(d) Stopping at a park to rest and play, the two students often get to school 
late. To avoid the temptation of the park, our two students decide never 
to pass the intersection where the park is. Now how many different walks 
are there? 

24. Consider a three-dimensional grid whose dimensions are 10 by 15 by 20. You 
are at the front lower left corner of the grid and wish to get to the back upper 
right corner 45 "blocks" away. How many different routes are there in which you 
walk exactly 45 blocks? 

25. Use a combinatorial argument to prove the Vandermonde convolution for the 
binomial coefficients: For all positive integers ml,m2, and n, 

Deduce the identity (5.16) as a special case. 

26. Let nand k be integers with 1 S k S n. Prove that 

t (n) ( n ) = ~ (2n + 1) _ (2n). 
k k-1 2 n+1 n 

k=l 

27. Let nand k be positive integers. Gi'{e a combinatorial proof of the identity 
(5.15): 
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28. Let nand k be positive integers. Give a combinatorial proof that 

29. Find and prove a formula for 

T, S, t ~ 0 
T+s+t=n 

where the summation extends over all nonnegative integers T, sand t with sum 
T + s + t = n . 

. 30. Prove that the only antichain of S = {I, 2, 3, 4} of size 6 is the antichain of all 
2-subsets of S. . , 

31. Prove that there are only two antichains of S = {I, 2, 3, 4, 5} of size 10 (10 is 
maximum by Spemer's theorem), namely, the antichain of all2-subsets of Sand 
the antichain of all 3-subsets. 

32. * Let S be a set of n elements. Prove that, if n is even, the only antichain 
of size (l~J) is the antichain of all ~-subsets; if n is odd, prove that the only 

antichains of this size are the antichain of all n 21-subsets and the antichain of 
all ~-subsets. 

33. Construct a partition of the subsets of {I, 2, 3, 4, 5} into symmetric chains. 

34. In a partition of the subsets of {1,2, ... ,n} into symmetric chains, how many 
chains have only one subset in them? two subsets? k subsets? 

35. A talk show host has just bought 10 new jokes. Each night he tells some of the 
jokes. What is the largest number of nights on which you can tune in so that 
you never hear on one night at least all the jokes you heard on one of the other 
nights? (Thus, for instance, it is acceptable that you hear jokes 1, 2, and 3 on 
one night, jokes 3 and 4 on another, and jokes 1, 2, and 4 on a third. It is not 
acceptable that you hear jokes 1 and 2 on one night and joke 2 on another night.) 

36. Prove the identity of Exercise 25 using the binomial theorem and the relation 
(1+x)ml(1+x)m2 = (1+x)m 1+m2. 

37. Use the multinomial theorem to show that, for positive integers nand t, 
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where the summation extends over all nonnegative integral solutions nl, n2, ... , nt 
of nl + n2 + ... + nt = n. 

38. Use the multinomial theorem to expand (Xl + X2 + X3)4. 

39. Determine the coefficient of xix2xjx§ in the expansion of 

(Xl + X2 + X3 + X4 I- X5)1D. 

40. What is the coefficient of XiX~X3X~ in the expansion of 

(Xl - X2 + 2X3 - 2X4)9? 

41. Expand (Xl + X2 + X3)n by observing that 

(Xl + X2 + X3)n = ((Xl + X2) + X3)n 

and then using the binomial theorem. 

42. Prove the identity (5.21) by a combinatorial argument. (Hint: Consider the 
permutations of a multiset of objects of t different types with repetition numbers 
nl, n2, . .. ,nt, respectively. Partition these permutations according to what type 
of object is in the first position.) 

43. Prove by induction on n that, for n a positive integer, 

1 _ ~ (n + k - 1) zk 
(1- z)n - ~ k ' 

k=O 

Assume the validity of 

44. Prove that 

1 00 

_ = "'zk 
1-z ~ , 

k=O 
Izl < 1. 

Izl < 1. 

'" ( n ) (_ltl-n2+n3 = 1, 
~ nl n2 n3 

nl+n2+n3=n 

where the summation extends over all nonnegative integral solutions of nl +n2 + 
n3 =n. 

45. Prove that 

where the summation extends over all nonnegative integral solutions of nl + n2 + 
n3 + n4 = n. 
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46. Use Newton's binomial theorem to approximate V30. 

47. Use Newton's binomial theorem to approximate 101/ 3 . 

48. Use Theorem 5.6.1 to show that, if m and n are positive integers, then a partially 
ordered set of mn + 1 elements has a chain of size m + 1 or an antichain of size 
n+1. 

49. Use the result of the previous exercise to show that a sequence of mn + 1 real 
numbers either contains an increasing subsequence of m + 1 numbers or a de­
creasing subsequence of n + 1 numbers (see Application 9 of Section 2.2). 

50. Consider the partially ordered set (X, I) on the set X = {I, 2, ... ,12} of the first 
12 positive integers, partially ordered by "is divisible by." 

(a) Determine a chain of largest size and a partition of X into the smallest 
number of antichains. 

(b) Determine an antichain of largest size and a partition of X into the smallest 
number of chains. 

51. Let Rand S be two partial orders on the same set X. Considering Rand S as 
subsets of X x X, we assume that R ~ S but R =1= S. Show that there exists an 
ordered pair (p, q), where (p, q) E Sand (p, q) rt R such that R' = R u {(p, q)} is 
also a partial order on X. Show by example that not every such (p, q) has the 
property that R' is a partial order on X. 



Chapter 6 

The Inclusion-Exclusion 
Principle and Applications 

In this chapter we derive an important counting formula called the inclusion-exclusion 
principle. Recall that the addition principle gives a formula for counting the number 
of objects in a union of sets, provided that the sets do not overlap (i.e., provided that 
the sets determine a partition). The inclusion--exclusion principle gives a formula for 
the most general of circumstances in which the sets are free to overlap without restric­
tion. The formula is necessarily more complicated but, as a result, it is more widely 
applicable. We give several applications, in particular, to counting permutations with 
forbidden positions. We also derive a generalization of the inclusion--exclusion princi­
ple for general partially ordered sets, called Mobius inversion. 

6.1 The Inclusion-Exclusion Principle 

In Chapter 3 we saw several examples in which it is easier to make an indirect count 
of the number of objects in a set rather than to count the objects directly; that is, to 
use the subtraction principle. We now give two more examples. 

Example. Count the permutations i1i2 ... in of {I, 2, ... , n} in which 1 is not in the 
first position (that is, il =1= 1). 

We could make a direct count by observing that the permutations with 1 not in 
the first position can be divided into n - 1 parts according to which of the n - 1 
integers k from {2, 3, ... ,n} is in the first position. A permutation with k in the first 
position consists of k followed by a permutation of the (n - I)-element set {I, ... ,k-
1, k + 1, ... , n}. Hence, there are (n - I)! permutations of {I, 2, ... , n} with k in the 
first position. By the addition principle, there are (n - 1) . (n - I)! permutations of 
{I, 2, ... ,n} with 1 not in the first position. 
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Alternatively, we could use the subtraction principle by observing that the number 
of permutations of {I, 2, ... , n} with 1 in the first position is the same as the number 
(n - I)! of permutations of {2, 3, ... , n}. Since the total number of permutations of 
{I, 2, ... , n} is n!, the number of permutations of {I, 2, ... , n} in which 1 is not in the 
first position is n! - (n - I)! = (n - 1) . (n - 1)1. 0 

Example. Count the number of integers between 1 and 600, inclusive, which are not 
divisible by 6. 

We can do this by the subtraction principle as follows. Since every sixth integer 
is divisible by 6, the number of integers between 1 and 600 which are divisible by 6 
is 600/6 = 100. Hence 600 - 100 = 500 of the integers between 1 and 600 are not 
divisible by 6. 0 

The subtraction principle is the simplest instance of the inclusion-exclusion prin­
ciple. We shall formulate the inclusion-exclusion principle in a manner in which it is 
convenient to apply. 

As a first generalization of the subtraction principle, let S be a finite set of objects, 
and let Hand P2 be two "properties" that each object in S mayor may not possess. 
We wish to count the number of objects in S that have neither of the properties PI and 
P2. Extending the reasoning behind the subtraction principle, we can do this by first 
including all objects of S in our count, then excluding all objects that have property 
PI and excluding all objects that have property P2, and then, noting that we have 
excluded objects having both properties Hand P2 twice, readmitting all such objects 
once. We can write this symbolically as follows: Let Al be the subset of objects of S 
that have property H, and let A2 be the subset of objects of S that have property 
P2. Then Al consists of those objects of S not having property PI, and A2 consists of 
those objects of S not having property P2 . The objects of the set Al n A2 are those 
having neither property PI nor property P2. We then have 

(6.1) 

To verify (6.1) formally, we argue as follows. Since the left side of (6.1) counts the 
number of objects of S that have neither of the properties Hand P2, we can establish 
its validity by showing that an object with neither of the two properties PI and P2 
makes a net contribution of 1 to the right side, and every other object makes a net 
contribution of O. If x is an object with neither of the properties PI and P2, it is 
counted among the objects of S, not counted among the objects of Al or of A2, and 
not counted among the objects of Al n A2. Hence, its net contribution to the right 
side of equation (6.1) is 

1-0-0+0=1. 

If x has only the property H, it contributes 

1-1-0+0=0 
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to the right side, while if it has only the property P2 , it contributes 

1-0-1+0=0 

to the right side. Finally, if x has both properties PI and P2, it contributes 

1-1-1+1=0 

to the right side of (6.1). Thus, the right side of equation (6.1) also counts the number 
of objects of 8 with neither property PI nor property P2 . 

This inclusion--exclusion principle for two properties extends to any number of 
properties. Let H, P2 , ... , Pm be m properties referring to the objects in 8, and let 

Ai = {x : x in 8 and x has property Pi}, (i = 1, 2, ... , m) 

be the subset of objects of 8 that have property Pi (and possibly other properties). 
Then AinAj is the subset of objects that have both properties Pi and Pj (and possibly 
others), Ai n Aj n Ak is the subset of objects that have properties Pi, Pj, and Pk, and 
so on. The subset of objects having none of the properties is Al n A2 n··· n Am. The 
inclusion--exclusion principle shows how to count the number of objects in this set by 
counting objects according to the properties they do have. Thus, in this sense, the 
inclusion-exclusion principle "inverts" the counting process. 

Theorem 6.1.1 The number of objects of the set 8 that have none of the properties 
PI, P2, ... , Pm is given by the alternating expression 

IAI n A2 n··· n Ami = 181- EIAil + EIAi n Ajl- EIAi n Aj n Akl 

+ ... + (-I)mIAI n A2 n··· n Ami, (6.2) 

where the first sum is over all I-subsets {i} of {1, 2, ... , m}, the second sum is over 
a1l2-subsets {i,j} of {1,2, ... ,m}, the third sum is over all3-subsets {i,j,k} of 
{I, 2, ... , m }, and so on until the m th sum over all m-subsets of {1, 2, ... , m} of which 
the only one is itself. 

If m = 3, (6.2) becomes 

IAI n A2 n A31 181- (IAII + IA21 + IA31) + 
(lAI n A21 + IAI n A31 + IA2 n A31) 
-IAI n A2 n A31. 

Note that there are 1 + 3 + 3 + 1 = 8 terms on the right side. If m = 4, then equation 
(6.2) becomes 
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+(IAI n A21 + IAI n A31 + IAI n A41 

+IA2 n A31 + IA2 n A41 + IA3 n A41) 

-(IAI n A2 n A31 + IAI n A2 n A41 

+IAI n A3 n A41 + IA2 n A3 n A41) 

+IAI n A2 n A3 n A41. 

In this case there are 1 + 4 + 6 + 4 + 1 = 16 terms on the right side. In the general 
case, the number of terms on the right side of (6.2) is by Theorem 2.3.4, 

Proof of Theorem 6.1.1. The left side of equation (6.2) counts the number of 
objects of 8 with none of the properties. As in the special case m = 2 already treated, 
we can establish the validity of the equation by showing that an object with none of 
the properties PI, P2 , •.• ,Pm makes a net contribution of 1 to the right side, and an 
object with at least one of the properties makes a net contribution of O. First, consider 
an object x with none of the properties. Its contribution to the right side of (6.2) is 

1 - 0 + 0 - 0 + ... + (-l)m O = 1, 

since it is in 8 but in none of the other sets. Now consider an object y with exactly 
n 2 1 of the properties. The contribution of y to 181 is 1 = (~). Its contribution to 
EIAil is n ~ (~) since it has exactly n of the properties and so is a member of exactly 
n of the sets AI, A2, ... , Am. The contribution of y to EIAi n Ajl is (~) since we may 
select a pair of the properties y has in (~) ways, and so y is a member of exactly (~) 
of the sets Ai n Aj . The contribution of y to EIAi n Aj n Akl is (~), and so on. Thus, 
the net contribution of y to the right side of (6.2) is 

which equals 

(~) -G) + (;) - G) + ... + (-I t (:), 

because n :s: m and G) = 0 if k > n. Since this last expression equals 0 according to 
the identity (5.4), the net contribution of y to the right side of (6.2) is 0 if y has at 
least one of the properties. 0 

Theorem 6.1.1 implies a formula for the number of objects in the union of sets that 
are free to overlap. 
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Corollary 6.1.2 The number of objects of S which have at least one of the properties 
PI, P2, .. . , Pm is given by 

EIAil - EIAi n Ajl + EIAi n Aj n Akl-'" 

+( -l)m+1IAI n A2 n··· n Ami, 

where the summations are as specified in Theorem 6.1.1. 

(6.3) 

Proof. The set Al U A2 U ... U Am consists of all those objects in S which possess at 
least one of the properties. Also, 

Since, as is readily verified, I 

we have 

Combining this equation with equation (6.2), we get equation (6.3). o 

Example. Find the number of integers between 1 and 1000, inclusive, that are not 
divisible by 5, 6, and 8. 

To solve this problem, we introduce some notation. For a real number r, recall that 
Lr J stands for the largest integer that does not exceed r. Also, we shall abbreviate 
the least common multiple of two integers, a, b, or three integers, a, b, c, by !em {a, b} 
and !em{ a, b, c}, respectively. Let PI be the property that an integer is divisible by 5, 
P2 the property that an integer is divisible by 6, and P3 the property that an integer 
is divisible by 8. Let S be the set consisting of the first thousand positive integers. 
For i = 1,2,3, let Ai be the set consisting of those integers in S with property Pi. We 
wish to find the number of integers in Al n A2 n A3 . 

We first see that 
IAII = L 1O~0 J = 200, 

IA21 = L 10600 J = 166, 

IA31 = LlO~O J = 125. 

Integers in the set Al n A2 are divisible by both 5 and 6. But an integer is divisible 
by both 5 and 6 if and only if it is divisible by Icm{5,6}. Since !em{5,6} = 30, 

lThis is one of DeMorgan's rules. 
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Icm{5,8} = 40, and lcm{6,8} = 24, we see that 

IAI n A21 = llggO J = 33, 

IAI n A31 = ll~gO J = 25, 

IA2 n A31 = ll~~O J = 41. 

Because lcm{5, 6, 8} = 120, we conclude that 

Thus, by the inclusion-exclusion principle, the number of integers between 1 and 1000 
that are not divisible by 5,6, and 8 equals 

1000 - (200 + 166 + 125) + (33 + 25 + 41) - 8 

600. 

Example. How many permutations of the letters 

M, A, T, H, I, S, F, U, N 

o 

are there such that none of the words MATH, IS, and FUN occur as consecutive 
letters? (Thus, for instance, the permutation MATHISFUN is not allowed, nor are 
the permutations INUMATHSF and ISMATHFUN.) 

We apply the inclusion-exclusion principle (6.2). First, we identify the set S as 
the set of all permutations of the 9 letters given. We then let H be the property 
that a permutation in S contains the word MATH as consecutive letters, let P2 be 
the property that a permutation contains the word IS as consecutive letters, and let 
P3 be the property that a permutation contains the word FUN as consecutive letters. 
For i = 1,2,3, let Ai be the set of those permutations in S satisfying property p;. We 
wish to find the number of permutations in Al n A2 n A3. 

We have lSI = 9! = 362,880. The permutations in Al can be thought of as 
permutations of the six symbols 

MATH,I,S,F,U,N 

treating MATH as one symbol. Hence, 

IAII = 6! = 720. 

Similarly, the permutations in A2 are permutations of the eight symbols 

M, A, T, H, IS, F, U, N, 
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so 
IA21 = 8! = 40, 320, 

and the permutations in A3 are permutations of the seven symbols 

M,A,T,H,I,S,FUN, 

so 
IA31 = 7! = 5040. 

The permutations in Al n A2 are permutations of the five symbols 

MATH, IS,F, U,N; 

the permutations in Al n A3 are permutations of the four symbols 

MATH,I,S,FUN; 

and the permutations in A2 n A3 are permutations of the six symbols 

M, A, T, H, IS, FUN. 

Hence, we have 

167 

Finally, A l nA2nA3 consists of the permutations of the three symbols MATH, IS, FU N 
therefore, 

IAI n A2 n A31 = 3! = 6. 

Substituting into (6.2), we obtain 

IAI n A2 n A31 = 362,880 - 720 - 40,320 - 5040 

+120 + 24 + 720 - 6 = 317,658. 

o 

In later sections we consider applications of the inclusion-exclusion principle to 
some general problems. The following special case of the inclusion-exclusion principle 
will be useful: 

Assume that the size of the set Ail n Ai2 n ... n Aik that occurs in the inclusion­
exclusion principle depends only on k and not on which k sets are used in the inter­
section. Thus, there are constants Qa, QI, Q2, ... , Q n such that 

Qa = lSI 
QI = IAII = IA21 = ... = IAml 
Q2 = IAI n A21 = ... = IAm-1 n Ami 
Q3 = IAI n A2 n A31 = ... = IAm- 2 n Am- l n Am~ 



168 CHAPTER 6. THE INCLUSION-EXCLUSION PRINCIPLE AND APPLICATIONS 

In this case, the inclusion~exclusion principle simplifies to 

j:A1nA2 n .. ·nAm l = ao- (7)a1+ (;)a2- (7)a3+"'+ 
(-I)k(7)ak + ... + (-l)mam. (6.4) 

This is because the kth summation that occurs in the inclusion~exclusion principle 
contains G') summands, each equal to ak. 

Example. How many integers between ° and 99,999 (inclusive) have among their 
digits each of 2, 5, and 8? 

Let S be the set of integers between ° and 99,999. Each integer in S has 5 digits 
including possible leading Os. (Thus we think of the integers in S as the 5-permutations 
of the multiset in which each digit 0,1,2, ... ,9 has repetition number 5 or greater.) 
Let H be the property that an integer does not contain the digit 2, let P2 be the 
property that an integer does not contain the digit 5, and let P3 be the property that 
an integer does not contain the digit 8. For i = 1,2,3, let Ai be the set consisting 
of those integers in S with property Pi. We wish to count the number of integers in 
Al n A2 n A3 . 

Using the notation in the preceding example, we have 

aD 105 

al 95 

a2 85 

a3 75 . 

For instance, the number of integers between 0 and 99,999 that do not contain the 
digit 2 and that do not contain the digit 5, the size of I Al n A21, equals the number of 
5-permutations of the multiset 

{5 . 0,5· 1,5·3,5·4,5·6,5·7,5·8,5· 9}, 

containing 8 different symbols each with repetition number equal to 5, and this equals 
85 . By (6.3), we obtain the answer 

105 - 3 X 95 + 3 X 85 - 75 . 

o 

6.2 Combinations with Repetition 

In Sections 2.3 and 2.5, showed that the number of r-subsets of a set of n distinct 
elements is 

n! 
r!(n - r)! 
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and that the number of r-combinations of a multiset with k distinct objects, each with 
an infinite repetition number, equals 

In this section we show how the latter formula, in conjunction with the inclusion­
exclusion principle, gives a method for finding the number of r-combinations of a 
multiset without any restrictions on its repetition numbers. 

Suppose T is a multiset and an object x of T of a certain type has a repetition 
number that is greater than r. The number of r-combinations of T equals the number 
of r-combinations of the multiset obtained from T by replacing the repetition number 
of x by r. This is so because the number of times x can 'be used in an r-combination 
of T cannot exceed r. Therefore, any repetition number that is greater than r can be 
replaced by r. For example, the number of 8-combinations of the multiset {3·a, oo·b, 6· 
e, lO·d, oo·e} equals the number of 8-combinations of the multiset {3·a, 8·b, 6·e, 8·d, 8·e}. 
We can summarize by saying that we have determined the number of r-combinations 
of a multiset T = {nl . aI, n2 . a2, ... , nk . ad in the two "extreme" cases: 

(1) nl = n2 = ... = nk = 1; (Le., T is a set) and 

We shall illustrate how the inclusion-exclusion principle can be applied to obtain 
solutions for the remaining cases. Although we shall take a specific example, it should 
be clear that the method works in general. 

Example. Determine the number of lO-combinations of the multiset T = {3 . a, 4· 
b,5· e}. 

We shall apply the inclusion-exclusion principle to the set S of all lO-combinations 
of the multiset T* = {oo· a, 00' b, 00' e} (or {1O. a, 10· b, 10· e}. Let PI be the property 
that a lO-combination of T* has more than three a's. Let P2 be the property that 
a lO-combination of T* has more than four b's. Finally, let P3 be the property that 
a lO-combination of T* has more than five e's. The number of lO-combinations of T 
is then the number of lO-combinations of T* that have none of the properties PI, P2 , 

and P3 . As usual, let Ai consist of those lO-combinations of T* which have property 
Pi, (i = 1,2,3). We wish to determine the size of the set Al n A2 n A3 . By the 
inclusion-exclusion principle, 

lSI - (IAll + IA21 + IA31) 

+(IAI n A21 + IAI n A31 + IA2 n A3 1) 
-IAl n A2 n A31. 
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By Theorem 3.5.1, 

lSI = CO +1~ - 1) = C~) = 66. 

The set Al consists of all lO-combinations of T* in which a occurs at least four times. 
If we take anyone of these lO-combinations in Al and remove four a's, we are left with 
a 6-combination of T*. Conversely, if we take a 6-combination of T* and add four a's 
to it, we get a lO-combination of T* in which a occurs at least 4 times. Thus, the 
number of lO-combinations in Al equals the number of 6-combinations of T*. Hence, 

In a similar way we see that the number of lO-combinations in A2 equals the number 
of 5-combinations of T*, and the number of lO-combinations in A3 equals the number 
of 4-combinations of T*. Consequently, 

( 5+3-1) (7) (4+3-1) (6) IA21 = 5 = 5 = 21 and IA31 = 4 = 4 = 15. 

The set Al n A2 consists of all 10-combinations of T* in which a occurs at least four 
times and b occurs at least five times. If, from any of these lO-combinations, we 
remove four a's and five b's, we are left with a I-combination of T*. Conversely, if 
to a I-combination of T* we add four a's and five b's we obtain a 10-combination in 
which a occurs at least four times and b occurs at least five times. Thus, the number 
of lO-combinations in Al n A2 equals the number of I-combinations of T*, so that 

(1 + 3 - t) (3) IAI n A21 = 1 = 1 = 3. 

We can dedllce in a similar way that the number of lO-combinations in Al n A3 equals 
the number of O-combinations in TO' and that there are no lO-combinations in A2 n A3 . 

Therefore, 

(0 + 3 -1) (2) IAI n A31 = 0 = 0 = 1 

and 

Also, 

Putting all these counts into the inclusion-exclusion principle, we obtain 

66 - (28 + 21 + 15) + (3 + 1 + 0) - 0 

6. 
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(We should say "all that work for just six combinations" rather than "all those com­
binations." Can you now list the six lO-combinations?) 0 

In the proof of Theorem 2.5.1, we pointed out the connection between r-combination 
and solutions of equations in integers. The number of r-combinations of the multiset 
{nl . aI, n2 . a2, ... ,nk . ad equals the number of integral solutions of the equation 

Xl + X2 + ... + Xk = r 

that satisfy 
(i=I,2, ... ,k). 

Thus, the number of these solutions can be calculated by the method just illustrated. 

Example. What is the number of integral solutions of the equation 

Xl + X2 + X3 + X4 = 18 

that satisfy 

We introduce new variables 

YI = Xl - 1, Y2 = X2 + 2, Y3 = X3, and Y4 = X4 - 3, 

and our equation becomes 
Yl + Y2 + Y3 + Y4 = 16. (6.5) 

The inequalities on the Xi'S are satisfied if and only if 

o :s: Yl :s: 4, O:S: Y2 :s: 6, O:S: Y3 :s: 5, O:S: Y4 :s: 6. 

Let 8 be the set of all nonnegative integral solutions of equation (6.5). The size of 
8 is 

181 = C6 +1: - 1) = c:) = 969. 

Let PI be the property that Yl ~ 5, P 2 the property that Y2 ~ 7, P3 the property 
that Y3 ~ 6, and P 4 the property that Y4 ~ 7. Let Ai denote the subset of 8 consisting 
of the solutions satisfying property Pi, (i = 1,2,3,4). We wish to evaluate the size of 
the set Al n A2 n A3 n A4 , and we do so by applying the inclusion-exclusion principle. 
The set Al consists of all those solutions in 8 for which Yl ~ 5. Performing a change 
in variable (Zl = Yl - 5, Z2 = Y2, Z3 = Y3, Z4 ~ Y4), we see that the number of solutions 
in Al is the same as the number of nonnegative integral solutions of 

Zl + Z2 + Z3 + Z4 = 11. 
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Hence, 

IAII = ( ~~) =364. 

In a similar way, we obtain 

The set Al n A2 consists of all those solutions in S for which YI ~ 5 and Y2 ~ 7. 
Performing a change in variable (UI = YI - 5, U2 = Y2 - 7, U3 = Y3, U4 = Y4), we see 
that the number of solutions in Al n A2 is the same as the number of nonnegative 
integral solutions of 

Hence, 

Similarly, we get 

IAI n A31 = G) = 56, IAI n A41 = G) = 35, 

IA2 n A31 = G) = 20, IA2 n A41 = C) = 10, 

and IA3 n A41 = G) = 20. 

The intersection of any three of the sets AI, A2 , A3, A4 is empty. We now apply the 
inclusion--exclusion principle to obtain 

IAl n A2 n A3 n A41 = 969 - (364 + 220 + 286 + 220) 

+(35 + 56 + 35 + 20 + 10 + 20) 

55. 

6.3 Derangements 

o 

At a party, 10 gentlemen check their hats. In how many ways can their hats be returned 
so that no gentleman gets the hat with which he arrived? The eight spark plugs of 
a V-8 engine are removed from their cylinders for cleaning. In how many ways can 
they be returned to the cylinders so that no spark plug goes into the cylinder whence 
it came? In how many ways can the letters M,A,D,I,S,O,N be written down so that 
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the "word" spelled disagrees completely with the spelling of the word MADISON in 
the sense that no letter occupies the same position as it does in the word MADISON? 
Each of these questions is an instance of the following general problem. 

We are given an n-element set X in which each element has a specified location, 
and we are asked to find the number of permutations of the set X in which no element 
is in its specified location. In the first question, the set X is the set of 10 hats, and 
the specified location of a hat is (the head of) the gentleman to which it belongs. In 
the second question, X is the set of spark plugs, and the location of a spark plug is 
the cylinder which contained it. In the third question, X = {M,A,D,I,S,O,N}, and the 
location of a letter is that specified by the word MADISON. 

Since the actual nature of the objects is irrelevant, we may take X to be the 
set {I, 2, . " ,n} in which the location of each of the integers is that specified by its 
position in the sequence 1,2, ... , n. A derangement of {I, 2, ... , n} is a permutation 
i 1 i2 ... in of {I, 2, ... , n} such that il of. 1, i2 of. 2, ... ,in of. n. Thus, a derangement 
of {I, 2, ... ,n} is a permutation i 1i2 ... in of {I, 2, ... ,n} in which no integer is in its 
natural position: 

in of. n. 

We denote by Dn the number of derangements of {I, 2, ... , n}. The preceding 
questions ask us to evaluate, respectively, D lO , D8 , and D7. For n = 1, there are no 
derangements. The only derangement for n = 2 is 2 1. For n = 3, there are two 
derangements, namely, 2 3 1 and 3 1 2. The derangements for n = 4 are as follows: 

2143 
234 1 
241 3 

3142 
3412 
342 1 

4 123 
4312 
4321. 

Thus, we have Dl = 0, D2 = 1, D3 = 2, and D4 = 9. 
The inclusion--exclusion principle enables us to get a formula for the derangement 

numbers Dn. 

Theorem 6.3.1 For n ~ 1, 

( 1 1 1 n1) D =n! 1--+---+···+(-1)-
n I! 2! 3! n! . 

Proof. Let S be the set of all n! permutations of {I, 2, ... , n}. For j = 1, 2, ... , n, 
let Pj be the property that, in a permutation, j is in its natural position. Thus, 
the permutation ili2' .. in of {I, 2, ... ,n} has property Pj provided ij = j. A per­
mutation of {I, 2, ... ,n} is a derangement if and only if it has none of the properties 
Pl , P2 , ... ,Pn . Let Aj denote the set of permutations of {I, 2, ... ,n} with property Pj, 
(j = 1,2, ... ,n). The derangements of {I, 2, ... ,n} are precisely those permutations 
in Al n A2 n ... n An. Hence, 
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and we use the inclusion--exclusion principle to evaluate Dn. The permutations in 
Al are of the form li2··· in, where i2 ... in is a permutation of {2, ... ,n}. Thus, 
IAII = (n - I)!, and, more generally we have IAjl = (n - I)! for j = 1,2, ... , n. The 
permutations in Al n A2 are of the form 1 2 i3 ... in, where i3 ... in is a permutation 
of {3, ... ,n}. Therefore, IAI n A21 = (n - 2)!, and more generally we have IAi n Ajl = 
(n - 2)! for any 2-subset {i,j} of {I, 2, ... , n}. For any integer k with 1 ~ k ~ n, the 
permutations in Al n A2 n· .. n Ak are of the form 1 2· .. kik+l ... in, where ik+l ... in 
is a permutation of {k + 1, ... , n}. Consequently, IAI n A2 n··· n Akl = (n - k)!, and 
more generally, 

IAil n Ai2 n··· n Aikl = (n - k)! 

for any k-subset {il,i2, ... ,id of {1,2, ... ,n}. Since th€re are (~) k-subsets of 

{I, 2, ... ,n}, applying the inclusion-exclusion principle (see (6.4) at the end of Section 
6.1), we obtain 

Dn n!-G)(n-l)!+(~)(n-2)!-(;)(n-3)! 

+ ... +(-It(~)O! 
n! n! n! ()nn! n! - - + - - - + ... + -1 -
I! 2! 3! n! 

n! (1 - 2. + 2. - 2. + ... + (-It.!.) . 
1! 2! 3! n! 

Thus, the theorem is proved. o 

We can use the formula obtained to calculate that 

( 1 1 1 1 1) 
D5 = 5! 1 - l! + 2! - 3! + 4! - 51 = 44. 

In a similar way, we can calculate that 

D6 = 265, D7 = 1854, and Ds = 14,833. 

Recalling the infinite series expansion 

-1 1 1 1 1 
e =1--+---+-_··· 

I! 2! 3! 4! 

we may write 

D 1 1 
e- l = 2 + (-It+1--- + (-It+2--- + .... 

n! (n+l)! (n+2)! 
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From elementary facts about alternating infinite series, we conclude that e- 1 and 
Dn/n! differ by less than l/(n + I)!; in fact, Dn is the integer closest to n!/e. A 
calculation shows that, for n ~ 7, e-1 and Dn/n! agree to at least three decimal 
places. Thus, from a practical point of view, e-1 and Dn/n! are the same for n ~ 7. 
The number Dn/n! is the ratio of the number of derangements of {I, 2, ... , n} to the 
total number of permutations of {I, 2, ... , n}. Consider the experiment of selecting 
a permutation of {I, 2, ... , n} at random, and the event E that no integer in the 
permutation is in its natural position; that is, that the permutation selected is a 
derangement. Thus lEI = Dn , and the probability of E is 

Dn 
Prob(E) = -, . 

n. 

Returning to the hat question posed at the beginning of this section, if the hats are 
returned to the gentlemen at random, the probability that no gentleman r;eceives 
his own hat is DlO/lO!, and this is effectively e- 1. From the preceding remarks, it 
is apparent (and perhaps quite surprising) that the probability that no gentleman 
receives his own hat would be essentially the same if the number of gentlemen were 
1,000,000. 

The derangement numbers Dn satisfy other relations that facilitate their evalua­
tion. The first of these that we discuss is 

Dn = (n - 1)(Dn- 2 + Dn- 1 ), (n = 3,4,5, ... ). (6.6) 

This formula is an example of a linear recurrence relation.2 Starting with the initial 
.information Dl = 0, D2 = 1, we can use (6.6) to calculate Dn for any positive integer 
n. For instance, 

D3 = 2(Dl + D2) = 2(0 + 1) = 2, 
D4 = 3(D2 + D3) = 3(1 + 2) = 9, 
D5 = 4(D3 + D4) = 4(2 + 9) = 44, and 
D6 =5(D4 + D5) = 5(9 + 44) = 265. 

In the next chapter we show how to solve linear recurrence relations with constant 
coefficients. The techniques introduced there will not apply here, however, since the 
formula (6.6) has a variable coefficient n - l. 

We can verify the formula (6.6) combinatorially as follows: Let n ~ 3, and consider 
the Dn derangements of {I, 2, ... ,n}. These derangements can be partitioned into 
n - 1 parts according to which of the integers 2,3, ... , n is in the first position of 
the permutation. It should be clear that each part contains the same number of 
derangements. Thus, Dn equals (n - l)dn , where dn is the number of derangements 
in which 2 is in the first position. Such deran'gements are of the form 

i2 =1= 2, i3 =1= 3, ... ,in =1= n. 

2Recurrence relations are discussed in Chapter 7. 



176 CHAPTER 6. THE INCLUSION-EXCLUSION PRINCIPLE AND APPLICATIONS 

These dn derangements can be partitioned further into two subparts according to 
whether i2 = I or i2 l' 1. Let d~ be the number of derangements of the form 

i3 l' 3, ... ,in l' n. 

Let d~ be the number of derangements of the form 

i2 l' 1, i3 l' 3, ... ,in l' n. 

Then dn = d~ + d~, and it follows that 

Dn = (n - l)dn = (n - l)(d~ + d~). 

We first observe that d~ is the same as the number of permutations i3i4· .. in of 
{3, 4, ... ,n} in which i3 l' 3, i4 l' 4, ... ,in l' n. In other words, d~ is the number 
of permutations of {3, 4, ... ,n} in which 3 is not in the first position, 4 is not in 
the second position, and so on. Thus, d~ = D n - 2 . We next observe that d~ equals 
the number of permutations i2i3··· in of {I, 3, ... , n} in which I is not in the first 
position, 3 is not in the second position, ... ,n is not in the (n - I)th position. Hence, 
d~ = Dn - 1, and we conclude that 

Dn = (n - I)(d~ + d~) = (n -1)(Dn-2 + Dn-l), 

giving us equation (6.6). 

Formula (6.6) can be rewritten as 

Dn - nDn- 1 = -[Dn- 1 - (n - I)Dn- 2 ], (n 23). (6.7) 

The expression in the brackets on the right side is the same as the expression on the 
left side with n replaced by n - 1. Thus we can apply (6.7) recursively3 to get 

-[Dn-l - (n - I)Dn-21 

(-lnDn - 2 - (n - 2)Dn -31 

(-1)3[Dn_3 - (n - 3)Dn-41 

Since D2 = I and Dl = 0, we obtain the simpler recurrence relation: 

Dn = nDn-l + (_1)n-2 

for the derangement numbers, or, equivalently, 

Dn = nDn- 1 + (-It for n = 2,3,4, .... 

3That is, over and over again, with smaller and smaller values of n. 

(6.8) 
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(Strictly speaking, our verification applies only for n = 3,4, ... , but it is simple to check 
that (6.8) holds also when n = 2.) Using (6.8) and the value D6 = 265 previously 
computed, we see that 

D7 = 7 D6 + ( -1 f = 7 x 265 - 1 = 1854. 

By repeated application of the formula (6.8), or using it and mathematical in­
duction, we can obtain a different proof of Theorem 6.3.1. (See Exercise 20.) Since 
(6.8) follows from (6.6), which was given an independent combinatorial proof, this will 
provide a proof of Theorem 6.3.1 without using the inclusion-exclusion principle. 

The formulas (6.6) and (6.8) are similar to formulas that hold for factorials: 

n! (n-1)((n-2)!+(n-1)!), (n=3,4,5, ... ) 

n! n(n-1)!, (n=2,3,4, ... ). 

Example. At a party there are n men and n women. In how many ways can the n 
women choose male partners for the first dance? How many ways are there for the 
second dance if everyone has to change partners? 

For the first dance there are n! possibilities. For the second dance, each woman 
has to choose as a partner a man other than the one with whom she first danced. The 
number of possibilities is the nth derangement number Dn. 0 

Example. Suppose the n men and the n women at the party check their hats before 
the dance. At the end of the party their hats are returned randomly. In how many 
ways can they be returned if each man gets a male hat and each woman gets a female 
hat, but no one gets the hat he or she checked? 

With no restrictions, the hats can be returned in (2n)! ways. With the restriction 
that each man gets a male hat and each women gets a female hat, there are n! x n! 
ways. With the additional restriction that no one gets the correct hat, there are 
Dn x Dn ways. 0 

6.4 Permutations with Forbidden Positions 

In this section we consider the general problem of counting permutations of {I, 2, ... , n} 
with restrictions on which integers can occupy each place of the permutation. 

Let 

be (possibly empty) subsets of {I, 2, ... , n}. We denote by 
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the set of all permutations il i2 ... in of {I, 2, ... , n} such that 

il is not in Xl, 
i2 is not in X2, 

in is not in X n. 

Thus, for each j = 1,2, ... , n, only the integers in Xj can occupy the jth position 
in the permutations being considered. A permutation of {I, 2, ... , n} belongs to the 
set P(XI, X 2 , •.• , Xn) provided that an element of Xl does not occupy the first place 
(thus, the only elements that can be in the first place are those in the complement Xl 
of X d, an element of X2 does not occupy the second place, ... , and an element of Xn 
does not occupy the nth place. The number of permutations in P(XI, X2, . .. , Xn) is 
denoted by 

Example. Let n = 4 and let Xl = {1,2}, X 2 = {2,3}, X3 = {3,4}, X4 = {1,4}. 
Then P(XI , X 2 , X3, X4) consists of all permutations id2i3i4 of {I, 2, 3, 4} such that 

i l i- 1,2; i2 i- 2,3; i3 i- 3,4; and i4 i- 1,4. 

Equivalently, il = 3 or 4, i2 = 1 or 4, i3 = 1 or 2, and i4 = 2 or 3. The set 
P(XI , X2, X3, X4) contains only the two permutations 34 1 2 and 4 1 2 3. Thus we 
have p(XI, X2, X3, X4) = 2. 0 

Example. Let Xl = {I}, X 2 = {2}, ... ,Xn = in}. Then the set P(XI, X2,··., Xn) 
equals the set of all permutations ili2··· in of {I, 2, ... , n} for which il i- 1, i2 i-
2, ... , in i- n. We conclude that P(XI, X 2 , .•. , Xn) is the set of derangements of 
{I, 2, ... , n}, and we have p(XI, X2, ... , Xn) = Dn. 0 

As seen in Section 3.4 there is a one-to-one correspondence between permutations 
of {I, 2, ... , n} and placements of n nonattacking, indistinguishable rooks on an n-by­
n board. The permutation id2 ... in of {I, 2, ... , n} corresponds to the placement of 
n rooks on the board in the squares with coordinates (1, i l ), (2, i2), .. . , (n, in). (Recall 
that the square with coordinates (k,l) is the square occupying the kth row and the 
lth column of the board.) The permutations in P(XI , X2, ... , Xn) correspond to 
placements of n nonattacking rooks on an n-by-n board in which there are certain 
squares in which it is forbidden to put a rook. 

Example. Let n = 5 and let Xl = {I, 4}, X 2 = {3}, X3 = 0, X4 = {I, 5}, X5 = {2,5}. 
Then the permutations in P(Xl, X2, X3, X4, X5) are in one-to-one correspondence 
with the placements of five nonattacking rooks on the board with forbidden positions 
as shown. 
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1 
2 
3 
4 
5 

1 2 345 
x x 

x 

x x 
x x 
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o 

Generalizing the derivation of the formula for the number Dn of derangements 
of {I, 2, ... ,n}, we apply the inclusion--exclusion principle to obtain a formula for 
p(Xl' X 2, ... , X n). However, as we will point out later, this formula is not always of 
computational value. For convenience, our argument will be couched in the language 
of nonattacking rooks on an n-by-n board. 

Let S be the set of all n! placements of n nonattacking rooks on an n-by-n board. 
We say that such a placement of n nonattacking rooks satisfies property Pj provided 
that the rook in the jth row is in a column belonging to Xj, (j = 1,2, ... , n). As 
usual, Aj denotes the set of rook placements satisfying property Pj , (j = 1,2, ... ,n). 
The set P(Xl' X2,.'" Xn) consists of all the placements of n nonattacking rooks that 
satisfy none of the properties PI, P2, ... , Pn. Hence, 

IAI n A2 n ... n Ani 
n! - EIAil + EIAi n Ajl 

- ... + (-llEIAil n Ai2 n .. · n Aik I 
+ ... + (-ltIAI n A2 n .. · n Ani, (6.9) 

where the kth summation is over all k-subsets of {I, 2, ... , n}. We now evaluate the 
n sums in the preceding formula. 

What does, for instance, IAII count? It counts the number of ways to place n 
nonattacking rooks on the board where the rook in row 1 is in one of the columns in 
Xl. We can choose the column of that rook in IXII ways and then place the remaining 
n - 1 nonattacking rooks in (n - I)! ways. Thus, IAII = 'IXll(n - I)! and, more 
generally, 

(i=1,2, ... ,n). 

Hence, 
EIAil = (lXII + IX2 1 + .' .. + IXnl)(n - I)!. 

We let rl = IXII + IX2 1 + ... + IXnl and obtain 

EIAil = rl(n - I)!. 
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The .number rl equals the number of forbidden squares of the board. Equivalently, rl 

equals the number of ways to place one rook on the board in a forbidden square. 
Now consider IAI n A21. This number counts the number of ways to place n 

nonattacking rooks on the board where the rooks in row 1 and row 2 are both in 
forbidden positions (in Xl and X 2 , respectively). Each placement of two nonattacking 
rooks in rows 1 and 2 in forbidden positions can be completed to n nonattacking rooks 
in (n - 2)! ways. Similar considerations hold for any IAi n Ajl, and we obtain the 
following: Let r2 equal the number of ways to place two nonattacking rooks on the 
board in the forbidden positions. Then 

We may directly generalize the preceding argument and evaluate the kth sum in (6.9). 
We define rk as follows: 

Then 

rk is the number of ways to place k nonattacking rooks on the n-by-n board 
where each of the k rooks is in a forbidden position, (k = 1,2 ... , n). 

EIAil n Ai2 n· .. n Aikl = rk(n - k)!, (k = 1,2, ... ,n). 

Substituting this formula into (6.9), we obtain the next theorem. 

Theorem 6.4.1 The number of ways to place n nonattacking, indistinguishable rooks 
on an n-by-n board with forbidden positions equals 

o 

Example. Determine the number of ways to place six nonattacking rooks on the 
following 6-by-6 board, with forbidden positions as shown. 

x 
x x 

x x 
x x 

Since rl equals the number of forbidden positions, we have rl = 7. Before eval­
uating r2, r3, . .. , r6, we note that the set .. of forbidden positions can be partitioned 
into two "independent" parts, one part FI containing the three positions closest to 
the upper left corner, and the other part F2 containing the other four positions in a 
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2-by-2 square. Here by "independent" we mean that squares in different parts do not 
belong to a common row or column, and hence a rook in H cannot attack a rook in F2. 
We now evaluate T2, the number of ways to place 2 nonattacking rooks in forbidden 
positions. The rooks may be both in FI, both in F2, or one in FI and one in F2. In 
the last case they are automatically nonattacking because FI and F2 are independent. 
Counting in this way, we obtain 

T2 = 1 + 2 + 3 x 4 = 15. 

For T3 we need two nonattacking rooks in FI and one rook in F2, or one rook in FI 
and two nonattacking rooks in F2. Thus, 

T3 = 1 x 4 + 3 x 2 = 10. 

For T4 we need two nonattacking rooks in FI and two nonattacking rooks in F2; hence, 

T4 = 1 x 2 = 2. 

Clearly, T5 = T6 = 0, and, by Theorem 6.4.1, the number of ways to place six nonat­
tacking rooks on the board so that no rook occupies a forbidden position equals 

6! - 7 x 5! + 15 x 4! - 10 x 3! + 2 x 2! = 184. 

o 

In conclusion, we note that the formula in Theorem 6.4.1 is of computational value 
only if it is easier to evaluate the numbers TI, T2, . .. , Tn than to evaluate directly 
the number of ways to place n nonattacking rooks on an n-by-n board with forbidden 
positions. Note that the number Tn equals the number of ways to place n nonattacking 
rooks on the n-by-n "complementary" board, obtained by interchanging the forbidden 
and nonforbidden positions. If there are a lot of forbidden squares, then it may be 
more difficult to evaluate Tn than it is to count directly the number of ways to place 
n nonattacking rooks on the board. 

6.5 Another Forbidden Position Problem 

In Sections 6.3 aRd 6.4 we counted permutations of {1,2, ... ,n} in which there are 
certain absolute forbidden positions. In this section we consider a problem of counting 
permutations in which there are certain relative forbidden positions and show how the 
inclusion-exclusion principle can be used to count the number of these permutations. 

We introduce the problem as follows: Suppose a class of eight boys takes a walk 
every day. The students walk in a line of eight so that every boy except the first is 
preceded by another. In order that a child not see the same person in front of him, on 
the second day the students decide to switch positions so that no boy is preceded by 



182 CHAPTER 6. THE INCLUSION-EXCLUSION PRINCIPLE AND APPliCATIONS 

the same boy who preceded him on the first day. In how many ways can they switch 
positions? 

One possibility is to reverse the order of the boys so that the first boy is now last, 
and so on, but there are other possibilities. If we assign to the boys the numbers 
1,2, ... ,8, with the last boy in the column of the first day receiving the number 1, the 
next to last boy receiving the number 2, ... , and the first boy receiving the number 
8, as in 

1 2 3 4 5 6 7 8, 

then we are asked to determine the number of permutations of the set {I, 2, ... ,8} in 
which the patterns 12, 23, ... , 78 do not occur. Thus, 31542876 is an allowable 
permutation, but 84312657 is not. For each positive integer n, we let Qn denote the 
number of permutations of {1,2, ... ,n} in which none of the patterns 12,23, ... , 
(n - l)n occurs. We use the inclusion--exclusion principle to evaluate Qn. If n = 1, 1 
is an allowable permutation. If n = 2, 21 is an allowable permutation. If n = 3, the 
allowable permutations are 213, 321, and 132, while if n = 4, they are as follows: 

4132 
3 2 1 4 
2431 
1 3 2 4 

432 1 
324 1 
2413 
1 432 

Hence, QI = 1, Q2 = 1, Q3 = 3, and Q4 = 11. 

Theorem 6.5.1 For n 21, 

4213 
2143 
3142. 

Qn = n!- (n~I)(n_l)!+ (n;I)(n_2)! 

_ (n ; 1) (n _ 3)! + ... + (-1 t- l (~ = ~) 1!. 

Proof. Let S be the set of all n! permutations of {I, 2, ... ,n}. Let Pj be the property 
that, in a permutation, the pattern j(j + 1) does occur, (j = 1,2, ... , n - 1). Thus, 
a permutation of {I, 2, ... , n} is counted in the number Qn if and only if it has none 
of the properties PI, P2 , ... ,Pn - 1 • As usual, let Aj denote the set of permutations of 
{I, 2, ... ,n} that satisfy property Pj, (j = 1,2, ... ,n - 1). Then 

Qn = IAI n A2 n··· nAn-II, 

and we apply the inclusion--exclusion principle to evaluate Qn. We first calculate the 
number of permutations in AI. A permutation is in Al if and only if the pattern 12 
occurs in it. Thus, a permutation in Al may be regarded as a permutation of the n-l 
symbols {12,3,4, ... ,n}. We conclude that IAII = (n-l)!, and in general we see that 

(j = 1,2, ... ,n - 1). 



6.6. MOBIUS INVERSION 183 

Permutations that are in two of the sets AI, A2 , ... , An - l contain two patterns. These 
patterns either share an element, such as the patterns 12 and 23, or have no element 
in common, such as the patterns 12 and 34. A permutation which contains the 
two patterns 12 and 34 can be regarded as a permutation of the n - 2 symbols 
{12, 34, 5, ... ,n}. Thus, IAI n A31 = (n - 2)!. A permutation that contains the two 
patterns 12 and 23 contains the pattern 123 and thus can be regarded as a 
permutation of the n - 2 symbols {123,4, ... ,n}. Hence, IAI n A21 = (n - 2)!. In 
general, we see that 

IAi nAjl=(n-2)! 

for each 2-subset {i, j} of {I, 2, ... , n - I}. More generally, we see that a permutation 
which contains k specified patterns from the list 12,23, ... , (n - l)n can be regarded 
as a permutation of n - k symbols, and thus that 

for each k-subset {iI, i2, ... ,ik} of {I, 2, ... ,n - I}. Since, for each k = 1,2, ... ,n - 1, 
there are (nk"l) k-subsetss of {I, 2, ... ,n-1}, applying the inclusion-exclusion principle 
we obtain the formula in the theorem. 0 

Using the formula of Theorem 6.5.1, we calculate that 

The numbers Ql, Q2, Q3,'" are closely related to the derangement numbers. Indeed, 
we have Qn = Dn + Dn- l , (n ::::: 2). (See Exercise 23.) Thus, knowing the derangement 
numbers, we can calculate all the numbers Qn, (n ::::: 2). Since we have already seen 
in the preceding section that Ds = 44, D6 = 265, we conclude that Q6 = D6 + Ds = 
265 + 44 = 309. 

6.6 Mobius Inversion 

This section includes more sophisticated mathematics than the other sections in this 
chapter. 

The inclusion-exclusion principle is an instance of Mobius inversion on a finite4 

partially ordered set. In order to set the stage for the generality of Mobius inversion, 
we first discuss a somewhat more general version of the inclusion-exclusion principle. 

Let n be a positive integer and consider the set Xn = {I, 2, ... ,n} of n elements, 
and the partially ordered set (P(Xn), <;:;) o~ all subsets of Xn partially ordered by 
containment. Let 

40ne can replace the property of being finite by a weaker property called locally finite, which 
asserts that, for all a and b with a :S b, the interval {x : a :S x :S b} is a finite set. 
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be a real-valued function defined on P(Xn ). We use F to define a new function 

by 

C(K) = L F(L), (K ~ X n ), (6.10) 
L~K 

where, as indicated, K is a subset of Xn and the summation extends over all subsets 
L of K. Mobius inversion allows one to invert equation (6.10) and to recover F from 
C; specifically, we have 

F(K) = L (_l)IKI-ILIC(L), (K ~ Xn). (6.11) 
L~K 

Notice that F is obtained from C in (6.11) in a way similar to that in which C is 
obtained from F in (6.10); the only difference is that in (6.11) we insert in front of 
each term of the summation either a 1 or -1 depending on whether IKI -ILl is even 
or odd. 

Let AI, A2, ... , An be subsets of a finite set S, and for a set K ~ {I, 2, ... , n}, 
define F(K) to be the number of elements of S that belong to exactly those sets Ai 
with i rf. K. Thus, for 8 E S, 8 is counted by F(K) if and only if 

Then 

for each i E K, and 
for each j rf. K. 

C(K) = L F(L) 
L~K 

counts the Humber of elements of S that belong to all of the sets Aj with j not in K 
and possibly other sets as well. Thus, 

By (6.11), 

F(K) = L (_l)IKI-ILIC(L). (6.12) 
L~K 

Taking K = {I, 2, ... ,n} in (6.12), we get 

F(Xn) = L (_1)n-1LIC(L). (6.13) 
L~Xn 

Now, F(Xn) counts the number of elements of S that belong only to those sets Ai with 
i rf. Xn; that is, F(Xn) is the number of elements of S that belong to none of the sets 
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AI, A2 , .•. , An and thus equals the number of elements contained in Al nA2 n·· ·nAn. 
Substituting into (6.13), we obtain 

IAI n A2 n ... n Ani = L (_l)n-1LII nillL Ail, 
L<;;Xn 

or, equivalently, by replacing L with its complement in Xn and calling it J, 

IAI n A2 n .. · n Ani = L (-1)1111 niEJ Ail· 
J<;;Xn 

(6.14) 

Equation (6.14) is equivalent to the formula for the inclusion-exclusion principle as 
given in Theorem 6.1.1. 

We now replace (P(Xn ), <;;;;) with an arbitrary finite partially ordered set (X, ::;). 
To derive the formula for Mobius inversion, we first consider functions of two variables. 

Let F(X) be the collection of all real-valued functions 

f: X x X --t R, 

with the property that f(x, y) = ° whenever x 1. y. Thus, f(x, y) can be different 
from ° only when x ::; y. We define the convolution product h = f * 9 of two functions 
f and 9 in F(X) by 

h( ) { L{z:x::;z::;y} f(x, z)g(z,y), 
x,y = 

0, 

if x::; y, 

otherwise. 

Thus, in the convolution product, to compute h(x, y) when x ::; y, we add up all 
products f(x, z)g(z, y) as z varies over all elements z between x and y in the given 
partial order. We leave it as an exercise to verify that the convolution product satisfies 
the associative law: 

f*(g*h)=(j*g)*h, (j,g,hinF(X». 

There are three special functions in F(X) of interest to us. The first is the Kro­
necker delta function 6, given by 

6(x,y) = { 1, 
0, 

if x = y 
otherwise. 

Note that 6 * f = f * 6 = f for all functions f E F(X), and thus 6 acts as an identity 
function with respect to convolution product. The second is the zeta function <; defined 
by 

<;(x,y) = { 1, 
0, 

if x::; y 
otherwise. 
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The zeta function is a representation of the poset (X,~) in that it contains all the 
information about which pairs x, y of elements satisfy x ~ y. 

Let I be a function in :F(X) such that I(y, y) # 0 for all y in X. We can inductively 
define a function 9 in :F(X) by first letting 

1 
g(y, y) = ICy, y)' (y EX), (6.15) 

and then letting 

1 
g(x, y) = --(-) L g(x, z)/(z, y), (x < y). (6.16) 

I y, y {z:x9<y} 

From (6.16), we get 

L g(x, z)/(z, y) = 6(x, y), (x ~ y). (6.17) 
{z:x~z~y} 

Equation (6.17) tells us that 

9 * 1= 6, 

and therefore 9 is a left-inverse function of I with respect to the convolution product. 
In a similar way, we can show that I has a right-inverse function h satisfying 

Using the associative law for convolution product, we get 

Thus, 9 = hand 9 is an inverse function of I. In sum, every function I E :F(X) with 
I(y,y) # 0 for all y in X has an inverse function g, inductively defined by (6.15) and 
(6.16), satisfying 

9 * I = 1* 9 = 6. 

The third special function we define is the Mobius function 1-£. Since ((y, y) = 1 
for all y EX, ( has an inverse, and we define 1-£ to be its inverse. Therefore, 

1-£*( = 6, 

and so, applying (6.17) with 1=( and 9 = J-t, we get 

L J-t(x,z)((z,y) = 6(x,y), (~~ y), 
{z:x~z~y} 

or, equivalently, 

L J-t(x, z) = 6(x, y), (x ~ y). ( 6.18) 
{z:x~z~y} 
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Equation (6.18) implies that 

J-t(x, x) = 1 for all x (6.19) 

and 
J-t(x,y) = - L J-t(x, z), (x < y). (6.20) 

{z:x$z<y} 

Example. In this example, we compute the Mobius function of the partially ordered 
set (P(Xn), <;;;), where Xn = {I, 2, ... , n}. Let A and B be subsets of Xn with A <;;; B. 
We prove by induction on IBI - IAI that 

J-t(A, B) = (_I)IBHAI. (6.21 ) 

We have from (6.19) that J-t(A, A) = 1 and hence (6.21) holds if B = A. Suppose 
that B i= A, and let p = IB \ AI = IBI - IAI. Then, from (6.20) and the induction 
hypothesis, we get 

J-t(A, B) L J-t(A,C) 
{C:A~CCB} 

L (_l)lcl-IAI 

{C:A~CCB} 

p-l 

-L(-l)k(i). 
k=O 

( 6.22) 

The last equality is a consequence of the fact that, for each integer k with 0 ::; k ::; p-l, 
there are as many sets C satisfying A <;;; C c Band ICI-IAI = k as there are subsets 
of cardinality k contained in the set B \ A of cardinality p. By the binomial theorem, 
we have 

and so 

Substituting in equation (6.22), we obtain 

J-t(A,B) = (-IY(;) = (~1Y = (_l)IBI-IAI, (6.23) 

a formula for the Mobius function of (P(Xn), <;;;), o 
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Example. In this example we compute the Mobius function of a linearly ordered 
set. Let Xn = {I, 2, ... ,n} and consider the linearly ordered set (Xn, :S:), where 
1 < 2 < ... < n. We have f1(k, k) = 1 for k = 1,2, ... , n, and f1(k, I) = 0 for 
1 :s: I < k :s: n. Suppose that I = k + 1, where 1 :s: k :s: n - 1. Then 

hence, 

L f1(k, j) = 0; 
{j:k:'O:j:'O:k+l} 

f1(k, k) + f1(k, k + 1) = 0, 

and this implies that f1(k, k+ 1) = -f1(k, k) = -1. We now assume that 1 :s: k :s: n-2. 
Then 

f1(k, k) + f1(k, k + 1) + f1(k, k + 2) = 0; 

therefore, 

f1(k, k + 2) = -(f1(k, k) + f1(k, k + 1)) = -(1 + (-1)) = o. 

Continuing like this, or using induction, we see that the Mobius function of a linearly 
ordered set 1 < 2 < ... < n satisfies 

1, 
-1, 

0, 

if I = k, 
if 1= k + 1, 
otherwise. 

o 

We now state and prove the general Mobius inversion formula for functions defined 
on a finite partially ordered set. In this theorem, we assume that (X, :S:) has a smallest 
element-that is, an element 0 such that 0 :s: x for all x EX. This holds, for instance, 
for the partially ordered set (P(Xn ), ~), where the smallest element is the empty set. 

Theorem 6.6.1 Let (X,:S:) be a partially ordered set with a smallest element o. Let 
f1 be its Mobius function, and let F : X -+ ~ be a real-valued function defined on X. 
Let the function G : X -+ ~ be defined by 

G(x) = L F(z), (x EX). 
{z:z:'O:x} 

Then 

F(x) = L G(Y)f1(Y, x), (x EX). 
{y:y:'O:x} 
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Proof. Let ( be the zeta function of (X, ~). Using the properties of ( and f.J, previously 
discussed, we calculate as follows for x an arbitrary element in X: 

L G(y)f.J,(Y, x) L L F(z)f.J,(Y, x) 
{y:y~x} {y:y~x} {z:z~y} 

L f.J,(Y, x) L (z, y)F(z) 
{y:y~x} {Z:ZEX} 

L L (z, y)f.J,(y, x)F(z) 
{z:zEX} {y:y~x} 

{'~X} C"~,,,«Z' y)"(y, X)) F(,) 

L <5(z, x)F(z) 
{Z:ZEX} 

F(x). 

o 

As a corollary, we get the general inclusion-exclusion principle as formulated in 
equations (6.10) and (6.11). 

Corollary 6.6.2 Let Xn = {I, 2, ... ,n} and let F : P(Xn ) -> R be a function defined 
on the subsets of X n . Let G : P(Xn ) -> R be the function defined by 

Then 

G(K) = L F(L), (K <;;; Xn). 
L~K 

F(K) = L (_I)IKHLIG(L), (K <;;; Xn)· 
L~K 

Proof. The corollary follows from Theorem 6.6.1 and the evaluation of the Mobius 
function of (P(Xn), <;;;) as given in (6.23). 0 

Example. We use Mobius inversion to obtain a formula for the number of ways to 
place n nonattacking rooks on an n-by-n poard with forbidden positions, which is 
different from that given in Theorem 6.4.1. To facilitate our discussion, we now model 
an n-by-n board as an n-by-n matrix 

A=[aij:l~i,j~nl 
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of Os a.nd Is. We put a 0 in each position that is forbidden and a 1 in each position 
that is not. For example, the board 

m (6.24) 

corresponds to the matrix 

[ 1 
1 0 

t 1 
A= 1 1 

(6.25) 
0 1 
1 0 

A collection of four nonattacking rooks on the board corresponds to a collection of 
four Is in A with the property that each row and column contains exactly one of these 
Is (equivalently, no repeated 1 in a row or in a column). For example, the four Is 

a14 = l,a23 = l,a31 = 1, and a42 = 1 

correspond to four nonattacking rooks in positions 

(1,4), (2,3), (3, 1), (4,2). 

These four Is correspond to the permutation 4,3,1,2 of {I, 2, 3, 4}, or, equivalently, 
to the bijection5 

/: {1,2,3,4} -> {1,2,3,4}, 

with 
/(1) = 4, /(2) = 3, /(3) = 1, and /(4) = 2. 

Returning to the general case, we let Xn = {I, 2, ... , n} and let Pn denote the set 
of all n! bijections / : Xn -> X n. In general, n non attacking rooks on an n-by-n board 
correspond to n Is in the matrix with exactly one 1 in each row and in each column. 
This, in turn, corresponds to a bijection 

/: {1,2, ... ,n} -> {1,2, ... ,n} 

in Pn with ai/til = 1 for i = 1,2, ... , n, or, equivalently, with 

n 

II ai/til = al/(1)a2/(2) ... an/(n) = l. 
i=l 

SIn this section, we use bijection (or bijective function) to mean a function that is both one-to­
one and onto. An injection (or injective function) means a one-to-one function. A surjection (or 
surjective function) means an onto function. So a bijection is a function that is both a surjection and 
an injection. 
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If f is a bijection for which aif(i) = 0 for some i, then 

n 

II aif(i) = a1f(1)a2f(2) ... anf(n) = O. 
i=l 

191 

Therefore, we conclude that the number of ways to place n nonattacking rooks on an 
n-by-n board with the associated n-by-n matrix A = [aij] of Os and Is equals 

n 

L II aif(i)· (6.26) 
fEPn i=l 

(The expression in (6.26) is an important combinatorial function of a matrix A; it's 
called the permanent of A.) . 

Consider the partially ordered set (P(Xn ), ~). Each subset S of cardinality k of 
Xn picks out a set of k columns of A, and we denote the n-by-k submatrix formed by 
these columns by A[S]. Let:Fn (S) denote the set of all functions f : {l, 2, ... , n} ---> S, 
and let 9n(S) denote the subset of surjective functions. We then have 

Define the function F : P(Xn ) ---> R by 

F(S) = L II aif(i) , (S ~ X n). 
fEgn(S) i=l 

(Here, if S = 0, then F(S) = 0.) Notice that F(Xn) is equal to (6.26), since a 
sm-jective function f : Xn --> Xn is a bijection. Thus, our goal is to calculate F(Xn). 

Let 
G(S) = L F(T), (S ~ Xn)· 

T~S 

Then 
G(S) = L II aig(i) , (S ~ Xn). 

gEFn(S) i=l 

From Corollary 6.6.2, we get 

F(Xn) = L (-I)n-IS IG(S). (6.27) 
S~Xn 

G(S), being the summation of a1g(1)a2g(2) ... ang(n) over all functions 9 : Xn --> S, is 
just the product . 

IT (La ij ); 
i=l jES 
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that is, G(S) is the product of the sums of the elements in each row of A[S]. Thus, 
(6.27) becomes 

(6.28) 

and this gives a way to calculate the number of ways to place n nonattacking rooks 
on an n-by-n board: We pick a subset of columns, evaluate the sum of the elements of 
each row in those columns, multiply these sums together, affix the appropriate sign, 
and add the results over all choices of subsets of columns. The number of summands 
equals the number of subsets of a set of size n and hence equals 2n. 

Applying formula (6.27) to the board in (6.24) with associated 4-by-4 matrix (6.25), 
we get by a tedious calculation that the number of ways to place four nonattacking 
rooks on the board (6.24) equals 6. In this case, with a small n = 4, it would be easier 
to arrive at this number 6 directly, but that's not the point. The point is that we have 
a way to count that depends only on simple, arithmetical calculations, even though 
there may be exponentially many of them. 

o 

The next example makes use of the direct product construction for partially ordered 
sets (see Exercise 38 of Chapter 4), which we review here. Let (X,::;Il and (Y, ::;2) be 
partially ordered sets. Define the relation ::; on the set 

X x Y = {(x,y): x in X,y in Y} 

by 
(x, y) ::; (x', y') if and only if x ::;1 x' and y ::;2 y'. 

It is straightforward to check that (X x Y, ::;) is a partially ordered set, called the direct 
product of (X, ::;1) with (Y, ::;2). We may generalize this direct product construction 
to any number of partially ordered sets. 

The next theorem shows how the Mobius function of a direct product is determined 
from the Mobius functions of its component partially ordered sets. 

Theorem 6.6.3 Let (X, ::;1) and (Y, ::;2) be two finite partially ordered sets with 
Mobius functions /11 and /12, respectively. Let /1 be the Mobius function of the di­
rect product of (X,::;Il and (Y, ::;2). Then 

/1( (x, y), (x', y')) = /1(x, x')/1(y, y'), (( x, y), (x', y') in X x Y). (6.29) 

Proof. If (x,y) 1:. (x',y'), then /1((x,y),(x',y')) = 0, and either x 1:.1 yor x' 1:. y', 
implying that either /11 (x, x') = ° or /12(Y, y') = 0. Hence, (6.29) holds in this case. 

Now suppose that (x,y) ::; (x',y'). We prove that (6.29) holds by induction on the 
number of pairs (u, v) that lie between (x, y) and (x', y') in the partial order. We have 
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x ::;1 X' and Y ::;2 y'. If (x, y) = (x', y'), then x = x' and y == y' and both sides of (6.29) 
have value equal to 1. We assume that (x,y) i- (x',y') and proceed by induction: 

J.t((x,y),(x',y')) = J.t((u,v), (x',y')) 
{( u,v):(x,y)'S (u,v)< (x' ,y')} 

L J.tl(U,X')J.t2(V,y') 
{( u,v):(x,y)'S( u,v)< (x' ,y')} 

(by the inductive assumption) 

(0)(0) + J.tl (x, X')J.t2(y, y'). 

Thus, the theorem holds by induction. o 
We can express Theorem 6.6.3 by saying the Mobius function of the direct product 

of two partially ordered sets is the product of their Mobius functions. More generally, 
the Mobius function of the direct product of a finite number of finite partially ordered 
sets is the product of their Mobius functions. 

Example. Let n be a positive integer and again let Xn = {I, 2, ... ,n}. We now 
consider the partially ordered set Dn = (Xn, I ), where the partial order is that given 
by divisibility: a I b if and only if a is a factor of b. For clarity, we use the divisibility 
symbol "I" rather than the general symbol "::;" for a partial order. Our goal is to 
compute J.t(1, n) for this partially ordered set. From this, we can then compute J.t(a, b) 
for any integers a and b in Xn by J.t(a, b) = J.t(1,~) if a I b. (See the Exercises.) 

The integer n has a unique factorization into primes, and thus 

n == p~'p~2 ... p~k, 

where PI ,P2, ... ,Pk are distinct primes and aI, a2, ... ,ak are positive integers. 6 Since 
J.t(1, n) is given inductively by 

J.t(l,n)=- J.t(l,m), 
{m~l:mln,m",n} 

we need consider only (X~, I ), where X~ is the subset of Xn consisting of all positive 
integers k such that kin. Let T and s be integers in X~. We have 

T - pfhpf32 . pf3k and s - p'Ylp'Y2 p'Yk 
-12"k -12"'k' 

~~-------------------

6The factorization is unique apart from the order in which the primes are written down. 
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where 0::; f3i"i ::; ai, (i = 1,2, ... , k).7 Then rls if and only if f3i ::; Ii, (i = 1,2, ... , k). 
Thus, the partially ordered set (X~, I ) is just the direct product of k linear orders of 
sizes a1 + 1, a2 + 1, ... ,ak + 1, respectively. From Theorem 6.6.3, we get 

k 

J.L(1,n) = TIJ.L(I,pfi ). 

i=1 

From our evaluation of the Mobius function of a linear order, we see that 

Hence, 

{
I, 

J.L(I,pfi) = -1, 
if ai = 0, 
if ai = 1, 
if ai ;::: 2. 

{
I, 

J.L(I,n) = (_I)k, 
0, 

0, 

if n = 1, 
if n is a product of distinct primes, 
otherwise. 

We now obtain the classical Mobius inversion formula. 
o 

Theorem 6.6.4 Let F be a real-valued function defined on the set of positive integers. 
Define a real-valued function G on the positive integers by 

G(n) = L F(k). 
k:kln 

Then, for each positive integer n, we have 

F(n) = L p(n/k)G(k), 
k:kln 

where we write J.L(n/k) for J.L(I,n/k). 

Proof. Since, for any fixed n, the definition of G(n) depends only on the values of F 
on the set Xn = {I, 2, ... ,n}, we may confine our attention to the partially ordered 
set (Xn, I ). By Theorem 6.6.1, we have 

F(n) = L J.L(k,n)G(k) = L J.L(l,n/k)G(k). 
{k:kln} {k:kln} 

o 

In the next two examples we apply Theorem 6.6.4 to solve two counting problems. 

7In order to have the same primes in these factorizations of rand s, we allow some of the exponents 
to be O. 
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Example. In this example, we compute the value of the Euler ¢ function defined for 
a positive integer n by ¢(n) = ISnl, where 

Sn = {k: 1 ~ k ~ n,GCD(k,n) = I}. 

Thus, ¢(n) equals the number of positive integers not exceeding n that are relatively 
prime to n. For example, ¢(l) = 1, 

¢(9) = 1{1,2,4,5, 7,8}1 = 6, 

and ¢(13) = 12 (the value of ¢ at a prime number P is always P - 1). Let 

S~ = {k : 1 ~ k ~ n, GCD(k, n) = d}, (d a positive divisor of n). 

Then Sn = SA. We also have IS~I = ¢(n/d), since any integer k with GCD(k, n) = 1 is 
of the form k = dk', where 1 ~ k' ~ n/d and GCD(k', n/d) = 1. We take the function 
F in Mobius inversion to be the Euler ¢ function, and we define 

G(n) = L ¢(d). 
{d:dln} 

Since ¢(d) equals the number of integers k between 1 and n such that GCD(k, n) = d, 
and since, for each such integer k, GCD(k, n) = d for some integer d with din, we 
conclude that G(n) = n. Thus, we have 

n = L ¢(d), 
{d:dln} 

and, inverting this equation, we get 

¢(n) = L J-t(n/d)d = L J-t(d) n/d. (6.30) 
{d:dln} {d:dln} 

Now, J-t(d) is nonzero if and only if d = 1 or d is a product of distinct primes; in 
the latter case, J-t( d) = (-It, where r is the number of distinct primes in d. Let the 
distinct primes dividing n be Pl,]J2, ... ,pro Then (6.30) implies that ¢(n) equals 

n - (2:. + 2:. + ... ) + (~ + ~ + ... ) + ... + 
PI P2 PIP2 PIP3 

n (_l)r , 
PIP2'" Pr 

and this is just the product expansion 

nIT (1-~). 
i=1 Pt 
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Thus, 

¢(n) = n II (1 - D ' 
pin 

where the product is over all distinct primes p dividing n. o 

We conclude this section with an application of classical Mobius inversion. 

Example. We count the number of circular n-permutations of k different symbols 
aI, a2, ... , ak, where each symbol can be used any number of times; equivalently, we 
count the number of circular n-permutations of the multiset {n·al, n·a2, . .. ,n·ak}. We 
define the period of such a circular permutation to be the smallest positive number d of 
clockwise, circular shifts by one position required to leave the circular word unchanged. 
For example, 

al 

a2 a2 

al 

has period 2, since 

al a2 al 

a2 a2 --> al al -+ a2 a2· 

al a2 al 

The circular permutation 

al 

a2 al 

a3 

has period 4, since we don't return to it until we have made a complete revolution 
(four position shifts). The period d of a circular n-permutation satisfies 1 ::::: d ::::: n 
and din, since period d implies that a particular pattern is repeated n/d times. We 
can consider a circular permutation as a linear string of symbols in which the first 
symbol is regarded as following the last symbol. Thus, aI, a2, aI, a2 corresponds to 
the first circular permutation just considered. Shifting, we get the string a2, aI, a2, al; 
one more shift gets us back to aI, a2, a I , a2. The string 
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corresponds to a circular 6-permutation of period 3. Shifting three times we get 

and we are back to the original string for the first time. In general, a circular n­

permutation of period d corresponds in this way to exactly d different linear strings, 
each of period d. 

Let h(n) be the number of circular n-words possible using the symbols aI, a2, ... ,ak.8 

For m a positive integer, let f(m) equal the number of strings of length m possible 
using the symbols aI, a2, ... ,ak. Since each string has a period d, where din, it 
follows that 

h(n) = " f(d) 
~ d· 

{d:dln} 

(6.31) 

Therefore, if we can calculate the number of strings of length n of each possible period 
d, then we can calculate h( n). Let 

g(m) = L f(e). 
{e:elm} 

Then g( m) is the total number of strings of length m, and so g( m) = km. By classical 
Mobius inversion (i.e. Theorem 6.6.4) we get 

f(m) = L f.l(m/e)g(e) = L f.l(m/eW· 
{e:elm} {e:elm} 

Using (6.32) in (6.31), we obtain 

h(n) = L f~d) 
{d:dln} 

L ~ L f.l(d/eW 
{d:dln} {e:eld} 

L ( L _1 f.l(m)) ke 

{e:eln} {m:mln/e} me 

(since e I d and q I n, we have d = me, 

where me I n and so min/e) 

8h(n) depends on k, but this is not reflected in our notation. 

(6.32) 
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L ( L ~f1((n/e)/r)) ke 
{e:eln} {r:rlnJe} n 

L 4>(~e) ke 

{e:eln} 

.!. L 4>(n/e)ke. 
n 

{e:eln} 

Therefore, the number of circular n-words that can be made from an alphabet of size 
k equals 

1 - L 4>(n/e)ke. 
n {e:eln} 

o 

6.7 Exercises 

1. Find the number of integers between 1 and 10,000 inclusive that are not divisible 
by 4,5, or 6. 

2. Find the number of integers between 1 and 10,000 inclusive that are not divisible 
by 4, 6, 7, or 10. 

3. Find the number of integers between 1 and 10,000 that are neither perfect squares 
nor perfect cubes. 

4. Determine the number of 12-combinations of the multiset 

s = {4 . a, 3· b, 4· c, 5 . d}. 

5. Determine the number of lO-combinations of the multiset 

s = {oo . a, 4· b,5· c, 7 . d}. 

6. A bakery sells chocolate, cinnamon, and plain doughnuts and at a particular 
time has 6 chocolate, 6 cinnamon, and 3 plain. If a box contains 12 doughnuts, 
how many different options are there for a box of doughnuts? 

7. Determine the number of solutions of the equation Xl + X2 + X3 + X4 = 14 in 
nonnegative integers Xl, X2, X3, and X4 not exceeding 8. 

8. Determine the number of solutions of the equation Xl + X2 + X3 + X4 + Xs = 14 
in positive integers Xl, X2, X3, X4 and Xs not exceeding 5. 
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9. Determine the number of integral solutions of the equation 

that satisfy 

10. Let S be a multiset with k distinct objects with given repetition numbers 
nl, n2,· .. ,nk, respectively. Let r be a positive integer such that there is at least 
one r-combination of S. Show that, in applying the inclusion-exclusion principle 
to determine the number of r-combinations of S, one has Al n A2 n· .. n Ak = 0. 

11. Determine the number of permutations of {I, 2, ... ,8} in which no even integer 
is in its natural position. 

12. Determine the number of permutations of {I, 2, ... ,8} in which exactly four 
integers are in their natural positions. 

13. Determine the number of permutations of {I, 2, ... ,9} in which at least one odd 
integer is in its natural position. 

14. Determine a general formula for the number of permutations of the set {I, 2, ... , n} 
in which exactly k integers are in their natural positions. 

15. At a party, seven gentlemen check their hats. In how many ways can their hats 
be returned so that 

(a) no gentleman receives his own hat? 
(b) at least one of the gentlemen receives his own hat? 
(c) at least two of the gentlemen receive their own hats? 

16. Use combinatorial reasoning to derive the identity 

n! (~)Dn + G)Dn - 1 + G)Dn-2 

(Here, Do is defined to be 1.) 

17. Determine the number of permutations of the multiset 

S = {3· a, it· b, 2· c}, 

where, for each type of letter, the letters of the same type do not appear consec­
utively. (Thus abbbbcaca is not allowed, but abbbacacb is.) 
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18. Verify the factorial formula 

n! = (n - 1)((n - 2)! + (n - I)!), (n = 2,3,4, ... ). 

19. Using the evaluation of the derangement numbers as given in Theorem 6.3.1, 
provide a proof of the relation 

Dn = (n - 1)(Dn- 2 + Dn- 1), (n=3,4,5, ... ). 

20. Starting from the formula Dn = nDn- 1 + (_l)n, (n = 2,3,4, ... ), give a proof 
of Theorem 6.3.1. 

21. Prove that Dn is an even number if and only if n is an odd number. 

22. Show that the numbers Qn of Section 6.5 can be rewritten in the form 

( 
n-l n-2 n-3 (_I)n-l) 

Qn = (n - I)! n - -1!- + ~ -~ + ... + (n _ I)! . 

23. (Continuation of Exercise 22.) Use the identity 

to prove that Qn = Dn + Dn- 1 , (n = 2,3, ... ). 

24. What is the number of ways to place six nonattacking rooks on the 6-by-6 boards 
with forbidden positions as shown? 

x x 
x x 

(a) x x 

x x 
x x 

(b) x x 
x x 

x x 
x x 
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x x 
x x 

(c) x 
x x 

x 

25. Count the permutations ili2i3i4i5i6 of {I, 2, 3, 4, 5, 6}, where i 1 =I- 1,5; i3 =I-
2,3,5; i4 =I- 4; and i6 =I- 5,6. 

26. Count the permutations ili2i3i4iSi6 of {I, 2, 3, 4,5, 6}, where il =I- 1,2,3; i2 =I- 1; 

i3 =I- 1; i5 =I- 5,6; and i6 =I- 5,6. 

27. A carousel has eight seats, each representing a different animal. Eight girls are 
seated on the carousel facing forward (each girl looks at another girl's back). In 
how many ways can the girls change seats so that each has a different girl in 
front of her? How does the problem change if all the seats are identical? 

28. A carousel has eight seats, each representing a different animal. Eight boys are 
seated on the carousel but facing inward, so that each boy faces another (each 
boy looks at another boy's front). In how many ways can the boys change seats 
so that each faces a different boy? How does the problem change if all the seats 
are identical? 

29. A subway has six stops on its route from its base location. There are 10 people 
on the subway as it departs its base location. Each person exits the subway at 
one of its six stops, and at each stop at least one person exits. In how many 
ways can this happen? 

30. How many circular permutations are there of the multiset 

{3· a,4 . b, 2 . c, 1 . d}, 

where, for each type of letter, all letters of that type do not appear consecutively? 

31. How many circular permutations are there of the multiset 

{2 . a, 3· b, 4· c,5 . d}, 

where, for each type of letter, all letters of that type do not appear consecutively? 

32. Let n be a positive integer and let Pl,P2,.: ., Pk be all the different prime numbers 
that divide n. Consider the Euler function tjJ defined by 

tjJ(n) = I{k: 1::; k::; n,GCD{k,n} = 1}1. 
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Use the inclusion-exclusion principle to show that 

k 1 
¢(n) = n IT(1- -). 

i=l Pi 

33. * Let nand k be positive integers with k :S n. Let a(n, k) be the number of 
ways to place k nonattacking rooks on an n-by-n board in which the positions 
(1,1), (2,2), ... ,(n, n) and (1,2), (2,3), ... ,(n - 1, n), (n, 1) are forbidden. For 
example, if n = 6 the board is 

x x 
x x 

x x 
x x 

x x 
x x 

prove that 
2n (2n - k) 

a(n, k) = 2n _ k k . 

Note that a(n, k) is the number of ways to choose k children from a group of 2n 
children arranged in a circle so that no two consecutive children are chosen. 

34. Prove that the convolution product satisfies the associative law: f * (g * h) = 

(f * g) * h. 

35. Consider the linearly ordered set 1 < 2 < ... < n, and let F : {I, 2, ... , n} -+ ~ 

be a function. Let the function G : {I, 2, ... ,n} -+ ~ be defined by 

m 

G(m) = LF(k), (1:S k:S n). 
k=l 

Apply Mobius inversion to get F in terms of G. 

36. Consider the board with forbidden positions as shown: 

Use formula (6.28) to compute the number of ways to place four nonattacking 
rooks on this board. 
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37. Consider the partially ordered set (P(X3 ), <:;;) of subsets of {I, 2, 3} partially 
ordered by containment. Let a function fin F(P(X)) be defined by 

{

I, 

f(A,B) = ~: 
-1, 

if A = B, 
if A c Band IBI - IAI = 1, 
if A c Band IBI - IAI = 2, 
if A c Band IBI - IAI = 3. 

Find the inverse of f with respect to the convolution product. 

38. Recall the partially ordered set IIn of all partitions of {I, 2, ... n}, where the 
partial order is that of refinement (see Exercise 47 of Chapter 4). Determine the 
Mobius functions of II3 and II4 . 

39. Let n be a positive integer and consider the partially ordered set (Xn, I ), where 
Xn = {I, 2, ... ,n} and the partial order is that of divisibility. Let a and b be 
positive integers in X n , where alb. Prove that J.t(a, b) = J.t(1, b/a). 

40. Consider the multiset X = {nl . aI, n2 . a2, ... ,nk . ad of k distinct elements 
with positive repetition numbers nl, n2, . .. ,nk. We introduce a partial order on 
the combinations of X by stating the following relationship: If A = {Pl' aI, P2 . 
a2,··· ,Pk . ad and B = {ql . aI, q2 . a2,· .. ,qk . ad are combinations of X, then 
A ::; B provided that Pi ::; qi for i = 1,2, ... ,k. Prove that this statement defines 
a partial order on X and then compute its Mobius function. 



j 



Chapter 7 

Recurrence Relations and 
Generating Functions 

Many combinatorial counting problems depend on an integer parameter n. This pa­
rameter n often denotes the size of some underlying set or multiset in the problem, the 
size of subsets, the number of positions in permutations, and so on. Thus, a counting 
problem is often not one individual problem but a .sequence of individual problems. 
For example, let hn denote the number of permutations of {I, 2, ... , n}. We know that 
hn = n!, and hence we obtain a sequence of numbers 

for which the general term hn equals n!. An instance of this problem is obtained by 
choosing n to be a specific integer. If we take n = 5, then we obtain h5 = 5! as the 
answer to the problem of determining the number of permutations of {I, 2, 3, 4, 5}. 

As another example, let gn denote the number of nonnegative integral solutions of 
the equation 

Xl + X2 + X3 + X4 = n. 

From Chapter 3, we know that the general term of the sequence 

90,91, g2,···, 9n,··· 

satisfies 

gn=(n;3). 
In this chapter, we develop algebraic methods for solving some counting problems 

involving an integer parameter n. Our methods lead either to an explicit formula or 
to a function, a genemting junction, the coefficients of whose power series give the 
answers to the counting problem. 
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7.1 Some Number Sequences 

Let 
(7.1) 

denote a sequence of numbers. We call hn the general term or generic term of the 
sequence. Two familiar types of sequences are 

arithmetic sequences, in which each term is a constant q more than the previous 
term, 

geometric sequences, in which each term is a constant mUltiple q of the previous 
term. 

In both instances, the sequence is uniquely determined once the initial term ho and 
the constant q are specified: 

(arithmetic sequence) 

ho, ho + q, ho + 2q, ... ,ho + nq, ... 

(geometric sequence) 
ho, qhO, q2 ho, .. . , qnho, .... 

In the case of an arithmetic sequence, we have the rule 

hn = hn - 1 + q, (n ~ 1) 

and the general term is 
hn = ho + nq, (n ~ 0). 

In the case of a geometric sequence, we have the rule 

and the general term is 

hn = hoqn, 

Example. Arithmetic sequences 

(a) ho = 1, q = 2: 1,3,5, ... ,1 + 2n, . .. 

(n ~ 1) 

(n ~ 0). 

This is the sequence of odd positive integers: hn = 1 + 2n (n ~ 0). 

(b) ho = 4, q = 0: 4, 4, 4, ... , 4, ... 

This is the constant sequence with each term equal to 4: hn = 4 (n ~ 0). 

(c) ho = 0, q = 1: 0,1,2, ... , n, ... 

(7.2) 

(7.3) 

This is the sequence of nonnegative integers (the counting numbers): hn = n 
(n ~ 0). 0 
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Example. Geometric sequences 

(a) ho = 1, q = 2: 1,2,22 , ... ,2n, ... 

hn = 2n (n ? 0) 

207 

This is the sequence of nonnegative integral powers of 2. Its combinatorial signifi­
cance is that it is the sequence for the counting problem that asks for the number of 
subsets of an n-element set. It is also the sequence used in determining the base 2 
representation of a number. 

(b) ho = 5, q = 3: 5,3 x 5,32 X 5, ... ,3n x 5, ... 
hn = 3n x 5 (n ? 0) 

This is the sequence for the counting problem that asks for the number of combi­
nations of the multiset consisting of n + 1 different objects whose repetition numbers 
are given by 4,2,2, ... ,2 (n 2s), respectively. 0 

The partial sums for a sequence (7.1) are the sums 

80 ho 
81 ho + hI 
82 ho + hI + h2 

The partial sums form a new sequence 80,81,82, ... , 8 n , ... with general term 8 n . 

The partial sums for an arithmetic sequence are 

~ qn(n+ 1) 
8 n = L...J(ho + kq) = (n + 1)ho + 2 . 

k=O 

The partial sums for a geometric sequence are 

n { qnq+~~1 ho (q i- 1) 
8 n = LqkhO = 

k=O (n + 1)ho (q = 1). 

The rules (7.2) and (7.3) for obtaining the next term in either an arithmetic se­
quence or geometric sequence are simple instances of linear recurrence relations. In our 
study of the derangement numbers in Chapter 6, we obtained two 'recurrence relations 
for Dn, namely 

Dn = (n - 1)(Dn- 2 + Dn- 1 ), (n ? 3) and Dn = nDn-l + (_1)n, (n ? 2). 

In (7.2) and (7.3), the nth term hn of the sequence is obtained from the (n-l)th term 
hn - 1 and a constant q. 
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We defer the general definition of a linear recurrence relation until Section 7.4. 

The remainder of this section concerns a counting sequence called the Fibonacci 
sequence. In his book Liber Abaci,l published in 1202, Leonardo of Pisa2 posed a 
problem of determining how many pairs of rabbits are born from one pair in a year. 

The problem posed by Leonardo [Fibonacci] is the following: 

A newly born pair of rabbits of opposite sexes is placed in an enclosure at the 
beginning of a year. Beginning with the second month, the female gives birth to a pair 
of rabbits of opposite sexes each month. Each new pair also gives birth to a pair of 
rabbits each month starting with their second month.3 Determine the number of pairs 
of rabbits in the enclosure after one year. 

In the beginning, there is one pair of rabbits who mature during the first month, so 
that at the beginning of the second month there is also only one pair of rabbits in the 
enclosure. DUring the second month the original pair gives birth to a pair of rabbits, so 
that there will be two pairs of rabbits at the beginning of the third month. During the 
third month the newborn pair of rabbits is maturing and only the original pair gives 
birth. Therefore, at the beginning of the fourth month there will be a 2 + 1 = 3 pairs 
of rabbits in the enclosure. In general, let fn denote the number of pairs of rabbits in 
the enclosure at the beginning of month n (equivalently, at the end of month n - 1). 
We have calculated that h = 1, h = 1, h = 2, and f4 = 3, and we are asked to 
determine f13. 

We derive a recurrence relation for fn from which we can then easily calculate h3. 
At the beginning of month n the pairs of rabbits in the enclosure can be partitioned 
into two parts: those present at the beginning of month n - 1 and those born during 
month n - 1. The number of pairs born during month n - 1 is, because of the one­
month maturation process, the number of pairs that there were at the beginning of 
month n-2. Thus, at the beginning of month n, there are fn-l + fn-2 pairs of rabbits, 
giving us the recurrence relation 

fn = fn-l + fn-2, (n;::: 3). 

1 Literally, a book about the abacus. 
2Leonardo, better known by the name Fibonacci (meaning "son of Bonacci"), was largely respon­

sible for the introduction of our present system of numeration in Western Europe. 
3 Admittedly, this doesn't sound very realistic, but it's just a mathematical puzzle to challenge 

one's mind. 
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Using this relation and the values for fr, 12, /3, and 14 computed, we now see that 

15 14+/3 3+2 5 

16 15 + 14 5+3 8 

h 16 + 15 8+5 13 

18 17+/6 13 + 8 21 

19 18+17 21 + 13 34 

ho 19 + 18 34 + 21 55 
111 110 + 19 55 +34 89 
h2 111 + fro 89 +55 144 

h3 h2 + 111 144 + 89 233. 

Consequently, after one year there are 233 pairs of rabbits in the enclosure. We define 

10 = 0 so that 12 = 1 = 1 + 0 = h + 10. The sequence of numbers 10, h, 12, /3, ... 
satisfying the recurrence relation and initial conditions 

In = In-l + In-2 
10 = 0, h = 1 

(n 2: 2) 

(7.4) 

is called the Fibonacci sequence, and the terms of the sequence are called Fibonacci 
numbers. The recurrence relation in (7.4) is also called the Fibonacci recurrence. From 
our calculations, the first few terms of the Fibonacci sequence are 

0,1,1,2,3,5,8,13,21,34,55,89,144,233, .... 

The Fibonacci sequence has many remarkable properties. We give two in the next 
two examples. 

Example. The partial sums of the terms of the Fibonacci sequence are 

sn = 10 + h + 12 + ... + In = In+2 - 1. (7.5) 

In particular, the partial sums are one less than a Fibonacci number. 

We prove (7.5) by induction on n. For n = 0, (7.5) reduces to 10 = h - 1, which 
is certainly valid since 0 = 1 - 1. Now, let n 2. 1. We assume that (7.5) holds for n 
and then prove that it holds when n is replaced by n + 1: 

10 + h + 12 + ... + In+! (Io + fr + h .. · + In) + In+! 

(fn+2 - 1) + In+l 
,(by the induction assumption) 

In+2 + In+! - 1 = In+3 - 1 

(by the Fibonacci recurrence). 

Thus, by induction, (7.5) holds for all n 2: O. o 
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Example. The Fibonacci number In is even if and only if n is divisible by 3. 

This certainly agrees with the values for the Fibonacci numbers 10, h, h (even, 
odd, odd). It follows in general because if we have 

even, odd, odd, 

then, applying the Fibonacci recurrence, we see that the next three numbers are also 
even, odd, odd: 

and 

odd + odd = even, 

odd + even = odd, 

even + odd = odd. 

Several other properties of the Fibonacci numbers are given in the Exercises. 

o 

Our goal now is to obtain a formula for the Fibonacci numbers, and in doing so 
we illustrate a technique for solving recurrence relations that we develop in a later 
section. 

Consider the Fibonacci recurrence relation in the form 

In - In-l - In-2 = 0, (n;?: 2), (7.6) 

and, for the moment, ignore any initial values for 10 and h. One way to solve this 
recurrence relation is to look for a solution of the form 

where q is a nonzero number. Thus, we seek a solution among the familiar geometric 
sequences with first term equal to qO = 1. We observe that In = qn satisfies the 
Fibonacci recurrence relation if and only if 

or, equivalently, 
(n=2,3,4, ... ). 

Since q is assumed to be different from zero, we conclude that In = qn is a solution of 
the Fibonacci recurrence relation if and only if q2 - q - 1 = 0 or, equivalently, if and 
only if q is a root of the quadratic equation 

x2 - x-I = O. 

Using the quadratic formula, we find that the roots of this equation are 

1 + v'5 1- v'5 
ql = --2-' q2 = --2-· 
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Thus, 

fn = (1+2v'5)n (l_v'5)n and fn = --2-

are both solutions of the Fibonacci recurrence relation. Since the Fibonacci recurrence 
relation is linear (there are no powers of f different from 1) and homogeneous (the 
right-hand side of (7.6) is 0), it follows by straightforward computation that 

f ( 1 + v'5) n (1 -v'5) n 
n = Cl --2- + C2 --2- (7.7) 

is also a solution of the recurrence relation (7.6) for any choice of constants C1 and C2. 

The Fibonacci sequence has the initial values fo = 0 and h = 1. Can we choose 
Cl and C2 in (7.7) so that these initial values are attained? If so, then (7.7) will give a 
formula for the Fibonacci numbers. To satisfy these initial values, we must have 

{ 
(n = 0) 

(n = 1) Cl (1+215) + C2 (1-215) = 1. 

This is a simultaneous system of two linear equations in the unknowns Cl and C2, 

whose unique solution is computed to be 

1 
Cl = v'5' 

Substituting into (7.7), we obtain the next formula. 

Theorem 7.1.1 The Fibonacci numbers satisfy the formula 

f = ~ (1 + v'5)n __ 1 (1- v'5)n (n;:: 0). nv'5 2 v'5 2 ' 
(7.8) 

o 

Even though the Fibonacci numbers are whole numbers, an explicit formula for 
them involves the irrational number v'5. When the binomial theorem is used to expand 
the nth powers in (7.8), all of the v'5's miraculously cancel out. 

The solution (7.7) is the general solution of the Fibonacci recurrence relation (7.6) 
in the sense that no matter what the initial values fo = a and h = b, constants C1 and 
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C2 can be determined so that the initial values hold. This is so because the matrix of 
coefficients of the linear system 

is invertible; its determinant, 

1 
1+,15 
-2-

1 
1-,15 
-2-

a 

b 

] = -J5, 

is different from zero. Thus, no matter what the values of a and b, the linear system4 

can be solved uniquely for Cl and C2. 

Example. Let go, gl, g2, ... , gn, . .. be the sequence of numbers satisfying the Fi­
bonacci recurrence relation and the initial conditions as follows: 

gn = gn-I + gn-2 
go = 2, gl = -1. 

We would like to determine CI and C2 that satisfy 

Solving this system, we obtain 

J5-2 
Cl = J5 ' 

Thus, a formula for gn is 

(n ~ 2) 

2, 

-1. 

= J5-2 (1+J5)n + J5+2 (l_J5)n 
gn J5 2 J5 2 

The Fibonacci numbers also occur in other combinatorial problems. 

o 

Example. Determine the number hn of ways to perfectly cover a 2-by-n board with 
dominoes. (See Chapter 1 for a definition of this.) 

4Here we use a little elementary linear algebra. By directly eliminating Cl from the second equation, 
we can see that the system has one and only one solution for each choice of a and b. 
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We define ho = 1.5 We also compute that hI = 1, h2 = 2, and h3 = 3. Let n 2 2. 
We partition the perfect covers of a 2-by-n board into two parts A and B. In A we 
put those perfect covers in which there is a vertical domino covering the square in the 
upper-left-hand corner. In B we put the other perfect covers; that is, the perfect covers 
in which there is a horizontal domino covering the square in the upper-left-hand corner 
and thus another horizontal domino covering the square in the lower-left-hand corner. 
The perfect covers in A are equinumerous with the perfect covers of a 2-by-(n - 1) 
board. Thus, the number of perfect covers in A is 

IAI = hn-I· 

The perfect covers in B are equinumerous with the perfect covers of a 2-by-(n - 2) 
board, and hence the number of perfect covers in B is 

We conclude that 

(n 2 2). 

Since ho = hI = 1 (the values of the Fibonacci numbers iI and h) and hn = hn - I + 
hn - 2 (n 2 2) (the Fibonacci recurrence relation), we conclude that ho, hI, h2, . .. ,hn , . .. 

is the Fibonacci sequence iI, 12, ... , fn,'" with fo deleted. 0 

Example. Determine the number bn of ways to perfectly cover a 1-by-n board with 
monominoes and dominoes. 

If we take a perfect cover of a 2-by-n board with dominoes and look only at its 
first row, we see a perfect cover of a 1-by-n board with monominoes and dominoes. 
Conversely, each perfect cover of a 1-by-n board with monominoes and dominoes 
can be "extended" uniquely to a perfect cover of a 2-by-n board with dominoes. 
Thus, the number of perfect covers of a 1-by-n board with monominoes and dominoes 
equals the number of perfect covers of a 2-by-n board with dominoes. Therefore, 
bo, bl , b2 , . .. ,bn , ... is also the Fibonacci sequence with fo deleted. 0 

In the next theorem we show how the Fibonacci numbers occur as sums of binomial 
coefficients. 

Theorem 7.1.2 The sums of the binomial coefficients along the diagonals of Pascal's 
triangle running upward from the left are Fibonacci numbers. More precisely, the nth 
Fibonacci number f n satisfies 

where t = l ntl J is the floor of ntl . 

5 A 2-by-O board is empty and has exactly one perfect cover, namely the empty cover. 
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Proof. Define 90 = 0 and 

(n - 1) (n -2) (n - t) 9n= 0 + 1 +".+ t-l' (n 2: 1). 

Since ( ; ) = 0 for each integer p > m, we also have 

(n - 1) (n -2) (n -3) ( 0 ) 9n= 0 + 1 + 2 +"'+n-l' (n 2: 1), 

or, using summation notation, 

=~(n-l-p) 9n L k . 
p=O 

To prove the theorem, it will suffice to show that 9n satisfies the Fibonacci recurrence 
relation and has the same initial values as the Fibonacci sequence. We have 

90 = c\) = 0, 

91 = @ = 1, 

92 = m + (~) = 1 + 0 = 1. 

Using Pascal's formula, we see that, for each n 2: 3, 

n-2 ( ) n-3 ( .) n-2-k n-3-J 9n-1 + 9n-2 = L k + L . 
k=O J=O J 

= (n ~ 2) + % ( (n - ~ - k) + (n ~ ~ ~ k) ) 

=(n~2)+%(n-~-k) 

= (n ~ 1) + E (n - ~ - k) + (n ~ 1) 
k=1 

_'" n-l-k _ n-1 ( ) 
- L k - 9n-

k=O 
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Here, we have used the facts that 

We conclude that go,gI,g2, ... ,gn,'" is the Fibonacci sequence, and this proves the 
theorem. 0 

7.2 Generating Functions 

In this section we discuss the method of generating functions as it pertains to solving 
counting problems. On one level, generating functions can be regarded as algebraic 
objects whose formal manipulation allows us to count the number of possibilities for 
a problem by means of algebra. On another level, generating functions are Taylor 
series (power series expansions) of infinitely differentiable functions. If we can find 
the function and its Taylor series, then the coefficients of the Taylor series give the 
solution to the problem. For the most part we keep questions of convergence in the 
background and manipulate power series on a formal basis. 

Let 
(7.9) 

be an infinite sequence of numbers. Its genemting function is defined to be the infinite 
series 

g(x) = ho + hIx + h2X2 + .. , + hnxn + .... 
The coefficient of xn in g(x) is the nth term hn of (7.9); thus, xn acts as a placeholder 
for hn . A finite sequence 

ho, hI, h2 ... , hm 

can be regarded as the infinite sequence 

in which all but a finite number of terms equal O. Hence, every finite sequence has a 
generating function 

which is a polynomial. 

Example. The generating function of the infinite sequence 

1,1,1, ... ,·1, ... , 

each of whose terms equals 1, is 
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This generating function g(x) is the sum of a geometric series6 with value 

1 
g(x) = -1-' -x 

(7.10) 

The formula (7.10) holds the information about the infinite sequence of all Is in ex­
ceedingly compact form. 0 

Example. Let m be a positive integer. The generating function for the binomial 
coefficients 

(~), (7), (;), ... , (:) 
is 

gm(X) = (~) + (7)x + (;)x2 + ... + (:)xm. 

By the binomial theorem, 

which also displays the information about the sequence of binomial coefficients in 
compact form. 0 

Example. Let a be a real number. By Newton's binomial theorem (see Section 5.6), 
the generating function for the infinite sequence of binomial coefficients 

is 

o 

Example. Let k be an integer, and let the sequence 

be defined by letting hn equal the number of nonnegative integral solutions of 

From Chapter 3, we know that 

h = (n + k -1) 
n k - 1 ' (n :::: 0). 

6See Section 5.6. 
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The generating function (using summation notation now) is 

( ) _ ~ (n + k - 1) n 
gx-L...- k-1 x. 

n=O 

From Chapter 5, we know that this generating function is 

1 
g(x) = (1- x)k' 

It is instructive to recall the derivation of this formula. We have 

1 
(1 - x)k 

1 1 1 
--x--x···x-­
I-x I-x I-x 

(k factors) 

(1 + x + x2 + .. ·)(1 + x + x2 + ... ) ... (1 + x + x2 + ... ) 

217 

(7.11 ) 

In the preceding notation, xe ! is a typical term of the first factor, xe2 is a typical term 
of the second factor, ... , x ek is a typical term of the kth factor. Multiplying these 
typical terms, we get 

(7.12) 

Thus, the coefficient of xn in (7.11) equals the number of nonnegative integral solutions 
of (7.12), and this number we know to be 

o 

The ideas used in the previous example apply to more general circumstances. 

Example. For what sequence is 

the generating function? 

Let x€1, (0 S el S 5), x e2 , (0 S e2 S 2), and x e3 , (0 S e3 S 4) denote typical 
terms in the first, second, and third factors, respectively. Multiplying, we obtain 
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provided that 
el + e2 + e3 = n. 

Thus, the coefficient of xn in the product is the number hn of integral solutions of 
el + e2 + e3 = n in which 0 ::s el ::s 5, O::S e2 ::s 2, and 0 ::s e3 ::s 4. Note that hn = 0 if 
n > 5 + 2 + 4 = 11. 0 

Example. Determine the generating function for the number of n-combinations of 
apples, bananas, oranges, and pears, where, in each n-combination, the number of 
apples is even, the number of bananas is odd, the number of oranges is between 0 and 
4, and there is at least one pear. 

First, we note that the problem is equivalent to finding the number hn of nonneg­
ative integral solutions of 

el + e2 + e3 + e4 = n, 

where el is even (el counts the number of apples), e2 is odd (e2 counts the number of 
bananas), 0 ::s e3 ::s 4 (e3 counts the number of oranges), and e4 ;::: 1 (e4 counts the 
number of pears). We create one factor for each type of fruit, where the exponents 
are the allowable numbers in the n-combinations for that type of fruit: 

g(x) = 

(1 + x2 + x4 + .. ·)(x + x3 + x5 + .. ·)(1 + x + x2 + x3 + x4)(x + x2 + x3 + + ... ). 

The first factor is the "apple factor," the second is the "banana factor," and so on. 
We now notice that 

x(l + x2 + x4 + ... ) 

Thus, 

g(x) 

1 

1- x 2 

1- x5 

I-x 

x(l + x + x2 + ... ) 
x 

I-x 
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Therefore, the coefficients in the Taylor series for this rational function count the 
number of combinations of the type considered. 0 

The next example shows how a counting problem can sometimes be explicitly 
solved by means of generating functions. 

Example. Find the number hn of bags of fruit that can be made out of apples, 
bananas, oranges, and pears, where, in each bag, the number of apples is even, the 
number of bananas is a multiple of 5, the number of oranges is at most 4, and the 
number of pears is 0 or 1. 

We are asked to count certain n-combinations of apples, bananas, oranges, and 
pears. We determine the generating function g(x) for the sequence ho, hI, h2, ... , hn , ... 

We introduce a factor for each type of fruit, and we find that 

g(x) = (1+x2+x4+oo·)(1+x5+XlO+oo.) x 

(1 + x + x2 + x3 + x4)(1 + x) 

1 1 1 - x 5 
------(l+x) 
1-x21-x5 1-x 

1 ~ (n+ 1) n 
(1 - x)2 = f::o n x 

00 

Thus, we see that hn = n + 1. Notice how this formula for the counting number hn 

was obtained merely by algebraic manipulation. 0 

Example. Determine the generating function for the number hn of solutions of the 
equation 

in nonnegative odd integers eI,e2, ... ,ek' 

We have 

g(x) (x + x3 + x5 + 00') 00. (x + x3 + x5 + 00') (k factors) 

x(l + x2 + x4 + 00 .) 00. x(l + x2 + x4 + 00') 
x x 

1 - x 2 •.. 1 - x2 

xk 

o 
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We know that the number hn of nonnegative integral solutions of the equation 

is 

and we have determined that 
1 

g(x) = (l-x)k 

(7.13) 

is its generating function. It is much more difficult to determine an explicit formula 
for the number of nonnegative integral solutions of an equation obtained from (7.13) 
by putting arbitrary positive integral coefficients in front of the ei. Nevertheless, the 
generating function for the number of solutions is readily obtained using the ideas we 
have already discussed. We illustrate with the next example. 

Example. Let hn denote the number of nonnegative integral solutions of the equation 

Find the generating function g(x) for ha, hI, h2, ... , hn , .... 

We introduce a change of variable by letting 

Then hn also equals the number of nonnegative integral solutions of 

II + h + h + 14 = n, 

where II is a multiple of 3, h is a multiple of 4, h is even, and 14 is a multiple of 
5. Equivalently, hn is the number of n-combinations of apples, bananas, oranges, and 
pears in which the number of apples is a mUltiple of 3, the number of bananas is a 
multiple of 4, the number of oranges is even, and the number of pears is a multiple of 
5. Hence, 

g(x) (1 + x 3 + x 6 + .. ·)(1 + X4 + x 8 + ... ) x 

(1 + x 2 + x4 + ... )(1 + x 5 + x lO + ... ) 

1 1 1 

D 

We have the following example of a similar nature. 
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Example. There is available an unlimited number of pennies, nickels, dimes, quarters, 
and half-dollar pieces. Determine the generating function g(x) for the number hn of 
ways of making n cents with these pieces. 

The number hn equals the number of nonnegative integral solutions of the equation 

The generating function is 

1 1 1 1 1 
g(x) = 1 _ x 1 - x5 1 - x lO 1 - x 25 1 - x 50 · 

o 

We conclude this section with the following theorem concerning inversions in a 
permutation. Recall from Section 4.2 that an inversion in a permutation 7r = i1i2 ... in 
of {I, 2, ... , n} is a pair (ik' il) with k < I al i ik > il. The total number of inversions 
in 7r is denoted by inv(7r). As we know from Section 4.2,0 S inv(7r) S n(n-l)/2. For 
example, if n = 6 and 7r = 315264, then inv(7r) = 5. Let h(n, t) denote the number of 
permutations of {I, 2, ... ,n} with t inversions. Then h(n, t) 2: 1 for 0 S t S n(n-l)/2, 
and h(n, t) = 0 for t > n(n - 1)/2. In the next theorem we identify the generating 
function 

gn(x) = h(n, 0) + h(n, l)x + h(n, 2)x2 + ... + h(n, n(n - 1)/2)xn(n-l)/2 

for the sequence 

h(n, 0), h(n, 1), h(n, 2), ... ,h(n, n(n - 1)/2). 

Theorem 7.2.1 Let n be a positive integer. Then 

gn(x) = 1(1 + x)(l + x -' :z;2)(1 + x + x2 + x 3 ) ... (1 + x + x2 + ... + xn-I) 

_ TIj=l (1 - xi) 
- (l-x)n (7.14) 

Proof. Denote the right side7 of (7.14) by qn(x) so that we now have to prove 
that qn(x) = gn(x). First notice that the degree of the polynomial qn(x) equals 
1 + 2 + 3 + ... + (n - 1) = n(n - 1)/2 as it should be if it is to equal gn(x). In 
multiplying out the formula for qn(x), we get exactly once each term of the form 

70f course, the initial factor of Ion the right side of (7.14) can be omitted if n ::" 2, but if n = 1 
it is the only factor. 
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where 
p = an + an-I + an-2 + ... + al (7.15) 

and 
o ::; an ::; 0,0 ::; an-I::; 1,0 ::; an-2 ::; 2, ... ,0 ::; al ::; n - 1. (7.16) 

Thus the coefficient of xP in qn(X) equals the number of solutions of the equation 
(7.15) satisfying (7.16). But we know from Section 4.2 that solutions of (7.16) are in 
one-to-one correspondence with the permutations of {I, 2, ... , n}, with the solutions of 
(7.16) satisfying (7.15) corresponding to the permutations with p inversions. Thus the 
coefficient of xP in qn(x) equals h(n,p)(x). Since this is true for all p = 0,1,2, ... , n(n-
1)/2, qn(x) = gn(x). 

o 

7.3 Exponential Generating Functions 

In Section 7.2, we defined the generating function for a sequence ho, hI, h2, ... , hn, ... 
by using the set of monomials 

{I, X, x 2 , ... , x k , . .. }. 

This is particularly suited to some counting sequences, especially those involving bi­
nomial coefficients, because of the form of Newton's binomial theorem. However, for 
sequences whose terms count permutations, it is more useful to consider a generating 
function with respect to the monomials 

x2 xn 
{1,x, I'···' I'· .. }. 2. n. 

(7.17) 

These monomials arise in the Taylor series 

00 xn x2 xn 
eX = "'""' - = 1 + x + - + ... + - + .... 

L n! 2! n! 
n=O 

Generating functions considered with respect to the monomials (7.17) are called ex­
ponential generatingJunctions.8 The exponential generating function for the sequence 
ho, hI, h2' ... ,hn, ... is defined to be 

8We reserve the phrase "generating function" or "ordinary generating function" for the case in 
which we use the monomials {I, x,x 2 , ... ,xn , .. . }. 
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Example. Let n be a positive integer. Determine the exponential generating function 
for the sequence of numbers 

pen, 0), pen, 1), pen, 2), ... , pen, n), 

where pen, k) denotes the number of k-permutations of an n-element set, and thus 
has the value n!/(n - k)! for k = 0,1, ... ,n. The exponential generating function is 

x 2 xn 
P(n,O) + pen, l)x + pen, 2)2[" + ... + pen, n) n! 

n! 2 n! n 
l+nx+ 2,( _2)'x +···+,----O'x . n. n .. 
(1 + x)n. 

Thus, (1 + x)n is the exponential generating function for the sequence of numbers 
P(n,O),P(n,l), ... ,P(n,n) and, as we saw in Section 7.5, the ordinary generating 
function for the sequence 

(~), (7), ... , (~). 
o 

Example. The exponential generating function for the sequence 

1,1,1, ... , 1, ... 

is 
00 n 

g(el(x) = '" ~ = eX. 
Ln! 
n=O 

More generally, if a is any real number, the exponential generating function for the 
sequence 

is 
00 xn ()Q (ax)n 

g(el(x) = '" an_ = '" _ = eax . 
L n! L n! 
n=O n=O 

We recall from Section 3.4 that, for a positive integer k, kn represents the number of 
n-permutations of a multiset with objects of k different types, each with an infinite 
repetition number. Thus, the exponential generating function for this sequence of 
~~~~~~~~. 0 

For a multiset S with objects of k different types, each with a finite repetition 
number, the next theorem determines the exponential generating function for the 
number of n-permutations of S. This is the solution in the form of an exponential 
generating function that was promised at the end of Section 3.4. We define the number 
of O-permutations of a multiset to be equal to 1. 
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Theorem 7.3.1 Let S be the multiset {nj·aj,n2·a2, ... ,nk'ad, where nj,n2, ... ,nk 
are nonnegative integers. Let hn be the number of n-permutations of S. Then the 
exponential generating function g(e) (x) for the sequence ho, h j , h2, ... ,hn , ... is given 
by 

(7.18) 

where, for i = 1,2, ... ,k, 

x 2 x n , 
fn (x) = 1 + x + - + ... +-. 

, 2! nil 
(7.19) 

Proof. Let 
x2 xn 

g(e) (x) = ho + hjx + h2-21 + ... + hn, + ... 
. n. 

be the exponential generating function for ho, hI, h2, ... ,hn, .. .. Note that hn = 0 for 
n> nj + n2 + ... + nk, so that g(e) (x) is a finite sum. From (7.19), we see that, when 
(7.18) is multiplied out, we get terms of the form 

where 

xm1 xm2 x mk 

mj! m2! ... mk! 

xm1 +m2+··+m k 

mj!m2!'" mk!' 

o :s: mj :s: nj, O:S: m2 :s: n2,"" 0 :s: mk :s: nk· 

Let n = mj + m2 + ... + mk. Then the expression in (7.20) can be written as 

Thus, the coefficient of xn In! in (7.18) is 

where the summation extends over all integers mj, m2, ... , mk, with 

mj + m2 + ... + mk = n. 

But from Section 3.4 we know that the quantity 

n! . h 
I I Wit n = mj + m2 + ... + mk 

mj.m2··· ·mk! 

(7.20) 

(7.21) 

in the sum (7.21) equals the number of n-permutations (or, simply, permutations) of 
the combination {mj ·ej, m2 ·e2, . .. ,mk ·ed of S. Since the number of n-permutations 
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of S equals the number of permutations taken over all such combinations with ml + 
m2 + ... + mk = n, the number hn equals the number in (7.21). Since this is also the 
coefficient of xn In! in (7.18), we conclude that 

o 

Using the same type of reasoning as used in the proof of the preceding theorem, 
we can calculate the exponential generating function for sequences of numbers that 
count n-permutations of a multiset with additional restrictions. Let us first observe 
that if, in (7.19), we define 

x 2 xk 
f (x) = 1 + x + - + ... + - + ... = eX 

00 2! k! ' 

then the theorem continues to hold if some of the repetition numbers nl, n2, ... , nk 
are equal to 00. 

Example. Let hn denote the number of n-digit numbers with digits 1,2, or 3, where 
the number of Is is even, the number of 2s is at least three, and the number of 3s is 
at most four. Determine the exponential generating function g(e) (x) for the resulting 
sequence of numbers ha, hI, h2 , ... , hn , .... 

The function g(e)(x) has a factor for each of the three digits 1,2, and 3. The 
restrictions on the digits are reflected in the factors as follows: The factor of g(e) (x) 
corresponding to the digit 1 is 

x 2 x4 
h l (x)=I+-+-+··· 

2! 4! ' 

since the number of Is is to be even. The factors of g(e) (x) corresponding to the digits 
2 and 3 are, respectivety, 

x3 x4 x5 
h2 (x) = - + - + - + ... 

3! 4! 5! ' 

and 
X x 2 x 3 X4 

h3(X) = 1 + 11 + 2! + 3! + 41· 
The exponential generating function is the product of the preceding three factors: 

o 

Exponential generating functions can sometimes be used to find explicit formulas 
for counting problems. We illustrate this with three examples. 
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Example. Determine the number of ways to color the squares of a 1-by-n chessboard, 
using the colors, red, white, and blue, if an even number of squares are to be colored 
red. 

Let hn denote the number of such colorings, where we define ha to be 1. Then 
hn equals the number of n-permutations of a multiset of three colors (red, white, and 
blue), each with an infinite repetition number, in which red occurs an even number of 
times. Thus, the exponential generating function for ha, hI,"" hn , ... is the product 
of red, white, and blue factors: 

Hence, hn = (3n + 1)/2. 
The simple formula for hn suggests there might be an alternative, more direct, way 

to solve this problem. First we note that hI = 2, since with only one square we can 
only color it white or blue. Let n 2: 2. If the first square is colored white or blue, there 
are hn - I ways to complete the coloring. If the first square is colored red, then there 
must be an odd number of red squares among the remaining n - 1 squares; hence we 
subtract the number hn - I of ways to color with an even number of red squares from 
the total number 3n - 1 ways to color in order to get the number 3n - 1 - hn - I ways 
to color with an odd number of red squares. Therefore, hn satisfies the recurrence 
relation 

hn = 2hn-1 + (3n - 1 - hn-d = hn- I + 3n - l , (n 2: 2). 

If we iterate the recurrence relation hn = hn - I + 3n - 1 and use hI = 2, we obtain 

hn = 1 + 3 + 32 + ... + 3n - 1 = (3n + 1)/2. 

o 

Example. Determine the number hn of n-digit numbers with each digit odd, where 
the digits 1 and 3 occur an even number of times. 

Let ha = 1. The number hn equals the number of n-permutations of the multiset 
S = {oo· 1,00·3,00·5,00·7,00' 9}, in which 1 and- 3 occur an even number of 
times. The exponential generating function for ha, hI, h2 , .•. , hn, ... is a product of 
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five factors, one for each of the allowable digits: 

Hence, 

( 1+X2 +x4 + ... )2(1+X+X2 + ... )3 
2! 4! 2! 

e e 3x ( X + _X)2 
2 e 

( e2x 2+ 1) 2 eX 

1 
_(e4X + 2e2x + l)ex 
4 
1 
_(e5x + 2e3x + eX) 
4 

~ (~5nXn + 2 ~3nxn + ~ xn) 
4 L n! L n! Ln! 

n=O n=O n=O 

00 (5n + 2 x 3n + 1) xn. 
L 4 n! 
n=O 

(n ~ 0). 
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o 

Example. Determine the number hn of ways to color the squares of a 1-by-n board 
with the colors red, white, and blue, where the number of red squares is even and 
there is at least one blue square. 

The exponential generating function g(e)(x) is 

Thus, 

and 

( 1 + ~~ + :; + ... ) ( 1 + ft + ~; + ... ) (ft + ~; + ... ) 

eX + e-x eX (eX _ 1) 
2 

e3x _ e2x + eX - 1 

2 
1 00 3n _ 2n + 1 xn 

-2+ L 2 n!· 
n=O 

ho = _ ~ + 30 - 20 +, 1 = - ~ + ~ = 0 
2 2 2 2 

(n = 1,2, ... ). 
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Note that ho should be O. A 1-by-0 board is empty, no squares get colored, and so we 
cannot satisfy the condition that the number of blue squares is at least 1. 0 

7.4 Solving Linear Homogeneous Recurrence Relations 

In this section we give a formal definition of a certain class of recurrence relations for 
which there is a general method of solution. The application of the method is, however, 
limited by the fact that it requires us to find the roots of a polynomial equation whose 
degree may be large. 

Let 

be a sequence of numbers. This sequence is said to satisfy a linear recurrence relation 
01 order k, provided that there exist quantities aI, a2, ... , ak, with ak f= 0, and a 
quantity bn (each of these quantities aI, a2, .. . , ak, bn may depend on n) such that 

(7.22) 

Example. Our two recurrence relations for the sequence of derangement numbers 
Do, D I , D2, ... , Dn, ... , namely, 

Dn = (n - l)Dn - 1 + (n - 1)Dn-2 (n ~ 2) and 

Dn = nDn- 1 + (_l)n (n ~ 1), 

are linear recurrence relations. The first has order 2, and we have al = n-1, a2 = n-1 
and bn = O. The second has order 1, and we have al = nand bn = (-l)n. 0 

Example. The Fibonacci sequence 10, iI, 12,· .. , In,'" satisfies the linear recurrence 
relation 

In = In-l + In-2 

of order 2 with al = 1, a2 = 1, and bn = O. 

(n ~ 2) 

o 

Example. The factorial sequence ho, hI, h2 , ••• , hn , . .. , where hn = n!, satisfies the 
linear recurrence relation 

(n ~ 1) 

of order 1 with al = nand bn = O. o 

Example. The geometric sequence ho, hI, h2"'" hn, ... , where hn = qn, satisfies the 
linear recurrence relation 

hn = qhn-l 

of order 1 with al = q and bn = O. 

(n ~ 1) 

o 
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As these examples indicate, the quantities aI, a2, ... , ak in (7.22) may be constant 
or may depend on n. Similarly, the quantity bn in (7.22) may be a constant (possibly 
zero) or also may depend on n. 

The linear recurrence relation (7.22) is called homogeneous provided that bn is the 
zero constant and is said to have constant coefficients provided that aI, a2, ... , ak are 
constants. In this section, we discuss a special method for solving linear homogeneous 
recurrence relations with constant coefficients--that is, recurrence relations of the form 

(7.23) 

where al,a2, ... ,ak are constants and ak 1= 0.9 The success of the method to be 
described depends on being able to find the roots of a certain polynomial equation 
associated with (7.23). 

The recurrence relation (7.23) can be rewritten in the form 

(7.24) 

A sequence of numbers ha, hI, h2, .. . , h n , ... satisfying the recurrence relation (7.24) 
(or, more generally, (7.22)) is uniquely determined once the values of ha, hI, ... , hk-l, 
the so-called initial values, are prescribed. The recurrence relation (7.24) "kicks in" 
beginning with n = k. To begin with, we ignore the initial values and look for 
solutions of (7.24) without prescribed initial values. It turns out that we can find 
"enough" solutions by only considering solutions that form geometric sequences and 
suitably modifying such solutions. 

Example.lO In this example we recall a method for solving linear homogeneous 
differential equations with constant coefficients. Consider the differential equation 

y" - 5y' + 6y = O. (7.25) 

Here y is a function of a real variable x. We seek solutions of this equation among 
the basic exponential functions y = eqx . Let q be a constant. Since y' = qeqx and 
y" = q2eqx , it follows that y = eqx is a solution of (7.25) if and only if 

Since the exponential function eqx is never zero, it may be cancelled, and we obtain 
the following equation that does not depend on x: 

q2 _ 5q+ 6 = O. 

9If ak were 0, we would delete the term akhn - k ftom (7.23) and obtain a lower order recurrence 
relation. 

lOFor those who have not studied differential equations, this example can be safely ignored. It's 
only here to show the close similarity of the methods for recurrence relations (our interest) with those 
of differential equations that you may have studied. 
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This equation has two roots, namely, q = 2 and q = 3. Hence 

y = e2x and y = e3x 

are both solutions of (7.25). Since the differential equation is linear and homogeneous, 

(7.26) 

is also a solution of (7.25) for any choice of the constants Cl and C2.1l Now we bring 
in initial conditions for (7.25). These are conditions that prescribe both the value of y 
and its first derivative when x = 0 that, with the differential equation (7.25), uniquely 
determine y. Suppose we prescribe the initial conditions 

y(O) = a, y' (0) = b, (7.27) 

where a and b are fixed but unspecified numbers. Then, in order that the solution 
(7.26) of the differential equation (7.25) satisfy these initial conditions, we must have 

{ y(O) = a : Cl + C2 = a 
y'(O) = b: 2Cl +3C2 = b. 

This system of two equations has a unique solution for each choice of a and b, namely, 

Cl = 3a - b, C2 = b - 2a. (7.28) 

Thus, no matter what the initial conditions (7.27), we can choose Cl and C2 using 
(7.28) so that the function (7.26) is a solution of the differential equation (7.25). In 
this sense (7.26) is the general solution of the differential equation: Each solution of 
(7.25) with prescribed initial conditions can be written in the form (7.26) for suitable 
choice of the constants Cl and C2. 0 

The solution of linear homogeneous recurrence relations proceeds along similar 
lines with the role of the exponential function eqx taken up by the discrete function qn 
defined only for nonnegative integers n (the geometric sequences). We have already 
seen an example of this in our evaluation of the Fibonacci numbers in Section 7.1. 

Theorem 1.4.1 Let q be a nonzero number. Then hn = qn is a solution of the linear 
homogeneous recurrence relation 

(7.29) 

with constant coefficients if and only if q is a root of the polynomial equation 

(7.30) 

llThis can be verified by computing y' and y" and substituting into (7.25). 
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If the polynomial equation has k distinct roots ql, q2, ... , qk, then 

(7.31) 

is the geneml solution of (7.29) in the following sense: No matter what initial values for 
ha, hI, ... , hk-l are given, there are constants Cl, C2, ... , ck so that (7.31) is the unique 
sequence which satisfies both the recurrence relation (7.29) and the initial values. 

Proof. We see that hn = qn is a solution of (7.29) if and only if 

for all n ~ k. Since we assume q =I- 0, we may cancel qn-k. Thus, these infinitely many 
equations (there is one for each n ~ k) reduce to only one equation: 

qk _ alqk-l - a2qk-2 - ... - ak = O. 

We conclude that hn = qn is a solution of (7.29) if and only if q is a root of the 
polynomial equation (7.30). 

Since ak is assumed to be different from zero, 0 is not a root of (7.30). Hence, 
(7.30) has k roots, ql, q2, ... , qk, all different from zero. These roots may be complex 
numbers. In general, ql, q2, ... , qk need not be distinct (the equation may have mUltiple 
roots), but we now assume that the roots ql, q2, ... , qk are distinct. Thus, 

... , 

are k different solutions of (7.29). The linearity and the homogeneity of the recurrence 
relation (7.29) imply that, for any choice of constants cr, C2, .•• , Ck, 

(7.32) 

is also a solution of (7.29).12 We now show that (7.32) is the general solution of (7.29) 
in the sense given in the statement of the theorem. 

Suppose we prescribe the initial values 

ha = ba, hI = bl, 

Can we choose the constants cl, c2, .. . , Ck so that hn as given in (7.32) satisfies these 
initial conditions? Equivalently, can we always solve the system of equations 

! ~~ : ~\ (n = 2) 

(n = ~ - 1) 

Cl + C2 +... + Ck = ba 
clql + C2q2 -+ ... + ckqk = bl 

clqr + c2qi \" ... + ckq~ = b2 (7.33) 

12This can be verified by direct substitution. 
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no matter what the choice of bo, bl, ... , bk-l ? 
Now we need to rely on a basic fact from linear algebra. The coefficient matrix of 

this system of equations is 

1 1 1 

ql q2 qk 

qr q§ q~ (7.34) 

k-l 
ql 

k-l 
q2 

k-l 
qk 

The matrix in (7.34) is an important matrix called the Vandermonde matrix. The 
Vandermonde matrix is an invertible matrix if and only if ql, q2, ... , qk are distinct. 
Indeed, its determinant equals 

n (qj - qi) 
l:<;:i<j:<;:k 

and hence is nonzero exactly when ql, q2, ... , qk are distinct. 13 Thus, our assumption 
of the distinctness of ql, q2, . .. , qk implies that the system (7.33) has a unique solution 
for each choice of bo, bl , ... , bk-l. Therefore, (7.32) is the general solution of (7.29), 
and the proof of the theorem is complete. 0 

The polynomial equation (7.30) is called the characteristic equation of the recur­
rence relation (7.29) and its k roots are the characteristic roots. By Theorem 7.4.1, if 
the characteristic roots are distinct, (7.31) is the general solution of (7.29). 

Example. Solve the recurrence relation 

hn = 2hn -1 + hn - 2 - 2hn -3, (n 2: 3), 

subject to the initial values ho = 1, hI = 2, and h2 = O. 

The characteristic equation of this recurrence relation is 

x3 - 2x2 - X + 2 = 0, 

and its three roots are 1, -1,2. By Theorem 7.4.1, 

is the general solution. We now want constants CI, C2, and C3 so that 

{ 
(n = 0) CI + C2 + C3 = 1, 

. (n=l) CI-C2+2c3=2, 

(n = 2) CI + C2 + 4C3 = O. 

l3The proof of this formula is elementary but nontriviaL 
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The unique solution of this system can be found by the usual elimination method to 
be CI = 2, C2 = -~, C3 = -~. Thus, 

is the solution of the given recurrence relation. o 

Example. Words of length n, using only the three letters a, b, c, are to be transmitted 
over a communication channel subject to the condition that no word in which two a's 
appear consecutively is to be transmitted. Determine the number of words allowed by 
the communication channel. 

Let hn denote the number of allowed words of length n. We have ho = 1 (the 
empty word) and hI = 3. Let n 2: 2. If the first letter of the word is b or c, then 
the word can be completed in hn - I ways. If the first letter of the word is a, then the 
second letter is b or c. If the second letter is b, the word can be completed in hn -2 

ways. If the second letter is c, the word can also be completed in hn - 2 ways. Hence, 
hn satisfies the recurrence relation 

(n 2: 2). 

The characteristic equation is 
x 2 - 2x - 2 = 0, 

and the characteristic roots are 

qi = 1 + V3, 

Therefore, the general solution is 

(n 2: 3). 

To determine hn , we find CI and C2 such that the initial values ho = 1 and hI = 3 
hold. This leads to the system of equations 

{ (n = 0) CI + C2 = 1 
(n = 1) cI(l + V3) + c2(1 - V3) = 3, 

which has solution 

Therefore, 

2+)3 
CI = 2)3 , C2 = 

-2+)3 
2)3 

h = 2 + )3(1 + V3)n + -2 + )3(1 _ V3)n (n >_ 0) 
n 2)3 2V3 ' 
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is the number of words that can be transmitted over the communication channel with 
the restrictions as given. 0 

The method given for solving linear homogeneous recurrence relations with con­
stant coefficients can be alternatively described in terms of generating functions. An 
important role is now played by Newton's binomial theorem. Specifically, the following 
case of Newton's binomial theorem will be used: 

If n is a positive integer and r is a nonzero real number, then 

or, equivalently, 

1 ~ k(-n) k k 
(1 _ rx)n = L.,..(-I) k r x , 

k=O 

We have seen in Section 5.6 that 

and hence we can write the formula for 1/(1 - rx)n as 

Example. Determine the generating function for the sequence of squares 

0, 1,4, ... , n 2 , .•.• 

By (7.35), with n = 2 and r = 1, 

and hence 

1 1 2 3 2 n-l -;-.,.--~ = . + x + x + ... + nx + ... 
(1 -x)2 ' 

x = x + 2X2 + 3x3 + ... + nxn + .... 
(1 - x)2 

Differentiating and then mUltiplying by x, we get 

(7.35) 
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and 
x(1 + x) = x + 22X2 + 32x 3 + ... + n2xn + .... 
(1 - x)3 

Therefore, x(1 + x)/(l - x)3 is the desired generating function. 

235 

o 

The next example illustrates how to use generating functions to solve linear ho­
mogeneous recurrence relations with constant coefficients. 

Example. Solve the recurrence relation 

hn = 5hn-1 - 6hn- 2 (n ~ 2) 

subject to the initial values ho = 1 and hI = -2. 

We write the recurrence relation in the form 

hn - 5hn-1 + 6hn- 2 (n ~ 2). 

Let g(x) = ho+hIX+h2X2+ .. ·+hnxn+ ... be the generating function for the sequence 
ho, hI, h2, ... , hn , ... . We then have the following equations where the mUltipliers are 
chosen by looking at the recurrence relation: 

g(x) ho + hix + h2X2 + + hnxn + 
-5xg(x) = - 5hox - 5h I x 2 5hn_ Ix n + 
6x2g(x) = 6hox2 + + 6hn_2x n + 

Adding these three equations, we obtain 

(1 - 5x + 6x2)g(x) = ho + (hI - 5ho)x + (h2 - 5hI + 6ho)x2 + ... 
+(hn - 5hn- I + 6hn_2)Xn + .. '. 

Since hn - 5hn- 1 + 6hn- 2 = 0 (n ~ 2), and since ho = 1 and hI = -2, we have 

(1 - 5x + 6x2)g(x) = ho + (hI - 5ho)x = 1 - 7x. 

Thus, 
1 -7x 

g(x) = 1 _ 5x + 6x2 . 

From this closed formula for the generating function g(x), we would like to be able to 
determine a formula for hn . To obtain such a formula, we use the method of partial 
fractions along with (7.35). We observe that 

1 - 5x + 6x2 = (1 - 2x)(1 - 3x), 

and thus it is possible to write 

1 - 7x C1 C2 

1 - 5x + 6x2 = 1 - 2x + 1 - 3x 
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for some constants CI and C2. We can determine CI and C2 by mUltiplying both sides 
of this equation by 1 - 5x + 6x2 to get 

1 - 7x = (1 - 3X)CI + (1 - 2X)C2, 

or 

Hence, 

{ 
CI + C2 = 1 

-3q - 2C2 = -7. 

Solving these equations simultaneously, we find that CI = 5 and C2 = -4. Thus, 

By (7.35), 

and 

Therefore, 

1 -7x 
g(x) = 1- 5x + 6x2 

5 4 

1 - 2x 1 - 3x 

g(x) 5(1 + 2x + 22x2 + ... + 2nx n + ... ) 
-4(1 + 3x + 32x 2 + ... + 3nxn + ... ) 
1 + (-2)x + (-15)x2 + ... + (5 x 2n - 4 x 3n)xn + .... 

Since this is the generating function for ho, hI, h2 , ... , hm ... , we obtain hn = 5 x 2n -

4x3n (n=O,1,2, ... ). 0 

If the roots ql, q2, . .. , qk of the characteristic equation are not distinct, then 

in Theorem 7.4.1 is not a general solution of the recurrence relation. 

Example. The recurrence relation 

hn = 4hn- 1 - 4hn- 2 (n 2: 2) 

has characteristic equation 

x 2 - 4x + 4 = (x - 2)2 = O. 

Thus, 2 is a twofold characteristic root. In this case, (7.36) becomes 

hn = cI2n + C22n = (CI + c2)2n = c2n, 

(7.36) 
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where C = Cl + C2 is a new constant. Consequently, we have only a single constant to 
choose in order to satisfy two initial conditions, and it is not always possible to do so. 
For instance, suppose we prescribe the initial values ho = 1 and hl = 3. To satisfy 
these initial values, we must have 

(n = 0) 
(n = 1) 

C = 1, 
2c = 3. 

But these equations are contradictory. Thus, hn = c2n is not a general solution of the 
given recurrence relation. 0 

If, as in the preceding example, some characteristic root is repeated, we would like 
to find another solution associated with that root. The situation is similar to that 
which occurs in differential equations. 

Example. 14 Solve 
y" - 4y' + 4y = O. 

We have that y = eqx is a solution if and only if 

or, equivalently, 
q2 _ 4q + 4 = O. 

The roots of this equation are 2,2 (2 is a double root) and lead directly to only one 
solution y = e2x . But in this case, y = xe2x is also a solution: 

Thus y = e2x and y = xe2x are both solutions of the differential equation, and hence 
so is 

(7.37) 

We now verify that (7.37) is the general solution. Suppose we prescribe the initial 
conditions y(O) = a and y'(O) = b. In order for (7.37) to satisfy these initial conditions, 
we must have 

y(O) = a : Cl ;= a 

y'(O) = b: 2Cl + C2 = b. 

14 Again, this example can be safely omitted by those who have not studied differential equations. 
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These equations have the unique solution Ci = a and C2 = b - 2a. Hence, constants Ci 

and C2 can be uniquely chosen to satisfy any given initial conditions, and (7.37) is the 
general solution. 0 

Example. Find the general solution of the recurrence relation 

hn - 4hn- i + 4hn-2 = 0, 

The characteristic equation is 

(n 2: 2). 

x 2 - 4x + 4 = (x - 2)2 = 0 

and has roots 2,2. We know that hn = 2n is a solution of the recurrence relation. We 
show that hn = n2n is also a solution. We have 

hn = n2n, hn- i = (n - 1)2n -1, hn- 2 = (n - 2)2n-2; 

hence, 

hn - 4hn-i + 4hn- 2 

We now conclude that 

n2n - 4(n - 1)2n - i + 4(n - 2)2n- 2 

2n-2(4n - 8(n - 1) + 4(n - 2)) 

2n-2(0) = O. 

(7.38) 

is a solution for each choice of constants Ci and C2. Now let us impose the initial 
conditions 

ho = a and hi = b. 

In order that these be satisfied, we must have 

{ (n = 0) Ci = a 
(n = 1) 2Ci + 2C2 = b. 

These equations have the unique solution Ci = a and C2 = (b-2a)/2. Hence, constants 
q and C2 can be uniquely chosen to satisfy the initial conditions, and we conclude that 
(7.38) is the general solution of the given recurrence relation. 0 

More generally, if a (possibly complex) number q is a root of multiplicity s of 
the characteristic equation of a linear homogeneous recurrence relation with constant 
coefficients, then it can be shown that each of 

hn = qn,hn = nqn,hn = n 2qn, ... ,hn =nS-iqn 

is a solution, and hence so is 

hn = qqn + c2nqn + C2 n2qn + ... + csns-iqn, 

for each choice of constants q, C2, ••. , Cs . 

The more general situation in which the characteristic equation has several roots 
of various multiplicities is treated in the next theorem, which we state without proof. 
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Theorem 7.4.2 Let ql, q2, ... ,qt be the distinct roots of the following characteristic 
equation of the linear homogeneous recurrence relation with constant coefficients: 

If qi is an si-fold root of the characteristic equation of (7.39), the part of the general 
solution of this recurrence relation corresponding to qi is 

HAi) clq? + c2nq? + ... + cSinSi-Iq? 

(CI + C2n + ... + cSinsi-l)q? 

The general solution of the recurrence relation is 

Example. Solve the recurrence relation 

(n ;?: 4) 

subject to the initial values ho = 1, hI = 0, h2 = 1, and h3 = 2. 

The characteristic equation of this recurrence relation is 

which has roots -1, -1, -1,2. Thus, the part of the general solution corresponding to 
the root -1 is 

HAl) = CI( _l)n + C2 n ( _l)n + C3 n2 ( _l)n, 

while the part of a general solution corresponding to the root 2 is 

The general solution is 

We want to determine CI, C2, C3, and C4 so that the initial conditions hold. Thus the 
equations 

{ 
(n = 0) 
(n = 1) 
(n = 2) 
(n = 3) 

CI 

-CI 

CI 

-CI 

+ 
C2 

2C2 + 
3C2 

+ C4 =1 
C3 + 2C4 =0 

4C3 + 4C4 =1 
9C3 + 8C4 =2 
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must hold. The unique solution of this system of equations is CI = ~, C2 = -~, C3 = 0, 
C4 = ~. Thus, the solution is 

o 

The practical application of the method discussed in this section is limited by the 
difficulty in finding all the roots of a polynomial equation. 

We can also use generating functions to solve (at least theoretically) any linear 
homogeneous recurrence relation of order k with constant coefficients. The associated 
generating function will be of the form p(x)/q(x), where p(x) is a polynomial of degree 
less than k and where q(x) is a polynomial of degree k having constant term equal to 
1. To find a general formula for the terms of the sequence, we first use the method of 
partial fractions to express p(x)/q(x) as a sum of algebraic fractions of the form 

C 

where t is a positive integer, T is a real number, and C is a constant. We then use (7.35) 
to find a power series for 1/(1 - TX)t. Combining like terms, we obtain a power series 
for the generating function, from which we can read off the terms of the sequence. 

Example. Let ho, hI, h2, ... , hn , ... be a sequence of numbers satisfying the recur­
rence relation 

hn + hn-I - 16hn-2 + 20hn-3 = 0, (n;::: 3) 

where ho = 0, hI = 1 and h2 = -1. Find a general formula for hn-

Let g(x) = ho + hix + h2X2 + ... + hnxn + ... be the generating function for 
ho, hI, h2, ... , hn , .... Adding the four equations, 

g(x) = 
xg(x) = 

-16x2g(x) = 
20x3g(x) = 

we obtain 

ho + hix + h2X2+ 
hox + h Ix 2+ 

16hox 2-

h3X3 + ... + hnxn + ... , 
h2X3 + ... + hn_Ixn + ... , 
16hIx 3 - ... - 16hn_2x n - ... , 
20hox 3 + ... + 20hn_3x n + ... , 

= ho + (hI + ho)x + (h2 + hI - 16ho)x2 

+(h3 + h2 - 16hI + 20ho)x3 + ... 
+(hn + hn- I - 16hn- 2 + 20hn_3)xn + .... 

Since hn + hn- I - 16hn- 2 + 20hn- 3 = 0, (n ;::: 3) and since ho = 0, hI = 1, and 
h2 = -1, we get 

(1 + x - 16x2 + 20x3)g(x) = x. 
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Hence, 
x 

g(x) = 1 + X -16x2 + 20x3' 

We observe that (1 + x - 16x2 + 20x3) = (1 - 2x)2(1 + 5x). Thus, for some constants 
Cl, C2, and C3, 

____ x:--;;_-:---;; __ C_l _ + C2 + _C_3 _ 
1+x-16x2 +20x3 -1-2x (1-2x)2 1+5x' 

To determine the constants, we multiply both sides of this equation by 1 + x - 16x2 + 
20x3 to get 

or, equivalently, 

Hence, 

x = (1 - 2x)(1 + 5X)Cl + (1 + 5X)C2 + (1 - 2X)2c3, 

0, 
1, 
O. 

Solving these equations simultaneously, we find that 

Therefore, 

x 2/49 7/49 5/49 
g(x) = 1 + x - 16x2 + 20x3 = -1 - 2x + (1 - 2x)2 - 1 + 5x' 

By (7.35), 

Consequently, 

1 

1 - 2x 

1 
(1 -- 2x)2 

1 
1 + 5x 

k=O 

00 
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~ [ 2 k 7 k 5 k] k 
= L - 49 2 + 49(k+1)2 - 49(-5) x. 

k=O 

Since g(x) is the generating function for ho, hI, h2, ... , hn , ... , it follows that 

h = _~2n + !-.-(n + 1)2n - ~(_5)n 
n 49 49 49' 

(n = 0,1,2, ... ). 

o 

The preceding formula for hn should bring to mind the solution of recurrence 
relations using the roots of the characteristic equation. Indeed, the formula suggests 
that the roots of the characteristic equation for the given recurrence relation are 2, 
2, and -5. The following discussion should clarify the relationship between the two 
methods. 

In the foregoing example, we have expressed the generating function g(x) in the 
form 

where 

p(x) 
g(x) = q(x)' 

q(x) = 1 + x - 16x2 + 20x3 . 

Since the recurrence relation is 

hn + hn- 1 - 16hn- 2 + 20hn-3 = 0, (n = 3,4,5, ... ), 

the associated characteristic equation is r(x) = 0, where 

r(x) = x 3 +x2 -16x +20. 

If we replace x in r(x) by l/x (this amounts to the change in variable y = l/x), we 
obtain 

1 1 1 
r(l/x) = - + - -16- +20, 

x 3 x2 x 
or 

x 3r(1/x) = 1 + x - 16x2 + 20x3 = q(x). 

The roots of the characteristic equation r(x) = 0 are 2,2, and -5. Since r(x) 
(x - 2?(x + 5), it follows that 

q(x) = x 3 (~- 2r (~+5) = (1-2x)2(1 +5x), 

which checks with our prev·ious calculation. 

The preceding relationships hold in general. Let ho, hI, h2 , ... , hn , ... be the se­
quence of numbers defined by the recurrence relation 
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of·order k and with initial values for ho, hI, ... , hk - I . Recall that, since the recurrence 
relation has order k, ak is assumed to be different from O. Let g(x) be the generating 
function for our sequence. Using the method given in the examples, we find that there 
are polynomials p(x) and q(x) such that 

p(x) 
g(x) = q(x)' 

where q(x) has degree k and p(x) has degree less than k. Indeed, we have 

q(x) = 1 + aIX + a2x2 + ... + akxk 

and 

p(x) ho + (hI + aIho)x + (h2 + aIh l + a2ho)x2 

+ ... + (hk-I + aI hk-2 + ... + ak_Iho)xk- l . 

The characteristic equation for this recurrence relation is r(x) = 0, where 

r(x) = xk + aIxk- 1 + a2xk-2 + ... + ak. 

Hence, 
q(x) = xkr(l/x). 

Thus, if the roots of r(x) = 0 are ql, q2, ... , qk, then 

r(x) = (x - ql)(X - q2)'" (x - qk) (with roots ql,q2,··· ,qk) 

and 

Conversely, if we are given a polynomial 

of degree k with bo i- 0 and a polynomial 

p(x) = do + dix + ... + dk_IXk-1 

of degree less than k, then, using partial fractions and (7.35), we can find a power 
seriesI5 ho + hlX + ... + hnxn + ... such that 

p(x) , n 
q(x) = ho + hlX + ... + hnx + .... 

15This power series will converge to p(x)/q(x) for all x with Ixl < t, where t is the smallest absolute 
value of a root of q(x) = O. Since we assume that bo ¥ 0, 0 is not a root of q(x) = O. 
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We can write the preceding equation in the form 

do + dix + ... + dk_IXk- 1 = (bo + bix + ... + bkXk) 

x(ho + hlX + ... + hnxn + ... ). 

MUltiplying out the right side and comparing coefficients, we obtain 

boho = do, 
bohl + bIho = d1 , 

and 

bohn + bIhn- 1 + ... + bkhn- k = 0, 

Since bo =F 0, equation (7.41) can be written in the form 

(n ~ k). 

(n ~ k). 

(7.40) 

(7.41) 

This is a linear homogeneous recurrence relation with constant coefficients that is 
satisfied by ho, hI, h2,"" hn , ... . The initial values ho, hI"'" hk-l can be determined 
by solving the triangular system of equations (7.40), using the fact that bo =F 0. We 
summarize in the next theorem. 

Theorem 7.4.3 Let 

be a sequence of numbers that satisfies the linear homogeneous recurrence relation 

(7.42) 

of orner k with constant coefficients. Then its generating function g(x) is of the form 

p(x) 
g(x) = q(x) , (7.43) 

where q(x) is a polynomial of degree k with a nonzero constant term and p(x) is a poly­
nomial of degree less than k. Conversely, given such polynomials p(x) and q(x), there 
is a sequence ho, hI, h2' ... ,hn , . .. satisfying a linear homogeneous recurrence relation 
with constant coefficients of order k of the type (7.42) whose generating function is 
given by (7.43). 0 
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7.5 Nonhomogeneous Recurrence Relations 

Recurrence relations that are not homogeneous are, in general, more difficult to solve 
and can require special techniques depending on the nonhomogeneous part of the 
relation (the term bn in (7.22)). In this section we consider several examples of linear 
nonhomogeneous recurrence relations with constant coefficients. 

Our first example is a famous puzzle. 

Example. Towers of Hanoi puzzle. There are three pegs and n circular disks of 
increasing size on one peg, with the largest disk on the bottom. These disks are to 
be transferred, one at a time, onto another of the pegs, with the provision that at no 
time is one allowed to place a larger disk on top of a smaller one. The problem is to 
determine the number of moves necessary for the transfer. 

Let hn be the number of moves required to transfer n disks. We verify that ho = 0, 
hI = 1 and h2 = 3. Can we find a recurrence relation that is satisfied by hn ? To 
transfer n disks to another peg, we must first transfer the top n - 1 disks to a peg, 
transfer the largest disk to the vacant peg, and then transfer the n - 1 disks to the 
peg which now contains the largest disk. Thus, hn satisfies 

2hn -1 + 1, 

O. 

(n 2: 1) 

(7.44) 

This is a linear recurrence relation of order 1 with constant coefficients, but it is not 
homogeneous because of the presence of the quantity 1. To find hn , we iterate (7.44): 

hn 2hn - 1 + 1 

2(2hn _ 2 + 1) + 1 = 22hn _ 2 + 2 + 1 

22(2h n _3 + 1) + 2 + 1 = 23 hn _ 3 + 22 + 2 + 1 

2n-l(ho + 1) + 2n - 2 + ... + 22 + 2 + 1 

2n- 1 + ... + 22 + 2 + 1. 

Therefore, the numbers hn are the partial sums of the geometric sequence 

1,2,22, ... ,2n , ... 

and hence satisfy 
2n - 1 . 

hn = -- = 2n - 1, 
2-1 

(n 2: 0). (7.45) 

Now that we have a formula for hn , it can easily be verified by mathematical induction 
making use of the recurrence relation (7.44). Here is how such a verification goes. Since 
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ho = 0, (7.45) holds for n = O. Assume that (7.45) holds for n. We then show that it 
holds with n replaced by n + 1; that is, 

hn+l = 2hn + 1 = 2(2n - 1) + 1 = 2n+1 - 1, 

proving the formula (7.45). 
With only two pegs and n > 1 disks, it is impossible to transfer the disks on one 

peg to the other, subject to the rule that a smaller disk is never below a larger disk. 
As we have just seen, with three pegs the minimum number of moves is 2n - 1. In 
the case of k 2: 4 pegs, it is an unsolved problem to determine the minimum number 
of moves needed to transfer n disks of different sizes on one peg onto a different peg, 
again subject to the rule that a smaller disk is never below a larger disk. The case 
k = 4 is sometimes called the Brahma or Reve's puzzle, and the puzzle is unsolved 
even in this case.16 0 

Our success in the solution of preceding example was made possible by the fact 
that, after we iterated the recurrence relation, we obtained a sum (in this case 2n - 1 + 
... + 22 + 2 + 1) that we could evaluate. A similar situation occurred in Section 1.6 in 
our determination of the number of regions created by n mutually overlapping circles 
in general position. However, these are very special situations, and iteration of a 
recurrence relation does not usually lead to a simple formula. 

The method of generating functions can also be used as a technique for solving 
nonhomogeneous recurrence relations. 

Example. Towers of Hanoi puzzle revisited. Recall that hn is the number of moves 
required to transfer n disks from one peg to a different peg and 

hn = 2hn-1 + 1, (n 2: 1), ho = O. 

Let 
00 

g(x) = I:>nxn 
n=O 

be the generating function of the sequence ho, hI, ... ,hn , ... . We then have 

g(x) 

-2xg(x) 

ho + hlX + h2X2 + ... + hnxn + ... , 
2hox + 2hlX2 + ... + 2hn_lXn + .... 

Subtracting these two equations and using (7.46), we see that 

(1 - 2x)g(x) = x + x 2 + ... + xn + ... = _x_. 
I-x 

(7.46) 

16There is an algorithm-the Frame-Stewart algorithm-to transfer the n disks whose number of 
moves is conjectured to be minimal in this case. More information can be found in "Variations on the 
Four-Post Tower of Hanoi Puzzle" by P. K. Stockmeyer, Congressus Numemntium, 102 (1994), 3-12. 
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Hence 
x 

g(x) = (1 _ x)(l - 2x)' 

Using the method of partial fractions, we obtain 

g(x) = 
1 1 

1 - 2x 1- x 
00 00 

~)2xt - Lxn 

n=O n=O 
00 

Hence we get hn = 2n - 1 as before. o 

We now illustrate a technique for solving linear recurrence relations of order 1 with 
constant coefficients-that is, recurrence relations of the form 

(n 2 1). 

First we note that in the case a = 1, the recurrence relation (7.47) becomes 

(n 2 1), 

and iteration yields 
hn = ho + (b1 + b2 + ... + bn ). 

Thus, solving (7.48) is the same as summing the series 

Thus we implicity assume that a =1= 1. 

Example. Solve 
hn = 3hn - 1 - 4n, 
ho = 2. 

(n 21) 

We first consider the corresponding homogeneous recurrence relation 

(n 2 1). 

Its characteristic equation is 
x - 3 ='0, 

and hence it has one characteristic root q = 3, giving the general solution 

(n 2 1). 

(7.47) 

(7.48) 

(7.49) 
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We now seek a particular solution of the nonhomogeneous recurrence relation 

hn = 3hn-l - 4n, (n;?: 1). (7.50) 

We try to find a solution of the form 

hn=rn+8 (7.51) 

for appropriate numbers rand 8. In order for (7.51) to satisfy (7.50), we must have 

rn + 8 = 3(r(n - 1) + 8) - 4n 

or, equivalently, 
rn + 8 = (3r - 4)n + (-3r + 38). 

Equating the coefficients of n and the constant terms on both sides of this equation, 
we obtain 

r = 3r - 4 or, equivalently, 2r = 4 
8 = -3r + 38 or, equivalently, 28 = 3r. 

Hence, r = 2 and 8 = 3, and 
hn = 2n+ 3 (7.52) 

satisfies (7.50). We now combine the general solution (7.49) of the homogeneous 
relation with the particular solution (7.52) of the nonhomogeneous relation to obtain 

hn = c3n + 2n + 3. (7.53) 

In (7.53) we have, for each choice of the constant c, a solution of (7.50). Now we try 
to choose c so that the initial condition ho = 2 is satisfied: 

(n = 0) 2 = c x 30 + 2 x 0 + 3. 

This gives c = -1, and hence 

hn = _3n + 2n + 3 (n ;?: 0) 

is the solution of the original problem. o 

The preceding technique is the discrete analogue of a technique used to solve 
nonhomogeneous differential equations. It can be summarized as follows: 

(1) Find the general solution of the homogeneous relation. 

(2) Find a particular solution of the nonhomogeneous relation. 

(3) Combine the general solution and the particular solution, and determine values 
of the constants arising in the general solution so that the combined solution 
satisfies the initial conditions. 
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The main difficulty (besides the difficulty in finding the roots of the characteristic 
equation) is finding a particular solution in step (2). For some nonhomogeneous parts 
bn in (7.47), there are certain types of particular solutions to try.l7 We mention only 
two: 

(a) If bn is a polynomial of degree k in n, then look for a particular solution 
hn that is also a polynomial of degree k in n. Thus, try 

(i) hn = r (a constant) 
(ii) hn = rn + s 
(iii) hn = rn2 + sn + t 

if bn = d (a constant), 
if bn = dn + e, 
if bn = dn2 + en + f. 

(b) If bn is an exponential, then look for a particular solution that is also 
an exponential. Thus, try 

The preceding example was of the type (a)(ii). By using generating functions, the 
problem of finding a particular solution can sometimes be avoided, as shown in the 
next example. 

Example. Solve 
hn = 2hn-l + 3n, 
ho = 2. 

(n ~ 1) 

First Solution: Since the homogeneous relation hn = 2hn-l (n ~ 1) has only one 
characteristic root q = 2, its general solution is 

(n ~ 1). 

For a particular solution of hn = 2hn- 1 + 3n (n ~ 1), we try 

To be a solution, p must satisfy the equation 

p3n = 2p3n-l + 3n, 

which, after cancellation, reduces to 

3p = 2p + 3 or, equh:alently, p = 3. 

Hence 

l7These are solutions to try. Whether or not they work depends on the characteristic polynomial. 
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is a solution for each choice of the constant c. We now want to determine c so that 
the initial condition ho = 2 is satisfied: 

(n = 0) c2° + 3 = 2. 

This gives c = -1, and the solution of the problem is 

(n 2 0). 

Second Solution: Here we use generating functions. Let 

Using the recurrence and ho = 2, we see that 

g(x) - 2xg(x) 

Hence 

ho + (hI - 2ho)x + (h2 - 2hl)X2 + ... + (hn - 2hn_dxn + ... 
2 + 3x + 32x2 + ... + 3nxn + ... 
2 - 1 + (1 + 3x + 32x2 + ... + 3nxn + ... ) 

1 
1+--. 

1- 3x 

1 1 
g(x) = 1- 2x + (1- 3x)(1 - 2x)" 

Using the method of partial fractions and the special case of (7.35) with r = 3 and 
n = 1, we get 

g(x) 
1 3 2 

--+-----
1 - 2x 1 - 3x 1 - 2x 
00 00 00 

L 2nxn + L 3n+1xn - L 2n+lxn 
n=O n=O n=O 

00 

L(2n + 3n +1 _ 2n+l)xn 

n=O 
00 

L(3n+1 - 2n)xn, 
n=O 

and this agrees with our first solution. 

Example. Solve 

hn = hn - 1 + n3 , 

ho = O. 
(n 2 1) 

o 
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We have, after iteration, 

hn = 03 + 13 + 23 + ... + n3 , 

the sum of the cubes of the first n positive integers. 18 We calculate that 

ho 03 0 02 02 

hI 0+13 1 12 (0 + I? 
h2 1 + 23 9 32 (0 + 1 + 2)2 
h3 9 + 33 36 62 (0 + 1 + 2 + 3)2 
h4 36 +43 100 102 (0 + 1 + 2 + 3 + 4)2. 

A reasonable conjecture is that 

hn = (0 + 1 + 2 + 3 + ... + n)2 = (n(n 2+ 1) r 
n 2 (n + I? 

4 

251 

This formula can now be verified by induction on n as follows: Assuming that it holds 
for an integer n, we show that it also holds for n + 1: 

hn+1 hn + (n + 1)3 

n 2 (n + 1)2 ( )3 
4 + n+ 1 

(n + 1)2(n2 + 4(n + 1)) 
4 

(n + 1)2(n + 2)2 
4 

The latter is the formula with n replaced by n + 1. Therefore, by mathematical 
induction, 

Example. Solve 
hn = 3hn-1 + 3n , 
ho = 2. 

(n :2: 0). o 

(n:2: 1) 

First Solution: The general solution of the corresponding homogeneous relation is 

l8In the next chapter we shall see how to sum the kth powers of the first n positive integers for each 
positive integer k. 
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We first try 
hn = p3n 

as a particular solution. Substituting, we get 

p3n = 3p3n - 1 + 3n , 

which, after cancellation, gives 
p = p+ 1, 

an impossibility. So instead we try, as a particular solution, 

Substituting, we now get 

which, after cancellation, gives p = 1. Thus, hn = n3n is a particular solution, and 

is a solution for each choice of the constant c. To satisfy the initial condition ho = 2, 
we must choose c so that 

(n = 0) 

and this gives c = 2. Therefore, 

is the solution. 

Second Solution: Here we use generating functions. Let 

g(x) = ho + hIx + h2X2 + ... + hnxn + .... 

Using the given recurrence and ho = 2, we get that 

g(x) - 3xg(x) 

Hence 

ho + (hI - 3ho)x + (h2 - 3hl)X2 + ... + (hn - 3hn_ l )xn + ... 
2 + 3x + 32x2 + ... + 3n xn + ... 
2 - 1 + (1 + 3x + 32x2 + ... + 3nxn + ... ) 

1 
1+--. 

1- 3x 

1 1 
g(x) = 1 _ 3x + (1 - 3x)2 
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Applying the special case of (7.35) with r = 3, and n = 1 and 2, we get 

00 00 

n=O n=O 
00 

and this agrees with our first solution. o 

7.6 A Geometry Example 

A set K of points in the plane or in space is said to be convex, provided that for any 
two points p and q in K, all of the points on the line segment joining p and q are in 
K. Triangular regions, circular regions, and rectangular regions in the plane are all 
convex sets of points. On the other hand, the region on the left in Figure 7.1 is not 
convex since, for the two points p and q shown, the line segment joining p and q goes 
outside the region. 

The regions in Figure 7.1 are examples of polygonal regions--that is, regions whose 
boundaries consist of a finite number of line segments, called their sides. Triangular 
regions and rectangular regions are polygonal, but circular regions are not. Any polyg­
onal region must have at least three sides. The region on the right in Figure 7.1 is a 
convex polygonal region with six sides. 

Figure 7.1 
In a polygonal region, the points at which the sides meet are called corners (or 

vertices). A diagonal is a line segment joining two nonconsecutive corners. 
Let K be a polygonal region with n sides. We can count the number of its diagonals 

as follows: Each corner is joined by a diagonal to n - 3 other corners. Thus, counting 
the number of diagonals at each corner and summing, we get n(n - 3). Since each 
diagonal has two corners, each diagonal is counted twice in this sum. Hence, the 
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number of diagonals is n(n - 3)/2. We can arrive at this same number indirectly in 
the following way: There are 

line segments joining the n corners. Of these, n are sides of the polygonal region. The 
remaining ones are diagonals. Consequently, there are 

n(n - 1) n(n - 3) 
2 - n = --'----:2:---'-

diagonals. 
Now assume that K is convex. Then each diagonal of K lies wholly within K. 

Thus, each diagonal of K divides K into one convex polygonal region with k sides and 
another with n - k + 2 sides for some k = 3,4, ... , n - 1. 

, We can draw n - 3 diagonals meeting a particular corner of K, and in doing so 
divide K into n - 2 triangular regions. But, there are other ways of dividing the region 
into triangular regions by inserting n - 3 diagonals no two of which intersect in the 
interior of K, as the example in Figure 7.2 shows for n = 8. 

Figure 7.2 

In the next theorem, we determine the number of different ways to divide a convex 
polygonal region into triangular regions by drawing diagonals that do not intersect in 
the interior. For notational convenience, we dear with a convex polygonal region of 
n + 1 sides which is then divided into n - 1 triangular regions by n - 2 diagonals. 

Theorem 7.6.1 Let hn denote the number of ways of dividing a convex polygonal re­
gion with n + 1 sides into triangular regions by inserting diagonals that do not intersect 
in the interior. Define hI = 1. Then hn satisfies the recurrence relation 

hn hIhn- 1 + h2hn-2 + ... + hn-Ih1 

n-I 

L hkhn-k, (n 2: 2). 
k=1 

(7.54) 
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The solution of this recurrence relation is 

hn = .!. (2n - 2) , 
n n-1 

(n=1,2,3, ... ). 

Proof. We have defined hI = 1, and we think of a line segment as a polygonal region 
with two sides and no interior. We have h2 = 1, since a triangular region has no 
diagonals, and it cannot be further subdivided. The recurrence relation (7.54) holds 
for n = 2,19 since . 

2-1 1 

L hkh2-k = L hkh2- k = hI hI = 1. 
k=1 k=1 

Now let n 2: 3. Consider a convex polygonal region K with n + 1 2: 4 sides. We 
distinguish one side of K and call it the base. In each division of K into triangular 
regions, the base is a side of one of the triangular regions T, and this triangular region 
divides the remainder of K into a polygonal region Kl with k + 1 sides and a polygonal 
region K2 with n - k + 1 sides, for some k = 1,2, ... , n - 1. (See Figure 7.3.) 

The further subdivision of K is accomplished by dividing Kl and K2 into triangular 
regions by inserting diagonals of Kl and K 2, respectively, which do not intersect in 
the interior. Since Kl has k + 1 sides, Kl can be divided into triangular regions in hk 
ways. Since K2 has n - k + 1 sides, K2 can be divided into triangular regions in hn-k 
ways. Hence, for a particular choice of the triangular region T containing the base, 
there are hkhn-k ways of dividing K into triangular regions by diagonals that do not 
intersect in the interior. Hence, there is a total of 

n-l 

hn = Lhkhn - k 
k=l 

ways to divide K into triangular regions in this way. This establishes the recurrence 
relation (7.54). 

Base 
Polygonal region ':'lith n + 1 sides 

Figure 7.3 

I9This is why we defined h, = 1. 
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We now turn to the solution of (7.54) with the initial condition hI = 1. This 
recurrence relation is not linear. Moreover, hn does not depend on a fixed number of 
values that come before it but on all the values hI, h2, ... , hn-l that come before it. 
Thus, none of our methods for solving recurrence relations apply. Let 

be the generating function for the sequence hI, h2, h3, .. . , hn, ... . Multiplying g(x) 
by itself, we find that 

(g(X»2 = hrx2 + (hlh2 + h2hd x3 + (hlh3 + h2h2 + h3hl)x4 

+ ... + (hlhn- 1 + h2hn-2 + ... + hn_lht)xn + .... 

Using (7.54) and the fact that hI = h2 = 1, we obtain 

(g(X»2 hrx2 + h3X3 + h4X4 + ... + hnxn + .. . 
h2X2 + h3X3 + h4X4 + ... + hnxn + .. . 
g(x) - hlx = g(x) - x. 

Thus, g( x) satisfies the equation 

(g(x)? - g(x) + x = o. 

This is a quadratic equation for g(x), so, by the quadratic formula,zo g(x) = gl(X) or 
g(x) = g2(X), where 

() 1+v'1=4x d () I-v'1=4x 
glX= 2 ang2 X = 2 . 

From the definition of g(x), it follows that g(O) = O. Since gl(O) = 1 and g2(0) = 0, 
we conclude that 

1 - VI - 4x 1 1 1/2 
g(X)=g2(X) = =---(1-4x) . 

222 

By Newton's binomial theorem (see, in particular, the calculation done at the end of 
Section 5.6), 

(1 + z)1/2 = 1 +"" - n - zn, 00 ( l)n-l (2 2) 
L... n x 22n- l n - 1 
n=l 

(Izi < 1). 

20 We have omitted some subtleties. 
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If we replace z by -4x, we get 

Thus, 

and hence, 

The numbers 

1+ ~(_1)2n-1~(2n-2)xn 
L.... n n-1 
n=l 

1 _ 2 ~ ~ (2n - 2) xn, 
L.... n n-1 
n=l 

1 1 1/2 ~ 1 (2n - 2) n g(x) = - - -(1 - 4x) = L.... - x , 
2 2 n=l n n - 1 

(n 2 1). 

~c:~n 

257 

o 

in the previous theorem are the Catalan numbers, and these will be investigated more 
thoroughly in Chapter 8. 

7.7 Exe rcises 

1. Let 10, h, 12,.··, In,··· denote the Fibonacci sequence. By evaluating each of 
the following expressions for small values of n, conjecture a general formula and 
then prove it, using mathematical induction and the Fibonacci recurrence: 

(a) h + h + ... + hn-1 

{b) 10 + 12 + ... + hn 

(c) 10-h+h-···+(-1)nln 
(d) 16 + R + ... + I~ 

2. Prove that the nth Fibonacci number In is the integer that is closest to the 
number 

_1 (r+J5)n 
J5 2 

3. Prove the following about the Fibonacci numbers: 
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(a) In is even if and only if n is divisible by 3. 

(b) In is divisible by 3 if and only if n is divisible by 4. 

(c) In is divisible by 4 if and only if n is divisible by 6. 

4. Prove that the Fibonacci sequence is the solution of the recurrence relation 

where ao = 0, al = 1, a2 = 1, a3 = 2, and U4 = 3. Then use this formula to show 
that the Fibonacci numbers satisfy the condition that In is divisible by 5 if and 
only if n is divisible by 5. 

5. By examining the Fibonacci sequence, make a conjecture about when In is di­
visible by 7 and then prove your conjecture. 

6. * Let m and n be positive integers. Prove that if m is divisible by n, then 1m is 
divisible by In. 

7. * Let m and n be positive integers whose greatest common divisor is d. Prove 
that the greatest common divisor of the Fibonacci numbers 1m and In is the 
Fibonacci number Id. 

8. Consider a I-by-n chessboard. Suppose we color each square of the chessboard 
with one of the two colors red and blue. Let hn be the number of colorings 
in which no two squares that are colored red are adjacent. Find and verify a 
recurrence relation that hn satisfies. Then derive a formula for hn . 

9. Let hn equal the number of different ways in which the squares of a I-by-n 
chessboard can be colored, using the colors red, white, and blue so that no two 
squares that are colored red are adjacent. Find and verify a recurrence relation 
that hn satisfies. Then find a formula for hn . 

10. Suppose that, in his problem, Fibonacci had placed two pairs of rabbits in the 
enclosure at the beginning of a year. Find the number of pairs of rabbits in the 
enclosure after one year. More generally, find the number of pairs of rabbits in 
the enclosure after n months. 

11. The Lucas numbers lo, ll, l2, ... , In . .. are defined using the same recurrence re­
lation defining the Fibonacci numbers, but with different initial conditions: 

In = In-l + In-2, (n 2: 2),10 = 2, II = 1. 

Prove that 

(a) In = In-l + In+! for n 2: 1 
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(b) l5 + li + ... + l; = lnln+l + 2 for n ;::: 0 

12. Let ho, hI, h2, .. ' , hn , ... be the sequence defined by 

Show that hn = hn - l + 3nz - 3n + 1 is the recurrence relation for the sequence. 

13. Determine the generating function for each of the following sequences: 

(a) cO =1,c,c2 , ••• ,cn, ... 

(b) 1,-1,1,-1, ... ,(-1)n, ... 

( c ) ( ~ ) , - ( ~ ) , ( .~ ) , ... , ( -1 ) n ( ~ ) , ... , (a is a real number) 

(d) 1,~,fr, ... ,rh, ... 
(e) 1, -~, fr, ... , (-l)nrh, .. · 

14. Let S be the multiset {oo . el, 00 . e2, 00 . e3, 00 . e4}' Determine the generating 
function for the sequence ho, hI, h2 , ••. , hn , ... , where hn is the number of n­
combinations of S with the following added restrictions: 

(a) Each ei occurs an odd number of times. 

(b) Each ei occurs a multiple-of-3 number of times. 

(c) The element fI does not occur, and e2 occurs at most once. 

(d) The element el occurs 1,3, or 11 times, and the element ez occurs 2,4, or 
5 times. 

(e) Each ei occurs at least 10 times. 

15. Determine the generating function for the sequence of cubes 

0,1,8, ... , n3 , •.•. 

16. Formulate a combinatorial problem for which the generating function is 

17. Determine the generating function for the number hn of bags of fruit of apples, 
oranges, bananas, and pears in which there are an even number of apples, at 
most two oranges, a multiple of three number of bananas, and at most one pear. 
Then find a formula for hn from the generating function. 

18. Determine the generating function for the number hn of nonnegative integral 
solutions of 
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19. Let ha, hI, h2, ... , hn , ... be the sequence defined by hn = (~), (n 2: 0). Deter­
mine the generating function for the sequence. 

20. Let ha, hI, h2' ... ' hn , ... be the sequence defined by hn = (~), (n 2: 0). Deter­
mine the generating function for the sequence. 

21. * Let hn denote the number of regions into which a convex polygonal region 
with n + 2 sides is divided by its diagonals, assuming no three diagonals have a 
common point. Define ha = o. Show that 

( n+ 1) hn = hn -1 + 3 + n, (n 2: 1). 

Then determine the generating function and obtain a formula for hn . 

22. Determine the exponential generating function for the sequence of factorials: 
O!, I!, 2!, 3!, ... , n!, . ... 

23. Let a be a real number. Let the sequence ha, hI, h2, ... , hn , ... be defined by 
ha = 1, and hn = a(a - 1)··· (a - n + 1), (n 2: 1). Determine the exponential 
generating function for the sequence. 

24. Let S denote the multiset {oo· e1, 00· e2, .. . ,00· ek}. Determine the exponential 
generating function for the sequence ha, hI, h2, ... , hn , . .. , where ho = 1 and, 
for n 2: 1, 

(a) hn equals the number of n-permutations of S in which each object occurs 
an odd number of times. 

(b) hn equals the number of n-permutations of S in which each object occurs 
at least four times. 

(c) hn equals the number of n-permutations of S in which e1 occurs at least 
once, e2 occurs at least twice, ... , ek occurs at least k times. 

(d) hn equals the number of n-permutations of S in which e1 occurs at most 
once, e2 occurs at most twice, ... , ek occurs at most k times. 

25. Let hn denote the number of ways to color the squares of a I-by-n board with 
the colors red, white, blue, and green in such a way that the number of squares 
colored red is even and the number of squares colored white is odd. Determine 
the exponential generating function for the sequence ha, hI, . .. , hn , ... , and then 
find a simple formula for hn . 

26. Determine the number of ways to color the squares of a I-by-n chessboard, 
using the colors red, blUe, green, and orange if an even number of squares is to 
be colored red and an even number is to be colored green. 
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27. Determine the number of n-digit numbers with all digits odd, such that 1 and 3 
each occur a nonzero, even number of times. 

28. Determine the number of n-digit numbers with all digits at least 4, such that 4 
and 6 each occur an even number of times, and 5 and 7 each occur at least once, 
there being no restriction on the digits 8 and 9. 

29. We have used exponential generating functions to show that the number hn of 
n-digit numbers with each digit odd, where the digits 1 and 3 occur an even 
number of times, satisfies the formula 

5n + 2 x 3n + 1 
hn = 4 ,(n 2: 0). 

Obtain an alternative derivation of this formula. 

30. We have used exponential generating functions to show that the number hn of 
ways to color the squares of a 1-by-n board with the colors red, white, and blue, 
where the number of red squares is even and there is at least one blue square, 
satisfies the formula 

3n - 2n + 1 
hn = 2 ,(n 2: 1) 

with ho = 0. Obtain an alternative derivation of this formula by finding a 
recurrence relation satisfied by hn and then solving the recurrence relation. 

31. Solve the recurrence relation hn = 4hn-2, (n 2: 2) with initial values ho = ° and 
hI = 1. 

32. Solve the recurrence relation hn = (n+2)hn-I' (n 2: 1) with initial value ho = 2. 

33. Solve the recurrence relation hn = hn-I + 9hn-2 - 9hn-3, (n 2: 3) with initial 
values ho = 0, hI = 1, and h2 = 2. 

34. Solve the recurrence relation hn = 8hn-1 - 16hn-2, (n 2: 2) with initial values 
ho = -1 and hI = 0. 

35. Solve the recurrence relation hn = 3hn-2 - 2hn- 3, (n 2: 3) with initial values 
ho = 1, hI = 0, and h2 = 0. 

36. Solve the recurrence relation hn = 5hn- 1 - 6hn- 2 - 4hn-3 +8hn- 4 , (n 2: 4) with 
initial values ho = 0, hI = 1, h2 = 1, and h3 = 2. 

37. Determine a recurrence relation for the number an of ternary strings (made up 
of Os, Is, and 2s) of length n that do not contain two consecutive O's or two 
consecutive Is. Then find a formula for an. 
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38. Solve the following recurrence relations by examining the first few values for a 
formula and then proving your conjectured formula by induction. 

(a) hn = 3hn-l, (n 2: 1); ho = 1 

(b) hn = hn- 1 - n + 3, (n 2: 1); ho = 2 

(c) hn = -hn- 1 + 1, (n 2: 1); ho = 0 

(d) hn = -hn - 1 + 2, (n 2: 1); ho = 1 

(e) hn = 2hn- 1 + 1, (n 2: 1); ho = 1 

39. Let hn denote the number of ways to perfectly cover a I-by-n board with monomi­
noes and dominoes in such a way that no two dominoes are consecutive. Find, 
but do not solve, a recurrence relation and initial conditions satisfied by hn . 

40. Let an equal the number of ternary strings of length n made up of Os, .ls, and 
2s, such that the substrings 00, 01, 10, and 11 never occur. Prove that 

an = an-l + 2an-2, (n 2: 2), 

with ao = 1 and al =3. Then find a formula for an. 

41. * Let 2n equally spaced points be chosen on a circle. Let hn denote the number 
of ways to join these points in pairs so that the resulting line segments do not 
intersect. Establish a recurrence relation for hn . 

42. Solve the nonhomogeneous recurrence relation 

hn = 4hn- 1 + 4n, (n 2: 1) 
ho = 3. 

43. Solve the nonhomogeneous recurrence relation 

hn 4hn-l + 3 x 2n, (n 2: 1) 

ho 1. 

44. Solve the nonhomogeneous recurrence relation 

3hn - 1 - 2, 

1. 

45. Solve the nonhomogeneous recurrence relation 

2hn-l + n, 

1. 

(n 2: 1) 

(n 2: 1) 
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46. Solve the nonhomogeneous recurrence relation 

hn 6hn-1 - 9hn- 2 + 2n, (n ~ 2) 

ho 1 

hI 0. 

47. Solve the nonhomogeneous recurrence relation 

hn 4hn-1 - 4hn- 2 + 3n + 1, (n ~ 2) 

ho 1 

hI 2. 

48. Solve the following recurrence relations by using the method of generating func­
tions as described in Section 7.4: 

(a) hn = 4hn- 2, (n ~ 2); ho = 0, hI = 1 

(b) hn = hn-I + hn-2, (n ~ 2); ho = 1, hI = 3 

(c) hn = hn-I + 9hn- 2 - 9hn-3, (n ~ 3); ho = 0, hI = 1, h2 = 2 

(d) hn = 8hn- 1 - 16hn-2, (n ~ 2); ho = -1, hI = ° 
(e) hn = 3hn-2 - 2hn-3, (n ~ 3); ho = 1, hI = 0, h2 = ° 
(f) hn = 5hn-I-6hn-2-4hn-3+8hn-4, (n ~ 4); ho = O,hl = 1,h2 = 1,h3 = 2 

49. (q-binomial theorem) Prove that 

(x + y)(x + qy)(x + q2y ) ... (x + qn-I y ) = t (~) xn-kyk, 
k=O q 

where 
flj=1 (1 - qj) 

n I = --"."....::..---,--
.q (1 - q)n 

is the q-factorial (cf. Theorem 7.2.1 replacing q in (7.14) with x) and 

is the q-binomial coefficient. 

50. Call a subset 8 of the integers {I, 2, ... ,n} extmordinary provided its smallest 
integer equals its size: 

min{x : x E 8} = 181. 
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For example, S = {3, 7, 8} is extraordinary. Let 9n be the number of extraordi­
nary subsets of {I, 2, ... , n}. Prove that 

9n = 9n-1 + 9n-2, (n 2: 3), 

with 91 = 1 and 92 = 1. 

51. Solve the recurrence relation 

hn 3hn - 1 - 4n, (n 2: 1) 

ho 2 

from Section 7.6 using generating functions. 

52. Solve the following two recurrence relations: 

(a) hn = 2hn- 1 + 5n , (n 2: 1) with ho = 3 

(b) hn = 5hn- 1 + 5n , (n 2: 1) with ho = 3 

53. Suppose you deposit $500 in a bank account -that pays 6% interest at the end of 
each year (compounded annually). Thereafter, at the beginning of each year you 
deposit $100. Let hn be the amount in your account after n years (so ho = $500). 
Determine the generating function 9(X) = ho + h1x + ... + hnxn + ... and then 
a formula for hn . 



Chapter 8 

Special Counting Sequences 

We have considered several special counting sequences in the previous chapters. The 
counting sequence for permutations of a set of n elements is 

O!, I!, 2!, ... ,n!, .... 

The counting sequence for derangements of a set of n elements is 

where Dn has been evaluated in Theorem 6.3.1. In addition, we have investigated the 
Fibonacci sequence 

1o, iI, /z, ... , In, ... , 
and a formula for In has been given in Theorem 7.1.1. In this chapter, we study 
primarily six famous and important counting sequences: the sequence of Catalan 
numbers, the sequences of the Stirling numbers of the first and second kind, the 
sequence of the number of partitions of a positive integer n, and the sequences of the 
small and large Schroder numbers. 

8.1 Catalan Numbers 

The Catalan sequence1 is the sequence 

where 
C =_1 (2n) 

n n+l n ' (n = 0, 1, 2, ... ) 

1 After Eug/me Catalan (1814-1894). 
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is the nth Catalan number. The first few Catalan numbers are evaluated to be 

The Catalan number 

Co = 1 
C1 = 1 
C2 = 2 
C3 = 5 
C4 = 14 

C5 = 42 
C6 = 132 
C7 = 429 
Cs = 1430 
Cg = 4862. 

Cn - 1 = ~ (2n - 2) 
n n-1 

arose in Section 7.6 as the number of ways to divide a convex polygonal region with 
n + 1 sides into triangles by inserting diagonals that do not intersect in the interior. 
The Catalan numbers occur in several seemingly unrelated counting problems, and we 
discuss some of them in this section.2 

Theorem 8.1.1 The number of sequences 

(8.1) 

of 2n terms that can be formed by using exactly n + 1 s and exactly n -1 s whose 
partial sums are always positive: 

(k = 1,2, ... ,2n) (8.2) 

equals the nth Catalan number 

C = _1 (2n) 
n n+1 n ' 

(n 2 0). 

Proof. We call a sequence (8.1) of n +ls and n -ls acceptable if it satisfies (8.2) 
and unacceptable otherwise. Let An denote the number of acceptable sequences of n 
+ls and n -ls, and let Un denote the number of unacceptable sequences. The total 
number of sequences of n +l's and n -l's is 

( 2n) = (2n)! , 
n n!n! 

since such sequences can be regarded as the permutations of objects of two different 
types with n objects of one type (the +ls) and n of the other (the -ls). Hence, 

2For a list of 66 combinatorially defined sets that are counted by the Catalan numbers, sec 
R. P. Stanley, Enumemtive Combinatorics Volume 2, Cambridge University Press, Cambridge, 1999 
(Exercise 6.19, pp. 219-229 and Solution, pp. 256-265). There the term Catalania or Catalan mama 
is introduced. 
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and we evaluate An by first evaluating Un and then subtracting from (~). 

Consider an unacceptable sequence (8.1) of n +ls and n -Is. Because the sequence 
is unacceptable, there is a first k such that the partial sum 

is negative. Because k is first, there are equal numbers of + Is and -Is preceding ak. 

Hence we have 

and 
ak = -l. 

In particular, k is an odd integer. We now reverse the signs of each of the first k 
terms; that is, we replace ai by -ai for each i = 1,2, ... , k and leave unchanged the 
remaining terms. The resulting sequence 

is a sequence of (n + 1) +ls and (n - 1) -Is. This process is reversible: Given a 
sequence of (n + 1) + Is and (n - 1) -Is, there is a first instance when the number of 
+ Is exceeds the number of -Is (since there are more + 1 's than -Is). Reversing the 
signs of the + Is and -Is up to that point results in an unacceptable sequence of n + Is 
and n -Is. Thus, there are as many unacceptable sequences as there are sequences of 
(n+ 1) +ls and (n-1) -Is. The number of sequences of (n+ 1) +ls and (n+ 1) -Is 
is the number 

(2n)! 
(n + l)!(n - I)! 

of permutations of objects of two types, with n + 1 objects of one type and n - 1 of 
the other. Hence, 

u _ (2n)! 
n - (n + l)!(n - I)!' 

and, therefore, 

(2n)! _ (2n)! 
n!n! (n + l)!(n - I)! 

(2n)! (1 1) 
n!(n - I)! ; - n + 1 

(2n)! ( 1 ) 
n!(n - I)! ~(n + 1) 

n:1C:). 

o 
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There are many different interpretations of Theorem 8.1.1. We discuss two of them 
in the next examples. The first is a classical problem. 

Example. There are 2n people in line to get into a theater. Admission is 50 cents.3 

Of the 2n people, n have a 50-cent piece and n have a $1 dollar bill.4 The box office 
at the theater rather foolishly begins with an empty cash register. In how many ways 
can the people line up so that whenever a person with a $1 dollar bill buys a ticket, the 
box office has a 50-cent piece in order to make change? (After everyone is admitted, 
there will be n $1 dollar bills in the cash register.) 

First, suppose that the people are regarded as "indistinguishable"; that is, we 
simply have a sequence of n 50-cent pieces and n dollar bills, and it doesn't matter 
who holds which and where they are in the line. If we identify a 50-cent piece with a 
+ 1 and a dollar bill with a -1, then the answer is the number 

Cn = _1 (2n) 
n+ 1 n 

of acceptable sequences as defined in Theorem 8.1.1. Now suppose that the people are 
regarded as "distinguishable;" that is, we take into account who is who in the line. So 
we have n people holding 50-cent pieces and n holding dollar bills. The answer is now 

(n)!(n!)_l_ (2n) = (2n)! 
n+1 n n+1 

since, with each sequence of n 50-cent pieces and n dollar bills, there are n! orders for 
the people with 50-cent pieces and n! orders for the people with dollar bills. 0 

Example. A big city lawyer works n blocks north and n blocks east of her place of 
residence. Every day she walks 2n blocks to work. (See the map below for n = 4.) 
How many routes are possible if she never crosses (but may touch) the diagonal line 
from home to office? 

Office 

Home 

Each acceptable route either stays above the diagonal or stays below the diagonal. 
We find the number of acceptable routes above the diagonal and multiply by 2. Each 

3This problem shows its age! 
4 A closer approximation to the current reality would be to have the theater charge $5, and have 11 

people with $5 dollar bills and n with $10 bills. 
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route is a sequence of n northerly blocks and n easterly blocks. We identify north with 
+ 1 and east with -1. Thus, each route corresponds to a sequence 

of n + Is and n -Is, and in order to keep the route from dipping below the diagonal, 
we must have 

k 

Lai 2: 0, (k = 1, ... ,2n). 
;=1 

Hence, by Theorem 8.1.1, the number of acceptable routes above the diagonal equals 
the nth Catalan number, and the total number of acceptable routes is 

2Cn = _2 (2n). 
n+ 1 n 

o 

We next show that the Catalan numbers satisfy a particular homogeneous recur­
rence relation of order 1 (but with a noncOJ'lstant coefficient ).5 We have 

and 

Dividing, we obtain 

Cn = _1 (2n) 
n+ 1 n 

Cn - 1 = ~ (2n - 2) 
n n-l 

_1_(2n)! 
n+ 1 n!n! 

1 (2n-2)! 
:;;: (n - l)!(n - I)!· 

4n - 2 

Cn - 1 n+1 

Therefore, the Catalan sequence is determined by the following recurrence relation 
and initial condition: 

4n-2 
n + 1 Cn - 1 , (n 2: 1) 

1. (8.3) 

Previously we noted that C9 = 4862. It follows from the recurrence relation (8.3) that 

38 38 
C10 = 11 C9 = 11(4862) = 16,796. 

We now define a new sequence of number/3 

C;, 02, ... , C~, ... , 
~~-------------------

5This is in contrast to the usual way we have proceeded. Here we are starting with a formula and 
using it to obtain a recurrence relation. 
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which, in order to refer to them by name, we call the pseudo-Catalan numbers. The 
psuedo-Catalan numbers are defined in terms of the Catalan numbers as follows: 

(n=1,2,3, ... ). 

We have 
Ci = 1!(1) = 1, 

and, using (8.3) with n replaced by n - 1, we obtain 

C~ n!Cn- 1 

4n - 6 
n!---Cn- 2 

n 
(4n - 6)(n - 1)!Cn- 2 

(4n - 6)C~_I' 

Thus, the pseudo-Catalan numbers are determined by the following recurrence relation 
and initial condition: 

e* n 

c; 
(4n-6)C~_I' (n2':2) 

1. (8.4) 

Using this recurrence relation, we calculate the first few pseudo-Catalan numbers: 

Ci = 1 
C2 = 2 
C3 = 12 

C4 = 120 
C5 = 1680 
C6' = 30240. 

The defining formula for the Catalan numbers and the definition of the pseudo­
Catalan numbers imply the formula 

C~ = (n _ 1)!(2n - 2) 
n-1 

(2n - 2)! 
(n - 1)! ' 

for the pseudo-Catalan numbers. This formula can also be derived from the recurrence 
relation (8.4). 

Example. Let aI, a2, ... , an be n numbers. By a multiplication scheme for these 
numbers we mean a scheme for carrying out the multiplication of aI, a2, ... , an. A 
multiplication scheme requires a total of n - 1 multiplications between two numbers, 
each of which is either one of aI, a2, ... , an or a partial product of them. Let hn denote 
the number of multiplication schemes for n numbers. We have hI = 1 (this can be 
taken as the definition of hI) and h2 = 2, since 
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are two possible schemes. This example serves to show that the order of the numbers in 
the multiplication scheme is taken into consideration.6 If n = 3, there are 12 schemes: 

(a1 x (a2 x a3» 
((a2 x a3) x ad 
(a1 x (a3 x a2» 
((a3 x a2) x ad 

(a2 x (a1 x a3» 
((a1 x a3) x a2) 
(a2 x (a3 x a1» 
((a3 x a1) x a2) 

(a3 x (a1 x a2» 
({a 1 x a2) x a3) 
(a3 x (a2 x ad) 
((a2 x ad x a3)' 

Thus, h3 = 12. Each multiplication scheme for three numbers requires two multipli­
cations, and each multiplication corresponds to a set of parentheses. With the outside 
parentheses, each multiplication x can be identified with a set of parentheses. In 
general, each multiplication scheme can be obtained by listing aI, a2,' .. ,an in some 
order and then inserting n - 1 pairs of parentheses so that each pair of parentheses 
designates a multiplication of two factors. But in order to derive a recurrence relation 
for hn, we look at it in an inductive way. Each scheme for a1,a2,'" ,an can be gotten 
from a scheme for aI, a2, ... , an -1 in exactly one of the following ways: 

(1) Take a multiplication scheme for aI, a2,'" ,an _1 (which has n-2 multiplications 
and n - 2 sets of parentheses) and insert an on either side of either factor in 
one of the n - 2 multiplications. Thus, each scheme for n - 1 numbers gives 
2 x 2 x (n - 2) = 4(n - 2) schemes for n numbers in this way. 

(2) Take a multiplication scheme for aI, a2, ... ,an-1 and multiply it on the left or 
right by an. Thus, each scheme for n - 1 numbers gives two schemes for n 
numbers in this way. 

To illustrate, let n = 6 and consider the multiplication scheme 

for aI, a2, a3, a4, a5.7 There are four multiplications in this scheme. We take anyone 
of them, say, the multiplication of ((13 x (14) and (15, and insert (16 on either side of 
either of these two factors to get 

(((11 x a2) x (((a6 x (a3 x a4» x a5» 
((a1 x a2) x (((a3 x a4) x a6) x a5» 
((a1 x a2) x ((a3 x a4) x (a6 x a5))) 
((a1 x a2) x ((a3 x a4) x (a5 x a6»)' 

There are 4 x 4 = 16 schemes for all a2, a3, a4, a5, a6 obtained in this way. Besides 
these, we have two additional schemes in which a6 enters into the final multiplication, 
namely, 

6In more algebraic language, we are not allowed to Use the commutative law (a x b is not to be 
replaced by b x a), nor are we allowed to use the associative law (a x (b x c) is not to be replaced by 
(a x b) x c). 

7Which multiplication x corresponds to each set of parentheses in the preceding scheme? 
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Thus, each multiplication scheme for five numbers gives IS schemes for six numbers, 
and we have h6 = ISh5 . 

Let n ~ 2. Then, generalizing the foregoing analysis, we see that each of the hn - l 

multiplication schemes for n - 1 numbers gives 

4(n - 2) + 2 = 4n - 6 

schemes for n numbers. We thus obtain the recurrence relation 

hn = (4n - 6)hn- l , (n ~ 2), 

which, together with the initial value hI = 1, determines the sequence hI, h2"'" hn , ... 

This is the same type of recurrence relation with the same initial value satisfied by 
the pseudo-Catalan numbers (S.4). Hence, 

h - C* _ ( )' (2n - 2) n- n- n-l. , 
n-l 

(n ~ 1). 

o 

In the preceding example, suppose that we count only those multiplication schemes 
in which the n numbers are listed in the order aI, a2, . .. , an. Thus, for instance, 
(( a2 x ar) x a3) is no longer counted. Let 9n denote the number of multiplication 
schemes with this additional restriction. Then, since we consider only one of the n! 
possible orderings, hn = n!9n, and hence 

9n = hn = C~ = ~(n _ I)! (2n - 2) = ~ (2n - 2) = Cn-l, (n ~ 1), (S.5) 
n! n! n! n - 1 n n - 1 

showing that 9n is the (n - 1 )st Catalan number. 
We can also derive a recurrence relation for 9n by using its definition as follows: 

In each scheme for aI, a2, ... , an there is a final multiplication x, and it corresponds 
to the outer parentheses. We thus have 

((scheme for al,"" ak) x (scheme for ak+l, ... , an)), 

where the x shown is the last multiplication. The multiplication scheme for al, . .. , ak 
can be chosen in 9k ways, and the multiplication scheme for ak+l,' .. , Un can be chosen 
in 9n-k ways. Since k can be any of the numbers 1, 2, ... , n - 1, we have 

9n = 919n-1 + 929n-2 + ... + 9n-191, (n ~ 2). (S.6) 
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This nonlinear recurrence relation, along with the initial condition gl = 1, uniquely 
determines the counting sequence 

The solution of the recurrence relation (8.6) that satisfies the initial condition gl = 1 
is given by (8.5). Since gn = Cn-l, we can also write 

Cn - l = COCn - 2 + Cl Cn -3 + ... + Cn - 2CO, (n:2: 2), 

and so 

n-l 
Cn = COCn- l + Cl Cn- 2Cl + ... + Cn-ICO = L CkCn - l - k (n:2: 1). (8.7) 

k=O 

The recurrence relation (8.6) is the same recurrence relation that occurred in Sec­
tion 7.6 in connection with the problem of dividing a convex polygonal region into 
triangles by means of its diagonals, where we showed by analytic means that its solu­
tion is Cn-l' Thus, we have a purely combinatorial derivation of the formula obtained 
in Section 7.6, and we conclude that the number of ways to divide a convex polygonal 
region with n + 1 sides into triangular regions by inserting diagonals that do not inter­
sect in the interior is the same as the number of multiplication schemes for n numbers 
given in a specified order with the common value equal to the (n - 1) st Catalan number. 

Figure 8.1 

The correspondence between the multiplication schemes for the n numbers aI, a2, .. 

and triangularizations of convex polygonal regions of n + 1 sides is indicated in Figure 
8.1 for n = 7, where we have suppressed the multiplication symbol. Each diagonal 
corresponds to one of the multiplications other than the last, with the base of the 
polygon corresponding to the last multiplication. 
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8.2 Difference Sequences and Stirling Numbers 

Let 

ho, hI, h2"'" hn,··· (8.8) 

be a sequence of numbers. We define a new sequence 

!::!.ho, !::!.h l , !::!.h2"'" !::!.hn, ... , (8.9) 

called the (first-order) difference sequence of (8.8), by 

(n ~ 0). 

The terms of the difference sequence (8.9) are the differences of consecutive terms 
of the sequence (8.8). We can form the difference sequence of (8.9) and obtain the 
second-order difference sequence 

!::!.2ho, !::!.2h l , !::!.2h2, ... , !::!.2hn, .... 

Here, 

!::!.2hn !::!.(!::!.hn) 

!::!.hn+1 - !::!.hn 

(hn+2 - hn+r) - (hn+1 - hn) 

hn+2 - 2hn+1 + hn, (n ~ 0). 

More generally, we can inductively define the pth-order difference sequence of (8.8) by 

!::!.Pho,!::!.Phl ,!::!.Ph2, ... ,!::!.Phn, ... (p~l), 

where 
!::!.Phn = !::!.(!::!.p-Ihn). 

Thus, the pth-order difference sequence is the first-order difference sequence of the 
(p - 1 )st-order difference sequence. We define the Oth-order difference sequence of a 
sequence to be itself; that is, 

(n ~ 0). 

The difference table for the sequence (8.8) is obtained by listing the pth-order difference 
sequences in a row for each p = 0, 1,2, ... : 
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The pth-order differences are in row p, with the sequence itself in row o. (Thus, we 
start counting the rows with 0.) 

Example. Let a sequence ho, hI, h2 , ••. ,hn , ... be defined by 

hn = 2n2 + 3n + 1, (n 2: 0). 

The difference table for this sequence is 

1 6 15 28 45 66 91··· 
5 9 13 17 21 25 

44444··· 
o 0 0 0··· 

The third-order difference sequence in this case consists of all Os and hence so do all 
higher-order differences sequences. 0 

We now show that if a sequence has the property that its general term is a polyno­
mial of degree p in n, then the (p + 1 )th-order differences are all o. When this happens, 
we may suppress all the rows of Os after the first row of Os. 

Theorem B.2.1 Let the geneml term of a sequence be a polynomial of degree p in n: 

(n 2: 0). 

Then t"p+1hn = 0 for all n 2: O. 

Proof. We prove the theorem by induction on p. If p = 0, then we have 

hn = ao, a constant, for all n 2: 0; 

and hence, 
(n 2: 0). 

We now suppose that p 2: 1 and assume that the theorem holds when the general term 
is a polynomial of degree at most p - 1 in n. We have 

!:lhn = (ap(n + I)P + ap-I(n + l)p-1 + ... + ain + ao) 

-(apnP + ap_InP- 1 + ... + ain + ao). 

By the binomial theorem, 

ap ( nP + '( ~) nP- 1 + ... + 1) -apnP 

ap(f)nP- I + ... + ap. 
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From this calculation, we conclude that the pth powers of n cancel in 6.hn and that 
6.hn is a polynomial in n of degree at most p - 1. By the induction assumption, 

(n ~ 0). 

Since 6.p+1hn = 6.P(6.hn), it now follows that 

(n ~ 0). 

Hence, the theorem holds by induction. o 

Now suppose that gn and In are the general terms of two sequences, and another 
sequence is defined by 

Then 

(n ~ 0). 

6.hn hn+l - hn 

(gn+l + In+l) - (gn + In) 

(gn-H - gn) + (In+l - In) 

6.gn + 6.ln. 

More generally, it follows inductively that 

(p ~ 0) 

and, indeed, if c and d are constants, it also follows that 

(n ~ 0) (8.10) 

for each integer p ~ O. We refer to the property in (8.10) as the linearity property 
of differences. s From (8.10) we see that the difference table for the sequence of hn's 
can be obtained by multiplying the entries of the difference table for the gn's by c 
and multiplying the entries of the difference table for the In's by d, and then adding 
corresponding entries. 

Example. Let gn = n2 + n + 1 and let In = n2 - n - 2, (n ~ 0). The difference table 
for the gn's is 

3 7 13 21 
2 4 6 8 

2 2 2 
o 0 

8,[n the language of linear algebra, the set of sequences forms a vector space, and ~ is a linear 
transformation on this vector space_ 
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The difference table for the In's is 

-2 -2 
o 

2 

Let 

o 4 10 
2 4 6 

2 2 
o 0 

2(n2 + n + 1) + 3(n2 - n - 2) 
5n2 - n - 4. 

277 

The difference table for the hn's is obtained by multiplying the entries of the first 
difference table by 2 and the entries of the second difference table by 3 and then 
adding corresponding entries. The result is 

-4 0 14 38 72 
4 14 24 34 

10 10 10 
o 0 

By its very definition, the difference table for a sequence 
ho, hl, h2, .. . ,hn , .. . is determined by the entries in row number O. We next observe 
that the difference table is also determined by the entries along the left edge, the Oth 

diagonal--that is, by the numbers 

ho = t:::,.°ho, t:::,.lho, t:::,.2hO, t:::,.3ho, ... 

along the leftmost diagonal of the difference table.9 This property is a consequence 
of the fact that the entries on a diagonal (running from left to right) of the difference 
table are determined from those on the previous diagonal. For instance, the entries 
on the 1st diagonal are 

hl = t:::,.°h l = t:::,.lho + t:::,.°ho = t:::,.ho + ho 
t:::,.h l = t:::,.2hO + t:::,.ho 

t:::,.2hl = t:::,.3ho + t:::,.2hO 

If the Oth diagonal of a difference table contains only Os, then the entire difference 
table contains only Os. The next simplest Oth diagonal is one that contains only Os 
except for one 1, say, in row p. (Thus there are p Os preceding the 1.) From the fact 

9This property is the discrete analogue of the fact that an analytic function f(x) is determined (via 
its Taylor expansion) by the value of the function and all its derivatives at x = 0: f(O), /,(0), /,,(0),. 
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that the entries on the Oth diagonal in rows p + 1, P + 2, ... are all 0, it is apparent 
that all the entries in rows p + 1, P + 2, ... equal O. 

Suppose, for instance, p = 4. Thus, rows 5 and greater contain only Os. Can we 
find the general term of a sequence such that the Oth diagonal of its difference table is 

0,0,0,0,1,0,0, ... ? (8.11 ) 

We use these entries on the left edge to determine a triangular portion of the difference 
table and obtain 

o 0 0 0 1 
o 0 0 1 
001 

o 1 
1. 

Since row number 5 consists of all Os, we look for a sequence whose nth term hn is a 
polynomial in n of degree 4. From the portion of the difference table just computed, 
we see that 

ho = 0, hI = 0, h2 = 0, h3 = 0, and h4 = 1. 

Thus, if hn is a polynomial of degree 4, it has roots 0,1,2,3, and hence 

hn = cn(n - 1)(n - 2)(n - 3) 

for some constant c. Since h4 = 1, we must have 

. 1 
1 = c(4)(3)(2)(l) or, eqUIvalently, c = 41' 

Accordingly, the sequence with general term 

_ n(n - 1)(n - 2)(n - 3) _ (n) 
hn - 4! - 4 ' (n::::: 0) 

has a difference table with Oth diagonal given by (8.11). 
The same kind of argument shows that, more generally, 

hn - -
_ n(n - 1)(n - 2) ... (n - (p - 1)) _ (n) 

p! p 

is a polynomial in n of degree p whose difference table has its Oth diagonal equal to 

p 
~ 
0,0, ... ,0, 1,0,0, .... 

Using the linearity property of differences and the fact that the Oth diagonal of a 
difference table determines the entire difference table, and hence the sequence itself, 
we obtain the next theorem. 
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Theorem 8.2.2 The geneml term of the sequence whose difference table has its Oth 
diagonal equal to 

co, CI, C2, .. . , cp , 0, 0,0, ... , where Cp 0/= 0 

is a polynomial in n of degree p satisfying 

(8.12) 

o 

Combining Theorems 8.2.1 and 8.2.2, we see that every polynomial in n of degree 
p can be expressed in the form (8.12) for some choice of constants CO, CI,"" Cp. These 
constants are uniquely determined. (See Exercise 10.) 

Example. Consider the sequence with general term 

Computing differences, we obtain 

1 3 17 49 
2 14 32 

12 18 
6. 

(n 2: 0). 

Since hn is a polynomial in n of degree 3, the Oth diagonal of the difference table is 

1,2,12,6,0,0, .... 

Hence, by Theorem 8.2.2, another way to write hn is 

(8.13) 

Why would we want to write hn in this way? Here's one reason. Suppose we want 
to find the partial sums 

Using (8.13), we see that 

n 

L hk = ho + hI + ... + hn · 

k=O 

n n (k) n (k) n (k) n (k) t; hk = 1 t; 0 + 2 t; 1 + 12 ~ 2 + 6 t; 3 . 
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From (5.14) we know that 

t (k) = (n + ~). 
k=O P P + 

(8.14) 

Hence, 

thk = l(n; 1) +2(n; 1) + 12(n; 1) +6(n;1), 
k=O 

a very simple formula for the partial sums. o 

The foregoing procedure can be used to find the partial sums of any sequence 
whose general term is a polynomial in n. 

Theorem 8.2.3 Assume that the sequence ho, hI, h2 , ••. , hn , ... has a difference .table 
whose Oth diagonal equals 

Then 

~ (n + 1) (n + 1) (n + 1) L.., hk = CO 1 + CI 2 + ... + Cp P + 1 . 
k=O 

Proof. By Theorem 8.2.2, we have 

Using formula (8.14), we obtain 

Co t (~) + Cl t G) + ... + Ck t (;) 
k=O k=O k=O 

Example. Find the sum of the fourth powers of the first n positive integers. 

Let hn = n4. Computing differences, we obtain 

° 1 16 81 256 
1 15 65 175 

14 50 110 
36 60 

24. 

Because hn is a polynomial of degree 4, the Oth diagonal of the difference table equals 

0,1,14,36,24,0,0, .... 
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Hence, 

n 

I)4 
k=O 

O(n;l) +l(n;l) +14(n;1) 
+36 (n ; 1) + 24 (n ; 1). 0 

In a similar way, we can evaluate the sum of the pth powers of the first n positive 
integers by considering the sequence whose general term is hn = nP• The preceding 
example treated the case p = 4. 

The numbers that occur in the Oth diagonal of the difference tables are of combi­
natorial significance, and we now discuss them. 

Let 

By Theorems 8.2.1 and 8.2.2, the Oth diagonal of -the difference table for hn has the 
form 

c(p, 0), c(p, 1), c(p, 2), ... ,c(p, p), 0, 0, ... , 

and it follows that 

nP = c(p, O)(~) + c(p, 1) (7) + ... + c(p,p) G)· (8.15) 

If p = 0, then hn = 1, a constant, and (8.15) reduces to 

in particular, 
c(O, 0) = 1. 

Since, if P ~ 1, nP , as a polynomial in n, has a constant term equal to 0, we also have 

c(p, 0) = 0, (p ~ 1). 

We rewrite (8.15) by introducing a new expression. Let 

_ { n(n - 1) ... (n -k + 1) if k ~ 1 
[nlk - 1 if k = O. 
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We note that [n]k is the same as P(n, k), the number of k-permutations of n distinct 
objects (see Section 3.2), but we wish now to use the less cumbersome notation [n]k' 
We also note that 

[n]k+l = (n - k)[nlk-

Since 

( n) = n(n - 1) ... (n - k + 1) = [n]k 
k k! k! ' 

we obtain 

Hence, (8.15) can be rewritten as 

nP = c(p, 0) [~]!O + c(p, 1) [~]! 1 + ... + c(p, p) [~]r 

~ [n]k 
~c(p,k)k! 
k=O 

~ c(p,k) [ ] 
~ k! nk· 
k=O 

Now we introduce the numbers 

S(p k) = c(p, k) 
, k!' (0 ~ k ~ p) 

and in terms of them, (8.15) becomes 

nP S(p, O)[n] 0 + S(p, l)[nh + ... + S(p,p)[n]p 
p 

ES(p,k)[nk 
k=O 

The numbers S(p, k) just introduced are called the Stirling numberslO of the second 
kind,u Since 

we have 

c(p, 0) 
S(p, 0) = O! = c(p,O), 

{ I if p = ° 
S(p,O) = ° if p? 1. (8.16) 

In (8.15), the coefficient of nP on the left-hand side is 1, and on the right-hand side 
the coefficient is 

p! 

lOAfter James Stirling (1692-1770). 
11S0 there must be Stirling numbers of the first kind! We discuss them later in this section. 
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(Only the last term on the right side of (8.15) contributes to the coefficient of nP , since 
the other terms are polynomials in n of degree less than p.) Thus, we have 

S( ) _c(P,P)_1 
p,p - , -, 

p. 
(p ~ 0). (8.17) 

We now show that the Stirling numbers of the second kind satisfy a Pascal-like 
recurrence relation. 

Theorem 8.2.4 If 1 ~ k ~ p - 1, then 

S(p,k) = kS(p-l,k) + S(p -1,k -1). 

Proof. We first observe that, were it not for the factor k in front of S(p - 1, k), we 
would have the Pascal recurrence. We have 

P 

nP = L S(p, k)[nlk (8.18) 
k=O 

and 
p-l 

nP- 1 = L S(p-l,k)[nk 
k=O 

Thus, 

p-J 

nP = n x nP- 1 n L S(p - 1, k)[nlk 
k=O 

p-l 

L S(p - 1, k)n[nlk 
k=O 
p-l 

L S(p - 1, k)(n - k + k)[nlk 
k=O 
p-l p-l 

L S(p - 1, k)(n - k)lnlk + L kS(p - 1, k)[nlk 
k=O k=O 
p-l p-l 

L SCp - 1, k)[nlk+l + L kS(p - 1, k)[nlk· 
k=O k=l 

We replace k by k - 1 in the left summation in the line directly above and obtain 

p p-l 

nP = L S(p - 1, k - 1)[n]k + L kS(p - 1, k)[n]k 
k=l k=l 

p-l 

S(p - 1, p - 1) [nl p + L (S(p - 1, k - 1) + kS(p - 1, k)) [nk 
k=l 
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For each k with 1 ~ k ~ p - 1, comparing the coefficient of [nlk in this expression for 
nP with the coefficient of [nlk in the expression (8.18), we obtain 

S(p, k) = S(p - 1, k - 1) + kS(p - 1, k). 

o 

The recurrence relation given in Theorem 8.2.4 and the initial values 

S(p, 0) =0, (p2'.l) andS(p,p) =1, (p2'.O) 

from (8.16) and (8.17) determine the sequence of Stirling numbers of the second kind 
S(p, k). As for the binomial coefficients, we have a Pascal-like triangle for these Stirling 
numbers. (See Figure 8.2.) 

p\k 0 1 2 3 4 5 6 7 ... 

0 1 
1 0 1 
2 0 1 1 
3 0 1 3 1 
4 0 1 7 6 1 
5 0 1 15 25 10 1 
6 0 1 31 90 65 15 1 
7 0 1 63 301 350 140 21 1 

: 

Figure 8.2 The triangle of S(p, k) 

Each entry S(p, k) in the triangle, other than those on the vertical and diagonal 
sides of the triangle (these are the entries given by the initial values), is obtained by 
multiplying the entry in the row directly above it by k and adding the result to the 
entry immediately to its left in the row directly above it. 

From the triangle of the Stirling numbers of the second kind, it appears that 

S(p,l) 1, (p 2'. 1) 

S(p, 2) 2P- 1 - 1, (p 2'. 2) 

S(p,p-1) (~), (p 2'. 1). 

We leave the verification of these formulas as exercises. They are also readily verified 
using the combinatorial interpretation of the Stirling numbers of the second kind given 
in the next theorem. 
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Theorem 8.2.5 The Stirling number of the second kind S(p, k) counts the number 
of partitions of a set of p elements into k indistinguishable boxes in which no box is 
empty. 

Proof. First, we give an explanation of what indistinguishable means in this case. To 
say that the boxes are indistinguishable means that we can't tell one box from another. 
They all look the same. If, for instance, the contents of some box are the elements 
a, b, and c, then it doesn't matter which box it is. The only thing that matters is what 
the contents of the various boxes are, not which box holds what. 

Let S*(p, k) denote the number of partitions of a set of p elements into k indistin­
guishable boxes in which no box is empty. We easily see that 

S*(p, p) = 1, (p ~ 0) 

because, if there are the same number of boxes as elements, each box contains .exactly 
one element (and remember, we can't tell one box from another), and 

S*(p, O) = 0, (p ~ 1) 

because if there is at least one element and no boxes, there can be no partitions. If we 
can show that the numbers S*(p, k) satisfy the same recurrence relation as the Stirling 
numbers of the second kind; that is, if we can show that 

S*(p, k) = kS*(p - 1, k) + S*(p - 1, k - 1), (1:<::;k:<::;p-1) 

then we will be able to conclude that S*(p, k) = S(p, k) for all k and p with 0 :<::; k :<::; p. 
We argue as follows: Consider the set of the first p positive integers 1,2, ... ,p as the 

set to be partitioned. The partitions of {I, 2, ... ,p} into k nonempty, indistinguishable 
boxes are of two types: 

(1) those in which p is all alone in a box; and 

(2) those in which p is not in a box by itself. Thus, the box containing p 
contains at least one more element. 

In the case of type (1), if we remove p from the box that contains it, we are left with 
a partition of {I, 2, ... ,p - I} into k - 1 nonempty, indistinguishable boxes. Hence, 
there are S*(p - 1, k - 1) partitions of {I, 2, ... ,p} of type (i). 

Now consider a'partition of type (2). Suppose we remove p from the box that con­
tains it. Since p was not all alone in its box, we are left with a partition AI, A2 , • .. ,Ak 
of {I, 2, ... ,p - I} into k nonempty, indistinguishable boxes. We might now want to 
conclude that there are S*(p - 1, k) partitions of type (2), but this is not so. The 
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reason is tha.t the partition AI, A 2 , .•. , Ak of {I, 2, ... , p - I} which results upon the 
removal of p arises from k different partitions of {I, 2, ... ,p}, namely, from 

Al U {p}, A2"'" Ak , 

AI, A2 U {p}, ... , Ak , 

AI, A 2 , ... , Ak U {pl. 

Put another way, after we delete p, we can't tell which box it came from; it could have 
been anyone of the k boxes, since all boxes remain nonempty upon the removal of p. 
It follows that there are kS*(p - 1, k) partitions of {I, 2, ... , k} of type (2). Hence, 

S*(p, k) = kS*(p - 1, k) + S*(p - 1, k - 1), 

and the proof is complete. o 

Now that we know that S(p, k) counts the number of partitions of a set of p 
elements into k nonempty, indistinguishable boxes, we have no use for the notation 
S*(p, k) introduced in the proof of Theorem 8.2.5. It is now redundant. 

We now use our combinatorial interpretation of the Stirling numbers of the second 
kind to obtain a formula for them. In doing so, we shall first determine the number 
S#(p, k)12 of partitions of {I, 2, ... , k} into k nonempty, distinguishable boxes. 13 Think 
of one box as colored red, one colored blue, one green, and so on. Now it not only 
matters which elements are together in a box, but which box it is. (Is it the red box, 
the blue box, the green one, ... ?) Once the contents of the k boxes are known, we 
can color the k boxes in k! ways. Thus, 

S#(p, k) = k!S(p, k), (8.19) 

and it follows that 
_ 1 # 

S(p,k) - ki.S (p,k). 

(Note that (8.19) implies that the numbers S#(p, k) are the same as the numbers 
c(p,k) introduced earlier.) Thus, it suffices to find a formula for S#(P,k), and this 
we do by applying the inclusion-exclusion principle of Chapter 6. Before doing so, we 
remark that the validity of (8.19) rests on the fact that each box is nonempty. If boxes 
were allowed to be empty, we could not multiply S(p, k) by k! to get S#(p, k). If r of 
the boxes of a partition were empty, then it would give rise to only N partitions into 
distinguishable boxes, because permuting empty boxes amongst themselves doesn't 
change anything.14 

12We abandoned one notation and almost immediately introduce another. In mathematics, notation 
is important. It adds clarity when properly used; briefness is not its only virtue. 

13 Just when you're starting to feel comfortable with indistinguishable boxes, we change the rules 
and distinguish them. 

14What we really have is a multiset with r objects of the same type (the empty set) and k - r other 
different objects (the contents of the nonempty boxes). 
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Theorem 8.2.6 For each integer k with 0 :S k :S p, we have 

hence, 

1 k (k) S(P,k)=kTt;(-l)t t (k-t)P. 

Proof. Let U be the set of all partitions of {I, 2, ... ,p} into k distinguishable boxes 
B1 , B2, ... , Bk. We define k properties H, P2, .. . , Pk, where Pi is the property that 
the ith box Bi is empty. Let Ai denote the subset of U consisting of those partitions 
for which box Bi is empty. Then 

We have 
lUI = kP 

since each of the p elements can be put into anyone of the k distinguishable boxes. Let 
t be an integer with 1 :S t :S k. How many partitions of U belong to the intersection 
Al n A2 n ... n At? For these partitions, boxes B1 , B2, ... , Bt are empty and the 
remaining boxes BtH , ... , Bk mayor may not be empty. Thus, IAI n A2 n ... n At I 
counts the number of partitions of {I, 2, ... ,p} into k - t distinguishable boxes and 
hence equals (k-t)P. The same conclusion holds no matter which t boxes are assumed 
empty; that is, 

lA" n A'2 n ... n Ai, I = (k - t)P 

for each t-subset {iI, i2, ... , it} of {I, 2, ... , k}. By the inclusion--exclusion principle 
(see formula (6.3)), we have 

o 

The Bell number15 Bp is the number of partitions of a set of p elements into 
nonempty, indistinguishable boxes. Now we do not specify the number of boxes, but 
since no box is to be empty, the number of boxes cannot exceed p. The Bell numbers 
are just the sum of the entries in a row of the triangle of Stirling numbers of the second 
kind (see Figure 8.2); that is, 

Bp = S(p,O) + S(p, 1) + ... + S(p,p). 

15 After E. T. Bell (1883-1960). 
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We therefore have 
Bo = 1 
Bl = 1 
B2 = 2 
B3 = 5 

B4 = 15 
Bs = 52 
B6 = 203 
B7 = 877. 

The Bell numbers satisfy a recurrence relation, but not one of constant order. 

Theorem 8.2.7 lip;?: 1, then 

(p - 1) (p - 1) (p - 1) 
Bp = 0 Bo + 1 Bl + ... + p _ 1 Bp- 1' 

Proof. We partition the set {I, 2, ... , p} into nonempty, indistinguishable boxes. The 
box containing p also contains a subset X (possibly empty) of {I, 2, ... , p-l}. The set 
X has t elements, where t is some integer between 0 and p - 1. We can choose a set X 

of size t in ( p ~ 1 ) ways and partition the p - 1- t elements of {I, 2, ... , p - I} that 

don't belong to X into nonempty, indistinguishable boxes in Bp - 1- t ways. Hence, 

p-l 

Bp = L (p ~ 1) Bp- 1- t ' 

t=O 

As t takes on the values O,I, ... ,p - 1, so does (p - 1) - t. Hence, we obtain 

o 

The Stirling numbers of the second kind show us how to write nP in terms of 
[nJo, [nh,.·· , [nJp. The Stirling numbers of the first kind play the inverse role. They 
show us how to write [nJp in terms of nO, n 1 , ... , nP .16 By definition, 

n(n - 1)(n - 2)··· (n - p + 1) 
(n - O)(n - I)(n - 2)··· (n - (p - 1)). (8.20) 

Thus, 

16For those familiar with linear algebra, the polynomials of degree at most p with, say, real coeffi­
cients form a vector space of dimension p + 1. Both 1, n, n2 , • •• , nP and [nJo = 1, [n]" ... , [nJp are a 
basis for this vector space. The Stirling numbers of the first and second kind show us how to express 
one basis in terms 'of the other. 
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(1) [nJo=1, 

(2) [nJr = n, 

(3) [nb = n(n - 1) = n2 - n, 

(4) [nh = n(n - 1)(n - 2) = n3 - 3n2 + 2n, 

(5) [nJ4 = n(n - 1)(n - 2)(n - 3) = n4 - 6n3 + lln2 - 6n. 

289 

In general, the product on the right in (8.20) has p factors. If we multiply it out, we 
obtain a polynomial involving the powers 

of n in which the coefficients alternate in sign; that is, we obtain an expression of the 
form 

[nJp = s(p,p)nP - s(p,p - 1)nP- 1 + ... + 
(-1)p-l S (p, 1)nl + (-1)Ps(p,O)no 

P 

2:) -1)p-ks(p, k)nk. 
k=O 

The Stirling numbers of the first kind are the coefficients 

s(p, k), (0:::; k :::; p) 

that occur in (8.21). It follows readily from (8.20) and (8.21) that 

s(p,O) = 0, (p;::: 1) 

and 
s(p,p) = 1, (p ;::: 0). 

(8.21) 

Thus, the Stirling numbers of the first kind satisfy the same initial conditions as the 
Stirling numbers of the second kind. But they satisfy a different recurrence relation, 
whose proof follows the same basic outline as that of Theorem 8.2.4. 

Theorem 8.2.8 If 1 :::; k :::; p - 1, then 

s(p, k) = (p - l)s(p - 1, k) + s(p - 1, k - 1). 

Proof. By (8.21), we have 

P 

[nJp = 2:)-1)P-ks(p,k)nk. (8.22) 
k=O 
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Replacing p by p - 1 in this equation, we also have 

p-l 

[n]p-l = 2:) _l)p-l-ks (p - 1, k)nk. 
k=O 

Next, we observe that 
[n]p = [n]p_l(n - (p - 1)). 

Hence, 
p-l 

[n]p = (n - (p - 1)) 2::( -l)p-l-ks(p - 1, k)nk, 
k=O 

which, after rewriting, becomes 

p-l p-l 

2::( _1)P-l-ks (p - 1, k)nk+1 + 2::( _l)P-k(p - l)s(p - 1, k)nk. 
k~ k~ 

We replace k by k - 1 in the first summation and obtain 

P p-l 

[n]p = 2::( -l)p-ks(p - 1, k - l)nk + 2::( _l)P-k(p - l)s(p - 1, k)nk. 
k=l k=O 

Comparing the coefficient of n k in this expression with the coefficient of n k in the 
expression (8.22), we get 

s(p, k) = s(p - 1, k - 1) + (p - l)s(p - 1, k) 

for each integer k with 1 :S k :S p - 1. o 

Like the Stirling numbers of the second kind, the Stirling numbers of the first kind 
also count something quite natural, and this is explained in the next theorem. Its 
proof is similar in structure to the proof of Theorem 8.2.5. 

Theorem 8.2.9 The Stirling number s(p, k) of the first kind counts the number of 
arrangements of p objects into k nonempty circular permutations. 

Proof. We refer to the circular permutations in the statement of the theorem as 
circles. Let s#(p, k) denote the number of ways to arrange p people in k nonempty 
circles. We have 

(p ~ 0) 

because, if there are p people and p circles, then each circle contains one person. 17 We 
also have 

(p ~ 1) 

17The right hand of each person holds the left hand of the same person. 
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because, if there is at least one person, any arrangement contains at least one circle. 
Thus, the numbers s#(p, k) satisfy the same initial conditions as the Stirling numbers 
of the first kind. We now show that they satisfy the same recurrence relation; that is, 

s#(p, k) = (p - l)s#(p - 1, k) + s#(p - 1, k - 1). 

Let the people be labeled 1,2, ... , p. The arrangements of 1,2, ... , pinto k circles are 
of two types. Those of the first type have person p in a circle by himself; there are 
s#(p - 1, k - 1) of these. In the second type, p is in a circle with at least one other 
person. These can be obtained from the arrangements of 1,2, ... , p - 1 into k circles 
by putting person p on the left of anyone of 1,2, ... ,p - 1. Thus, each arrangement 
of 1,2, ... ,p - 1 gives p - 1 arrangements of 1,2, ... ,p in this way, and hence there is 
a total of (p - l)s#(p - 1, k) arrangements of the second type. Hence, the number of 
arrangements of p people into k circles is 

s#(p, k)= s#(p - 1, k - 1) + (p - l)s#(p - 1, k). 

It now follows that s(p, k) = s#(p, k). o 

For emphasis, we note that what we have done in the proof of Theorem 8.2.9 is 
to partition the set {I, 2, ... , p} into k nonempty, indistinguishable boxes and then 
arrange the elements in each of the boxes into a circular permutation. 

8.3 Partition Numbers 

A partition of a positive integer n is a representation of n as an unordered sum of one 
or more positive integers, called parts. Since the order of the parts is unimportant, we 
can always arrange the parts so that they are ordered from largest to smallest. The 
partitions of 1, 2, 3, 4, and 5 are, respectively, 

1· , 
2,1+ 1; 

3,2 + 1, 1 + 1 + 1; 

4,3+ 1,2 + 2, 2 + 1 + 1,1 + 1 + 1 + 1; 

5,4+ 1,3 + 2,3 + 1 + 1,2 + 2 + 1,2 + 1 + 1 + 1,1 + 1 + 1 + 1 + 1. 

A partition of n is sometimes written as 

(8.23) 

where ai is a nonnegative integer equal to the number of parts equal to i. (This 
expression is purely symbolic; its terms are not exponentials nor is the expression a 
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product.) When written in the form (8.23), the term ia, is usually omitted if ai = o. 
In this notation, the partitions of 5 are 

51,4111,3121,3112,2211,21 13,15. 

Let Pn denote the number of different partitions of the positive integer n, and for 
convenience, let Po = l. The partition sequence is the sequence of numbers 

By the preceding discussion, we have Po = 1, PI = 1, P2 = 2, P3 = 3, P4 = 5, and P5 = 
7. It is a simple observation (cf. (8.23)) that Pn equals the number of solutions in 
nonnegative integers an, ... ,a2,a1 of the equation 

nan + ... + 2a2 + 1a1 = n. 

Let A be the partition n = n1 + n2 + ... + nk of n, where n1 ~ n2 ~ ... ~ nk > o. 
The Ferrers diagram, or simply diagram, of A is a left-justified array of dots that has 
k rows with ni dots in row i (1 ::; i ::; k). For example, the diagram of the partition 
1O=4+2+2+1+1is 

• • • • 
• • 
• • 
• 
• 

The Ferrers diagram of a partition furnishes a geometric picture of a partition and 
can be helpful in visualizing identities involving the number of partitions of various 
types. 

Theorem 8.3.1 Let nand r be positive integers with r ::; n. Let Pn(r) be the number 
of partitions of n in which the largest part is r, and let qn(r) be the number of partitions 
of n - r in which no part is greater than r. Then 

Proof. We don't have a formula for the number of partitions of the two types in the 
theorem, but we can prove that the two numbers are equal by establishing a one-to-one 
correspondence between the two types of partitions. This is quite easy to do: Taking 
a partition of n with largest part equal to r and removing a part equal to r, we obtain 
a partition of n - r with no part greater than r. The inverse operation is that of 
taking a partition of n - r with no part greater than r and inserting a part equal to 
r, and this gives a partition of n in which the largest part equals r. (In terms of the 
Ferrers diagram, in the first instance, we remove the top row (containing r dots) of 
the diagram of the partition of n. and in the second instance, we put a new row of r 
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dots on the top of the diagram of n - r.) Hence we have a one-to-one correspondence 
proving that the two numbers are equal. 0 

The conjugate partition of the partition .\ of n is the partition .\* whose diagram 
is obtained from the diagram of .\ by interchanging rows with columns (flipping the 
diagram over the diagonal running from the upper left to the lower right). For example, 
the diagram of the conjugate of the partition 10 = 4 + 2 + 2 + 1 + 1 is 

• • • • • 
• • • 
• 
• 

and thus the conjugate partition is 10 = 5 + 3 + 1 + 1. The number of parts of the 
conjugate of a partition .\ equals the largest part of .\. It should also be clear that the 
conjugate of the conjugate of a partition .\ is .\ itself; that is, (.\*)* = .\. 

Let .\ be the partition n = nl + n2 + ... + nk of n. More formally, the conjugate 
partition .\* of'\ is the partition n = ni + n; + ... + ni of n (I = nl), where n; is the 
number of parts of .\ that are at least equal to i: 

n: = l{j : n 2: i}1 (i = 1,2, ... , I). 

Example. Let .\ be the partition 12 = 4 + 4 + 2 + 2 of 12, whose diagram is 

• • • • 
• • • • 
• • 
• • 

The conjugate .\ * is also the partition 12 = 4 + 4 + 2 + 2, implying that .\ * = .\. 0 

A partition .\ is a self-conjugate partition provided, as in the preceding example, 
.\ = .\ *. Another self-conjugate partition is 10 = 5 + 2 + 1 + 1 + 1. The Ferrers diagram 
of a self-conjugate partition is symmetric about the diagonal beginning at its upper 
right corner; if we reflect the diagram about this diagonal, there is no change in the 
diagram. 

Theorem 8.3.2 Let n be a positive integer. Let p; equal the numbe'r of self-conjugate 
partitions of n, and let p; be the number of partitions of n into distinct odd parts. 
Then 

Proof. As in the proof of Theorem 8,3.1 we establish a one-to-one correspondence 
between the two types of partitions, thereby proving that their numbers are equal. 
The correspondence is most easily described in terms of the Ferrers diagram, Take a 
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self-conjugate partition of n. The number of dots within the first row and column is 
an odd number; we remove these dots and then combine them into the first row of a 
new diagram. (Note that in removing the dots in the first row and column, we are left 
with the diagram of another self-conjugate partition.) The number of dots remaining 
in the second row and second column is a smaller odd number, and we remove them 
and then combine them into the second row of our new diagram. We continue like 
this until all the dots have been removed and put into the new diagram. The result is 
the Ferrers diagram of a partition of n into distinct odd parts. For example, consider 
the self-conjugate partition 15 = 5 + 4 + 3 + 2 + 1, The above transformation is 

• • • • • 
• • • • • • • • • • • • • 
• • • ~ . . . . . 
• • • 
• 

Starting with any partition of n into distinct odd parts, we can reverse this trans­
formation by bending at the middle the rows of its Ferrers diagram and fitting these 
bent rows inside one another in order to obtain a self-conjugate partition of n (in the 
preceding example, reverse the arrow). Thus we have a one-to-one correspondence, 
proving that p~ = p~. 0 

Another famous partition identity is the following identity of Euler. 

Theorem 8.3.3 Let n be a positive integer. Let p~ be the number of partitions of n 
into odd parts, and let p~ be the number of partitions of n into distinct parts. Then 

p~ = p~. 

Proof. We establish a one-to-one correspondence between the two types of partitions. 
Consider a partition of n into odd parts. If the parts are distinct {there aren't two 
copies of the same part), then we also have a partition of n into distinct parts. If there 
are two copies of the same part, say k and k, then we combine them into one part, 2k. 
We continue to do this until all parts are distinct. Since each time we combine two 
parts we reduce the number of parts, this procedure certainly terminates and with a 
partition of n into distinct parts. 18 

We now have to show we can reverse our steps and get back to a partition of n 
into odd parts. So consider a partition of n into distinct parts. If all parts are odd, 
then we have a partition of n into odd parts. Otherwise there is at least one even 
part, and we spilt each even part into two equal parts. If now all parts are odd, we are 

18Notice that (1) when we combine two equal parts, we create an even part, and (2) if there are 
several pairs of equal parts, it doesn't matter in what order we combine them; indeed we can do a 
"mass" combining, by combining each pair in one step. In general this leads to more equal pairs, at 
which time we do another mass combining, and so forth. 
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done. Otherwise, we take all of the new even parts and split them equally. At each 
stage we split at least one even number into two equal and smaller parts, and hence 
this procedure terminates and with a partition of n into odd parts. Thus we have a 
one-to-one correspondence between partitions of n into odd parts and partitions of n 
into distinct parts. 0 

We illustrate the one-to-one correspondence in the proof of Theorem 8.3.3. Con­
sider the partition of 32 given by 

~=7+5+5+5+3+3+1+1+1+1. 

The corresponding partition of 32 into distinct parts is obtained as follows: 

7+5+5+5+3+3+1+1+1+1 ~ 7+10+5+6+2+2 

~ 7 + 10 + 5 + 6 + 4. 

The partition 
32 = 11 + 9 + 6 + 4 + 2 

into distinct parts corresponds to the partition of 32 into odd parts obtained as follows: 

11+9+6+4+2 -> 11+9+3+3+2+2+1+1 

-> 11+9+3+3+1+1+1+1+1+1. 

We now obtain an expression for the generating function of the sequence of parti­
tion numbers in the form of an infinite product. 

Theorem 8.3.4 

00 00 

L Pnxn = n (1 - Xk)-l 

n=O k=l 

Proof. The expression on the right equals the product 

(1 + x + ... + x 1a! + ... )(1 + x 2 + ... + x 2a2 + ... )(1 + x 3 + ... + x3a3 + ... ) .... 

A term xn arises in this product by choosing a term x 1a! from the first factor, x 2a2 

from the second, x 3a3 from the third, and so on, with 1al + 2a2 + 3a3 + ... = n. (Of 
course, all but a finite number of the ai's equal 0; that is, the first term 1 is chosen 
from all but a finite number of the factors.) Thus, each partition of n contributes 1 to 
the coefficient of xn, and the coefficient of xn ,equals the number Pn of partitions of n. 
o 

Let Pn denote the set of all partitions of the positive integer n. There is a natural 
way to partially order the partitions in Pn . (For this definition, it is notationally 
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convenient to allow zero parts so that when we compare two partitions they have the 
same number of parts.) Let 

and 
J-l : n = m1 + m2 + ... + mk (m1 2: m2 2: ... 2: mk 2: 0) 

be two partitions of n. We say that A is majorized by J-l (or that J-l majorizes A) and 
write 

A -:5, J-l, 

provided that the partial sums for A are at most equal to the corresponding partial 
sums for W 

n1 + ... + n, -:5, m1 + ... + mi (i = 1,2, ... , k). 

It is straightforward to check that the relation of majorization is reflexive, antisym­
metric, and transitive and hence is a partial order on Pn . 

Example. Consider the three partitions of 9: 

A : 9 = 5 + 1 + 1 + 1 + 1; J-l : 9 = 4 + 2 + 2 + 1; v : 9 = 4 + 4 + 1. 

For the purpose of comparing all three of these partitions, we add trailing Os to J-l and 
v, and think of J-l as 9 = 4 + 2 + 2 + 1 + 0 and v as 9 = 4 + 4 + 1 + 0 + o. We have 
J-l-:5,vas 

4 -:5, 4, 
4 + 2 -:5, 4 + 4, 
4 + 2 + 2 -:5, 4 + 4 + 1, 
4 + 2 + 2 + 1 -:5, 4 + 4 + 1 + O. 

On the other hand, A and J-l are incomparable as 4 < 5 but 4 + 2 + 2 > 5 + 1 + 1. 
Similarly, A and v are incomparable. 0 

In Section 4.3 we discussed the lexicographic order for n-tuples of Os and Is. The 
lexicographic order can also be used on partitions to produce a total order on Pn 

that turns out to be a linear extension of the partial order of majorization. Let 
A: n = n1 + n2 + ... + nk, (n1 2: n2 2: ... 2: nk), and J-l : n = m1 + m2 + ... + mk, 
(m1 2: m2 2: ... 2: mk) be two different partitions of n. Then we say that A precedes 
J-l in the lexicographic order,19 provided that there is an integer i such that nj = mj 

for j < i and ni < mi. For instance, the partition 12 = 4 + 3 + 2 + 2 + 1 precedes the 
partition 12 = 4 + 3 + 3 + 1 + 1 since, reading from left to right, 4 = 4, 3 = 3, but 
2 < 3. It is simple to verify that lexicographic order is a partial order on Pn . 

19The alphabet is the integers, with smaller integers preceding larger integers in the alphabet. Also, 
just as in the lexicographic order of n-tuples of as and 1s, we read "words" from left to right. 
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Theorem 8.3.5 Lexicographic order is a linear extension of the partial order of ma­
jorization on the set Pn of partitions of a positive integer n. 

Proof. The fact that lexicographic order is a total order (each two partitions of n 
are comparable) follows almost immediately from its definition. We continue with the 
notation preceding the statement of the theorem. Let A and 11 be different partitions 
of n, with A majorized by 11. Choose the first integer i such that nj = mj for j < i 
but ni i= mi. Since 

nl + ... + ni-l + ni :'S ml + ... mi-l + mi, 

we conclude that ni < mi, and hence A precedes 11 in the lexicographic order. 0 
We conclude this section by stating without proof another famous partition identity 

of Euler, called Euler's pentagonal number theorem2o 

Theorem 8.3.6 Let n be a positive integer. Let p~ be the number of partitions of n 
into an even number of distinct parts, and let p~ be the number of partitions of n into 
an odd number of distinct parts. Then 

where en is an error term given by en = (-I)j if n is of the form j (3j ± 1) /2 , and 0 
otherwise. 

Example. Let n = 8. Then the partitions of 8 into an even number of distinct parts 
are 

7 + 1,6 + 2,5 + 3. 

The partitions of 8 into an odd number of distinct parts are 

8,5 + 2 + 1,4 + 3 + 1. 

Thus p~ = p~ = 3. Now let n = 7. Then the partitions of 7 into an even number of 
distinct parts are; 

6 + 1,5 + 2,4 + 3. 

The partitions of 7 into an odd number of distinct parts are 

7,4+2+1. 

Thus P7 = 3 = 2 + 1 = p~ + 1. Note that 7 = 2(3·2 + 1)/2 and thus e7 = (_1)2 = 1.0 

20For a proof, see G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge University Press, 
Cambridge, 2004. 
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8.4 A Geometric Problem 

In this section we shall obtain a combinatorial geometric interpretation of the sum 

{8.24) 

of the first k + 1 binomial coefficients with tipper argument equal to n-that is, the 
sum of the first k + 1 numbers in row n of Pascal's triangle. For each fixed k, we 
obtain a sequence 

(k) (k) (k) (k) ho , hI , h2 , ... , hn , ... (8.25) 

If k = 0, we have 

h(O) = (n) = 1 
nO' 

and (8.25) is the sequence of all Is. If k = 1, we obtain 

If k = 2, we have 

h~) (~) + (~) + (;) 
1 n(n - 1) 

+n+ 2 

n2 + n+ 2 
2 

We also note that h~k) 
differences of (8.25): 

t::.h(k) - h(k) _ h(k) 

1 for all k. We use Pascal's formula to determine the 

n - n+l n 

= (ntl) + (nil) + ... + (ntl) - (~) - m -... -G) 
= Wil) - (~)] + ... + Wtl) - G)] 

Hence, 
t::.h};') = h};,-l). (8.26) 

It is a consequence of (8.26) that the difference table for the sequence 

(k) (k) (k) (k) (k) ho , hI , h2 , h2 , ... , h n , ... (8.27) 
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can be obtained from the difference table for 

h6k- 1), h~k-l), h~k-l), . .. , h~k-l), ... 

by inserting (8.27) on top as a new row. 

The number h~k) counts the number of subsets with at most k elements of a set 
with n elements. We now show that h};') also has an interpretation as a counting 
function for a geometrical problem: 

h};') counts the number of regions into which k-dimensional space is divided 
by n (k - I)-dimensional hyperplanes in general position. 

We need to explain some of the terms in this assertion. 

We start with k = 1. Consider a one-dimensional space, that is, a line. A zero­
dimensional space is a point and n points in general position means simply that the 
points are distinct. If we insert n distinct points on the line, then the line gets divided 
into n + 1 parts, called regions. (See Figure 8.3, in which four points divide the line 
into 5 regions.) 

Figure 8.3 

This result agrees with the definition of h~) given in (8.24). 

Now let k = 2, and consider n lines in a plane in general position. In this case, 
"general position" means that the lines are distinct and not parallel (so that each pair 
of lines intersects in exactly one point) and the points of intersection are all different­
that is, no three of the lines meet in the same point. For n lines in general position 
in a plane, the number of points of intersection is (~), since each pair of lines gives 
a different point. The number of regions into which a plane is divided by n lines in 
general position is given in the following table for n = 0 to 5. 

Lines Regions 
0 1 
1 2 
2 4 
3 7 
4 11 
5 16 
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This table is readily verified. 

Figure 8.4 

We now reason inductively. Suppose we have n lines in general position and we 
then insert a new line so that the resulting set of n + 1 lines is in general position. 
The first n lines intersect the new line in n different points. The n points, as we have 
already verified, divide the new line into 

parts. Each of these h~l) = n + 1 parts divides a region formed by the first n lines into 
two regions. (See Figure 8.4 for the case n = 3 in which the new line is the dashed 

line.) Hence, the number of regions is increased by h~l) = n + 1 in going from n lines 
to n + 1 lines. But this is exactly the relation expressed by (8.26) for the case k = 2: 

Since h~2) = 1, we conclude that 

is the number of regions formed by n lines in general position in a plane. 
The case k = 3 is similar. Consider n planes in 3-space in general position. General 

position now means that each pair of planes, but no three planes, meet in a line, and 
every three planes, but no four planes, meet in a point. We now insert a new plane 
so that the resulting set of n + 1 planes is also in general position. The first n planes 
intersect the new plane in n lines in general position (because the planes are in general 

position). These n lines divide the new plane into hr;) planar regions, as determined 

previously for k = 2. Each of these h~2) planar regions divides a space region formed 
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by the first n planes into two. Hence, the number of space regions is increased by h~2) 
in going from n planes to n + 1 planes. This is exactly the relation expressed by (8.26) 
for the case k = 3: 

6.h(3) = h(3) _ h(3) = h(2) 
n n+l n n . 

Since h~3) = 1 (zero planes divide space into one region, namely, all of space), we 
conclude that 

is the number of regions into which space is divided by n planes in general position in 
3-space. 

The same type of reasoning applies to higher dimensional space. The number of 
regions into which k-dimensional space is divided by n (k-1)-dimensional hyperplanes 
in general position equals 

We conclude by considering the case k = n. From our definition (8.24), we obtain 

Our geometrical assertion in this case is that n hyperplanes in general position in 
n-dimensional space divide n-dimensional space into 2n regions. Since there are only 
n (n-1)-dimensional hyperplanes, general position now means that the n hyperplanes 
have exactly one point in common. This fact is familiar to all, at least for the cases 
k = 1,2, and 3. Consider the case k = 3 of three-dimensional space. We can coordi­
natize the space by associating with each point a triple of numbers (Xl, X2, X3). The 
three coordinate planes Xl = 0, X2 = 0, and X3 = 0 divide the space into 23 = 8 quad­
rants. (Each quadrant is determined by prescribing signs to each of X I, X2, X3.) More 
generally, n-dimensional space is coordinatized by associating an n-tuple of numbers 
(Xl, X2, ... , Xn) with each point. There are n coordinate planes, namely, those deter­
mined by Xl = 0, X2 = 0, ... , and Xn = O. These planes divide n-dimensional space 
into the 2n "quadrants" determined by prescribing signs to each of Xl, X2, ... ,Xn . One 
such quadrant is the so-called nonnegative quadrant Xl 2: 0, X2 2: 0, ... , Xn 2: O. 

8.5 Lattice Paths and Schroder Numbers 

In this section, we formalize the notion of 'a lattice path, which we have experienced 
in the Exercises in Chapter 2 and in an example in Section 8.l. 

We consider the integral lattice of points in the coordinate plane with integer 
coordinates. Given two such points (p, q) and (r, s), with p 2: rand q 2: s, a rectangular 
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lattice path from (r, s) to (p, q) is a path from (r, s) to (p, q) that is made up of horizontal 
steps H = (1,0) and vertical steps V = (0,1). Thus, a rectangular lattice path from 
(r,s) to (p,q) starts at (r,s) and gets to (p,q) using unit horizontal and vertical 
segments. 

Example. Figure 8.5 shows a rectangular lattice path from (0,0) to (7,5), consisting 
of seven horizontal steps (H) and five vertical steps (V). Given that the path starts at 
(0,0), it is uniquely determined by the sequence 

H, V, V,H,H,H, V, V,H, V,H,H 

of seven H's and five V's. o 

Theorem 8.5.1 The number of rectangular lattice paths from (r, s) to (p, q) equals 
the binomial coefficient 

( p - r + q - s) = (p - r + q - s) . 
p-r q-s 

Proof. The two binomial coefficients in the statement of the theorem are equal. A 
rectangular lattice path from (r,s) to (p,q) is uniquely determined by its sequence of 
p - r horizontal steps Hand q - s vertical steps V, and every such sequence determines 
a rectangular lattice path from (r, s) to (p,q). Hence, the number of paths equals the 
number of permutations of p - r + q - s objects of which p - rare H's and q - s are 
V's. From Section 3.4 we know this number to be the binomial coefficient 

( p - r+q - s). 
p-r 

o 

Consider a rectangular lattice path from (r, s) to (p, q), where p :::: rand q :::: s. 
Such a path uses exactly (p - r) + (q - s) steps, and there is no loss in generality in 
assuming that (r,s) = (0,0). This is because we may simply translate (r,s) back to 
(0,0) and (p, q) back to (p - r, q - s) and obtain a one-to-one correspondence between 
rectangular lattice paths from (r, s) to (p, q) and those from (0,0) to (p - r, q - s). By 
Theorem 8.5.1, if P :::: ° and q :::: 0, the number of rectangular lattice paths from (0,0) 
to (p, q) equals 

We now consider rectangular lattice paths from (0,0) to (p, q) that are restricted to 
lie on or below the line y = x in the coordinate plane. We call such paths subdiagonal 
rectangular lattice paths. A sub diagonal rectangular lattice path from (0,0) to (9,9) 
is shown in Figure 8.6. 



8.5. LATTICE PATHS AND SCHRODER NUMBERS 303 

(0,8). • • • • • • • • .(9,8) 

• • • • • • • • • • 
• • • • • • • • • • 

(7,5) 

• • • • • • • 
• • • • • • • • 
• • • • • • • • • 
• • • • • • 
• • • • • • • • • 

(0,0) • • • • • • • .(9,0) 

Figure 8.5 

In Section 8.1 we proved the next theorem. 

Theorem 8.5.2 Let n be a nonnegative integer. Then the number of subdiagonal 
rectangular .lattice paths from (0,0) to (n, n) equals the nth Catalan number 

cn =_l en). 
n+1 n 

0 

More generally, we can count the number of sub diagonal rectangular lattice paths 
from (0,0) to (p, q) whenever p 2: q. Of course, if q > p, there can be no sub diagonal 
rectangular lattice paths from (0,0) to (p,q), since such a lattice path would have to 
cross the diagonal. 

Theorem 8.5.3 Let p and q be positive integers with p 2: q. Then the number of 
subdiagonal rectangular lattice paths from (0,0) to (p, q) equals 

P-q+1(P+q). 
p+ 1 q 

Proof. For the proof, we generalize the proof given in Section 8.1, which showed that 
the Catalan number Cn counts the number of sub diagonal rectangular lattice paths 
from (0,0) to (n,n), and, in particular, the proof of Theorem 8.1.1. To obtain our 
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answer, we determine the number l(p, q) of rectangular lattice paths 'Y from (0,0) to 
(p, q) that cross the diagonal, and then subtract I (p, q) from the total number (V;q) of 
rectangular lattice paths from (0,0) to (p,q). The number l(p,q) is the same as the 
number of rectangular lattice paths 'Y' from (0, -1) to (p, q - 1) that touch (possibly 
cross) the diagonal line y = x. This follows by shifting paths down one unit, thereby 
shifting a path 'Y into a path 'Y', and this establishes a one-to-one correspondence 
between the two kinds of paths. 

Consider a path 'Y' from (0, -1) to (p, q - 1) that touches the diagonal line y = x. 
Let 'Y~ be the subpath of 'Y' from (0, -1) to the first diagonal point (d, d) touched by 
'Y" Let 'Y~ be the subpath of 'Y' fro~ (d, d) to (p, q - 1). We reflect 'Y~ about the line 
y = x and obtain a path 'Yi from (-1, 0) to (d, d). Following 'Yi with 'Y2, we get a path 
'Y* from (-1,0) to (p,q - 1). This construction is illustrated in Figure 8.7. 

Now every rectangular lattice path B from (-1,0) to (p,q - 1) must cross the 
diagonal line y = x, since (-1,0) is above the line and (p, q - 1) is below. If we reflect 
the part of B that goes from (-1,0) to the first crossing point, we get a path from 
(0, -1) to (p, q - 1) that touches the line y = x. This shows that the correspondence 
'Y' to 'Y* is a one-to-one correspondence and hence that l(p,q) equals the number of 
rectangular lattice paths from (-1,0) to (p,q -1). By Theorem 8.5.1, we have 

l(p,q) = (P+l+ q -l) = (p+q). 
q-l q-l 

Therefore, the number of subdiagonal rectangular lattice paths from (0,0) to (p,q) 
equals 

( p + q) _ l(p q) = (P + q) _ (p + q) = (p + q)! _ (p + q)l 
q , q. q - 1 p!q! (q - 1)!(p + I)!' 

which simplifies to 

P-q+l(P+q). 
p + 1 q 

o 
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(0,9). • • • • • • • • 
• • • • • 
• • • • • 
• • • • • 
• • • • • 
• • • • • • • • 
• • 
• • • • • • 
• • • • • • 

(0,0) • • • • .(9,0) 

Figure 8.6 

We now consider lattice paths where, in addition to horizontal steps H = (1,0) and 
vertical steps V = (0,1), we allow diagonal steps D = (1,1). We call such paths HVD­
lattice paths. Let p and q be nonnegative integers, and let K(p, q) be the number of 
HVD-Iattice paths from (0,0) to (p, q), and K(p, q : rD) be the number of such paths 
that use exactly r diagonal steps D. We have K(p, q : OD) equal to the number of 
rectangular lattice paths from (0,0) to (p, q); thus, by Theorem 8.5.1, 

( p+q) K(p, q : OD) = p . 

We also have K(p, q: rD) = 0 if r > min{p, q}. 

Theorem 8.5.4 Let r :::; min{p, q}. Then 

and 

K(p,q: rD) = ( p-r 
p+q-r 

q-r 

min{p,q} 

) (p + q - r)! 
r - (p - r)!(q - r)!r!' 

K(p,q) = L (p + q - r)! 
(p - r)!(q - r)!r!' 

r=O 
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• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • 

(8,6) 
• 

• • • • • • • • • • 
• • • • • • • • • 
• • • • • 

• • • • • • 
• • • • • • 

(-1,0) • • • • • • 
• • • • • • • 

y=x 

Figure 8.7 

Proof. An HVD-lattice path from (0,0) to (p, q) that uses r diagonal steps D must 
use p - r horizontal steps Hand q - r vertical steps V, and is uniquely determined 
by its sequence of p - r H's, q - r V's, and r D's. Thus, the number of such paths is 
the number of permutations of the multiset 

{(p - r)· H, (q - r)· V, r· D}. 

From Chapter 2, we know the number of such permutations to be the multinomial 
number in the statement of the theorem. If we do not specify the number r of diagonal 
steps, then by summing K(p,q: rD) from r = 0 to r = min{p,q}, we obtain K(p,q) 
as given in the theorem. . 0 

Now let p 2: q and let R(p, q) equal the number of subdiagonal HVD-lattice paths 
from (0,0) to (p, q). Also, let R(p, q : rD) be the number of sub diagonal HVD-lattice 
paths from (0,0) to (p, q) that use exactly r diagonal steps D. We have 

q 

R(p,q) = "L,R(p,q: rD). 
r=O 
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Theorem 8.5.5 Let p and q be positive integers with p 2 q, and let r be a nonnegative 
integer with r ~ q. Then 

R(p,q: rD) 
p-q+l (p+q-r)! 
p - r + 1 r!(p - r)!(q - r)! 

P-q+l( p+q-r ) 
p-r+l r (p-r) (q-r) , 

and 
q p-q+l (p+q-r)! 

R(p,q)='" ()(. L.. p - r + 1 r! p - r ! q - r)! 
r=O 

Proof. A sub diagonal HVD-lattice path 'Y from (0,0) to (p, q) with r diagonal steps 
D becomes a sub diagonal rectangular lattice path 7r from (0,0) to (p - r, q - r) after 
removing the r diagonal steps D. Conversely, a sub diagonal rectangular lattice path 7r 

from (0,0) to (p - r, q - r) becomes a sub diagonal HVD-lattice path, with r diagonal 
steps, from (0,0) to (p, q) by inserting r diagonal steps in any of the p + q - 2r + 1 
places before, between, and after the horizontal and vertical steps. The number of 
ways to insert the diagonal steps D in 7r equals the number of solutions in nonnegative 
integers of the equation 

Xl + X2 + ... + Xp+ q-2r+l = r, 

and from Section 3.5, we know this number to be 

(p + q - 2r: 1 + r - 1) = (p + ~ - r). (8.28) 

Thus, to each sub diagonal rectangular lattice path from (0,0) to (p - r,q - r) there 
correspond a number of subdiagonal HVD-lattice paths from (0,0) to (p, q) with r 
diagonal steps, and this number is given by (8.28). Therefore, 

( p+q-r) R(p,q: rD) = r R(p - r,q - r: OD). 

Using Theorem 8.5.3, we get 

R(p, q : rD) = (p + q - r) p - q + 1 (p + q - 2r), 
r p-r+l q-r 

which simplifies to 

p - q + 1 (p + q - r)! p - q + 1 ( 
p-r+lr!(p-r)!(q-r)! - p-r+l r 

p+q-r 
(p - r) 
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Summing R(p, q rD) from l' = 0 to q, we get the formula for R(p, q) given in the 
theorem. 0 

Notice that, by taking l' = 0 in Theorem 8.5.5, we get Theorem 8.5.3. 

We now suppose that p = q = n. The subdiagonal HVD-lattice paths from (0,0) 
to (n, n) are called Schroder paths. 2l The large Schroder number Rn is the number of 
Schroder paths from (0,0) to (n, n). Thus, by Theorem 8.5.5, 

n 1 (2n - r)! 
Rn = R(n, n) = " 1(( )1)2' ~ n - l' + 1 r. n - l' . 

r=O 

The sequence Ro, Rl, R2,"" Rn, ... of large Schroder numbers begins as 

1,2,6,22,90,394,1806, .... 

We now turn to the small Schroder numbers, which are defined in terms of con­
structs called bracketings. Let n ;::: 1, and let aI, a2, ... , an be a sequence of n symbols. 
We generalize the idea of a multiplication scheme for aI, a2, . .. , an described in Sec­
tion 8.2 to that of a bracketing of the sequence aI, a2,. " , an. For our multiplication 
schemes, we had a binary operation x that combined two quantities, and a multiplica­
tion scheme was a way to put n - 1 sets of parentheses on the sequence aI, a2, . .. , an, 
with each set of parentheses corresponding to a multiplication of two quantities. In a 
bracketing, a set of parentheses can enclose any number of symbols. For clarity, we 
shall now drop the symbol x since its use now introduces some ambiguity. Before 
giving the formal definition of bracketing, we list the bracketings for n = 1,2,3, and 4 
and, at the same time, introduce some of the simplifications we adopt for purposes of 
clarity. 

Example. If n = 1, then there is only one bracketing, namely, al. To be precise, 
we should write this as (ad but, also for clarity, we shall remove parentheses around 
single elements and let the parentheses be implicit. For n = 2, there is also only one 
bracketing, namely, (ala2), or, for more clarity, ala2. In general, we omit the last set 
of parentheses corresponding to the final bracketing of the remaining symbols. For 
n := 3, we have three bracketings: 

21 After Friedrich Wilhelm Karl Ernst Schroder (1841-1902). See R. P. Stanley, Hipparchus, 
Plutarch, Schroder, and Hough, American Mathematical Monthly, 104 (1997), 344-350. Also see 
L. W. Shapiro and R. A. Sulanke, Bijections for Schroder Numbers, Mathematics Magazme, 73 (2000), 
369-376. We rely heavily on both of these articles for this section. 

22Without any of our simplifications, these would be written as (al X a2 x a3), ((al x a2) x 
a3), and (al x (a2 x a3)). The last two are multiplication schemes, since each pair of parentheses 
in them corresponds to a multiplication of two quantities, but the first is not. 
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For n = 4, we have 11 bracketings: 

and 

o 

We now give the formal recursive definition of a bmcketing of a sequence aI, a2, ... , an 
Each symbol ai is itself a bracketing; and any consecutive sequence of two or more 
bracketings enclosed by a set of parentheses is a bracketing. Thus, in contrast to 
multiplication schemes in Section 8.2, a pair of parentheses need not correspond to a 
multiplication of two symbols. Using this definition, we can construct all bracketings 
of the sequence aI, a2, . .. , an by carrying out the following recursive algorithm in all 
possible ways. 

Algorithm to Construct Bracketings 

Start with a sequence a I, a2, ... , an-

2. While 'Y has at least three symbols, do the following: 

(a) Put a set of parentheses around any number k ~ 2 of consecutive symbols, 
say, aiai+1 ... ai+k-l, to form a new symbol (aiai+l ... ai+k-l). 

(b) Replace'Y with the expression in which (aiai+1··· ai+k-d is one symbo1.24 

3. Output the current expression. 

A multiplication scheme for aI, a2, . .. , an is a binary bmcketing-that is, a brack­
eting in which each set of parentheses encloses two symbols. 

Example. We give an example of an application of the algorithm. Let n = 9 so that 
we start with ala2a3a4a5a6a7aSa9. We arrive at a bracketing by making the following 
choices: 

ala2a3a4a5a6a7aSa9 ~ ala2a3(a4a5a6)a7aSag 

~ (ala2)a3(a4 a5a6)a7aSag 

~ (ala2)a3((a4 a5a6)a7as)ag 

~ (dla2)(a3((a4a5a6)a7as)ag). 

230nly the last five are multiplication schemes. 
24But recall that, if we choose the entire sequence of symbols, we don't put in parentheses. Since 

k 2': 2, we don't put a set of parentheses around one symbol. 
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This bracketing is not a binary bracketing, since there are sets of parenthesis which 
enclose more than two symbols; for instance, (a4a5a6) does, and so does ((a4a5a6)a7a8) 
(which encloses the three symbols (a4a5a6), a7, and a8), and (a3((a4a5a6)a7a8)ag) 
(which encloses the three symbols a3, ((a4a5a6)a7a8), and ag) . 0 

For n 2: 1, the small Schroder number Sn is defined to be the number of bracketings 
of a sequence aI, a2, .. . , an of n symbols. We have seen that 81 = 1, 82 = 1, S3 

3 and 84 = 11. In fact, the sequence (8n : n = 1,2,3, ... ) begins as 

1,1,3,11,45,197,903, .... 

Comparing this with the initial part of the sequence of large Schroder numbers leads 
us to the tentative conclusion that Rn = 28n+1 for n 2: 1 with Ro = 1. We give a proof 
of this by computing the generating functions for both the small and large Schroder 
numbers. 

Theorem 8.5.6 The genemting function for the sequence (8n n > 1) of small 
Schroder numbers is 

Proof. Let g(x) = L:~=l 8 n X n be the generating function of the small Schroder 
numbers. The recursive definition of bracketing implies that 

g(x) x + g(x)2 + g(x)3 + g(x)4 + .. . 
x + g(x)2(1 + g(x) + g(X)2 + ... ) 

g(x)2 
X + ( ). l-gx 

This gives 
(1 - g(x))g(x) = (1- g(x))x + g(x)2; 

hence, 
2g(X)2 - (1 + x)g(x) + x = O. 

Therefore, g(x) is a solution of the quadratic equation 

2y2 - (1 + x)y + x = o. 

The two solutions of this quadratic equation are 

() (1 + x) + J(1 + x)2 - 8x 
Yl X = 4 
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and 
() (1 + x) - ..)(1 + x)2 - 8x 

Y2 X = 4 . 

Since g(O) = 0, and Yl(O) = 1/2 and Y2(0) = 0, we have 

( ) () 1 + x - v' x2 - 6x + 1 
gX=Y2X= 4 . 

o 

The generating function g(x) = I:~=l snxn, as evaluated in Theorem 8.5.6, can be 
used to obtain a recurrence relation for the small Schroder numbers that is useful for 
computation. We return to the quadratic equation 

2y2 - (1 + x)y + x = 0 (8.29) 

that arose in the proof of Theorem 8.5.6. If we differentiate each side of this quadratic 
equation with respect to x,25 we get 

hence, 

dy dy 
4y- - y - (1 + x)- + 1 = 0; 

dx dx 

dy y - 1 

dx 4y - 1- x 

(x - 3)y - x + 1 

x2 - 6x + 1 

The last equality can be routinely verified by cross multiplying and then making use 
of (8.29). We now have 

2 dy 
(x - 6x + 1) dx - (x - 3)y + x-I = o. (8.30) 

Substituting y = g(x) = I:~=l snxn in (8.30), we get, after some simplification, 

00 00 00 

2:)n - l)snxn+1 - 3 2:)2n - l)snxn + L nSnxn-l + x-I = 0, 
n=l n=l n=l 

which can be rewritten as 

00 ob 

L(n - l)snxn+1 - 3 L(2n + l)sn+1xn+1+ 
n=l n=O 

25Keep in mind that y is a function of x. 
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00 

2.: (n + 2)Sn+2Xn+1 = -x + l. 
n=-l 

The coefficient of xn +1 in the expression on the left equals ° for n 2: 1, we obtain 

(n + 2)Sn+2 - 3(2n + l)sn+1 + (n - l)sn = 0, (n 2: 1). (8.31 ) 

The recurrence relation (8.31) is a homogeneous linear recurrence relation of order 2 
with nonconstant coefficients. 

We now return to the large Schroder numbers and, in the next theorem, compute 
their generating function. 

Theorem 8.5.7 The generating function for the sequence (Rn n 2: 0) of large 
Schroder numbers is 

f Rnxn = ;x (-(x - 1) - JX2 - 6x + 1) . 
n=O 

Proof. Let h(x) = "L,':=o Rnxn be the generating function for the large Schroder 
numbers. A subdiagonal HVD-lattice path from (0,0) to (n,n) 

(1) is the empty path (if n = 0), 

(2) starts with a diagonal step D, or 

(3) starts with a horizontal step H. 

The number of paths of type (2) equals the number of subdiagonal HVD-lattice paths 
from (1,1) to (n, n) and thus equals Rn -1. The paths of type (3) begin with a hori­
zontal step H and then follow a path "( from (1,0) to (n, n) without going above the 
diagonal line joining (1,1) and (n, n). Since,,{ ends on the diagonal at the point (n, n), 
there is a first point (k, k) of"{ on the diagonal, where 1 ::; k ::; n. Since (k, k) is the 
first point of"{ on the diagonal, "{ arrives at (k, k) by a vertical step V from the point 
(k, k - 1). The part of"( from (1,0) to (k, k - 1) is a lattice path "(I that does not go 
above the diagonal line joining (1,0) to (k, k - 1). The part of"{ from (k, k) to (n, n) 
is a lattice path "{2 that does not go above the diagonal line joining (k, k) to (n, n). 
There are R k - 1 choices for "{I and R n - k choices for "{2, and hence the number of lattice 
paths of type (iii) equals Rk-1Rn-k. Summarizing, we get the recurrence relation 

or, equivalently, 

n 

Rn = Rn-1 + 2.: Rk- 1Rn- k, (n 2: 1), 
k=l 

n-1 
Rn = Rn-1 + 2.: RkRn-1-k, (n 2: 1), 

k=O 

(8.32) 



B.5. LATTICE PATHS AND SCHRODER NUMBERS 

where Ro = 1. Thus, 

xn Rn = x(xn- 1 Rn-d + x (~xk RkXn-1-k Rn-l-k) , 
k=O 
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(n 2 1). 

Since Ro = 1, the preceding equation implies that the generating function h(x) of the 
large Schroder numbers satisfies 

h(x) = 1 + xh(x) + Xh(X)2. 

Therefore, h(x) is a solution of the quadratic equation 

xy2 + (x - l)y + 1 = O. 

The two solutions of this quadratic equation are 

-(x - 1) + ../x2 - 6x + 1 
Yl(X) = 2x 

and 
-(x - 1) - ../x2 - 6x + 1 

~~)= ~ . 
The first of these cannot be the generating function of the large Schroder numbers as 
it does not give nonnegative integers. Hence, 

h() () l-x-../x2-6x+l 
x = Y2 X = 2x . 

o 

Comparing the generating functions for the large and small Schroder numbers, we 
obtain the following corollary. 

Corollary 8.5.8 The large and small Schroder numbers are related by 

Rn = 2sn+1, (n 2 1). 

o 

In Sections 7.6 and 8.1, we considered triangulating a convex polygonal region by 
means of its diagonals which do not intersect in the interior of the region. We showed 
that the number of such triangularizations of a convex polygonal region with n + 1 
sides equals the number of multiplication schemes for n numbers given in a particular 
order, with the common value equal to the Catalan number 

C = ~(2n - 2) 
n-l n' n - 1 . 

Thus, the nth Catalan number Cn equals the number of triangularizations of a convex 
polygonal region with n+2 sides. We conclude this section by showing that bracketings 
can be given a combinatorial geometric interpretation. 
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a, 

a. a. 

(a.a,a,) 

a, 
a3 

( (a.a,a6)a,a8) 

a, a8 
a3( (a.u,a,)a,aS)U9) 

a, 

base 

Figure 8.8 

Consider a convex polygonal region IIn+1 with n + 1 sides, and the sequence 
aI, a2, ... , an. The base of IIn+1 is labeled as base, and the remaining n sides are 
labeled with aj, a2, .. . , an, beginning with the side immediately to the left of the 
base being labeled aj and proceeding in order in a clockwise fashion. Bracketings of 
aI, a2, ... , an are in one-to-one correspondence with dissections of IIn+b where, by a 
dissection of IIn+ j , we mean a partition of IIn+ j into regions obtained by inserting 
diagonals that do not intersect in the interior. In contrast to triangularizations, the 
regions in the partition of IIn+l are not restricted to be triangles. 

We illustrate the correspondence in Figure 8.8, using the example of a bracketing 
that we constructed with our algorithm: 

aja2a3a4aSa6a7aSa9 ~ aja2a3(a4asa6)a7aSag 

~ (aja2)a3(a4asa6)a7aSag 

~ (aj a2)a3((a4asa6)a7as)ag 

~ (aj a2)(a3((a4asa6)a7as)ag). 

This correspondence works in general, establishes a one-to-one correspondence 
between bracketings and dissections, and also proves the next theorem. We adopt the 
convention that a polygonal region with two sides is a line segment and that it has 
exactly one dissection (the empty dissection). 

Theorem 8.5.9 Let n be a positive integer. Then the number of dissections of a 
convex polygonal region of n + 1 sides equals the small Schroder number Sn. 0 
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In terms of the polygonal region IIn+l' our algorithm for constructing a bracketing 
of a sequence of n symbols is both natural and obvious. 

Algorithm to construct dissections of IIn+l 

Start with the convex polygonal region IIn +1, with the sides labeled as: 

in a clockwise fashion. 

1. Let r = IIn +1' 

(a) While r has three or more sides, insert a diagonal of r, thereby partitioning 
r into two parts. (Here we allow the base to be chosen as the diagonal in 
which case the two parts are r and the polygonal region of two sides given 
by the base.) 

(b) Replace r with the part containing the base. (This part will have at least 
one fewer side and is the base itself if the base was chosen in (a).) 

3. Output the full dissected polygonal region IIn +1' 

The algorithm comes to an end when the base has been chosen as the diagonal, 
and r is then replaced by the polygonal region of two sides given by the base. 

8.6 Exercises 

1. Let 2n (equally spaced) points on a circle be chosen. Show that the number of 
ways to join these points in pairs, so that the resulting n line segments do not 
intersect, equals the nth Catalan number Cn. 

2. Prove that the number of 2-by-n arrays 

Xln ] 

X2n . 

that can be made from the numbers 1,2 ... ,2n such that 

Xn < X12 < ... < Xln , 

X21 < X22 < ... < X2n 

equals the nth Catalan number, Cn. 
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3. Write out all of the multiplication schemes for four numbers and the triangular­
ization of a convex polygonal region of five sides corresponding to them. 

4. Determine the triangularization of a convex polygonal region corresponding to 
the following multiplication schemes: 

(a) (al x (((a2 x a3) x (a4 x as)) x a6)) 

(b) (((al x a2) x (a3 x (a4 x as))) x ((a6 x a7) x ag)) 

5. * Let m and n be nonnegative integers with n 2': m. There are m + n people in 
line to get into a theater for which admission is 50 cents. Of the m + n people, 
n have a 50-cent piece and m have a $1 dollar bill. The box office opens with 
an empty cash register. Show that the number of ways the people can line up 
so that change is available when needed is 

n -m + 1 (m + n) . 
n+l m 

(The case m = n is the case treated in Section 8.1.) 

6. Let the sequence ho, hI, ... , hn , ... be defined by hn = 2n2 - n + 3, (n 2': 0). 
Determine the difference table, and find a formula for L~=o hk . 

7. The general term hn of a sequence is a polynomial in n of degree 3. If the first 
four entries of the Oth row of its difference table are 1, -1, 3, 10, determine hn 

and a formula for L~=o hk · 

8. Find the sum of the fifth powers of the first n positive integers. 

9. Prove that the following formula holds for the kth-order differences of a sequence 
ho, hI, ... , hn , ... : 

k ~ k_(k) A hn = L..,,( -1 ) J . hn+j . 

j=O J 

10. If hn is a polynomial in n of degree m, prove that the constants Co, CI, ... , em 
such that 

are uniquely determined. (Cf. Theorem 8.2.2.) 

11. Compute the Stirling numbers of the second kind 8(8, k), (k = 0, 1, ... ,8). 

12. Prove that the Stirling numbers of the second kind satisfy the following relations: 

(a) 8(n, 1) = 1, (n 2': 1) 
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(b) S(n,2) = 2n - 1 - 1, (n 2: 2) 

(c) S(n,n -1) = (~), (n 2: 1) 

(d) S(n, n - 2) = G) + 3(~) (n 2: 2) 
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13. Let X be a p-element set and let Y be a k-element set. Prove that the number 
of functions f : X ~ Y which map X onto Y equals 

kIS(p,k) = S#(P,k). 

14. * Find and verify a general formula for 

involving Stirling numbers of the second kind. 

15. The number of partitions of a set of n elements into k distinguishable boxes 
(some of which may be empty) is kn. By counting in a different way, prove that 

kn = G) 1IS(n, 1) + G)21S(n, 2) + ... + (~)nIS(n, n). 

(If k > n, define S(n, k) to be 0.) 

16. Compute the Bell number Bs. (Cf. Exercise 11.) 

17. Compute the triangle of Stirling numbers of the first kind s(n, k) up to n = 7. 

18. Write [nlk as a polynomial in n for k = 5,6, and 7. 

19. Prove that the Stirling numbers of the first kind satisfy the following formulas: 

(a) s(n, 1) = (n - 1)1, 

(b) s(n,n-1)=G), 

(n 2: 1) 

(n 2: 1) 

·20. VerifY that [nln = nl, and write nl as a polynomial in n using the Stirling 
numbers of the first kind. Do this explicitly for n = 6. 

21. For each integer n = 1,2,3,4,5, construct the diagram of the set Pn of partitions 
of n, partially ordered by majorization. 

22. (a) Calculate the partition number P6 and construct the diagram of the set P6, 
partially ordered by majorization. 

(b) Calculate the partition number P7 and construct the diagram of the set P7, 
partially ordered by majorization. 
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23. A total order on a finite set has a unique maximal element (a largest element) and 
a unique minimal element (a smallest element). What are the largest partition 
and smallest partition in the lexicographic order on Pn (a total order)? 

24. A partial order on a finite set may have many maximal elements and minimal 
elements. In the set Pn of partitions of n partially ordered by majorization, 
prove that there is a unique maximal element and a unique minimal element. 

25. Let t1, t2, ... , tm be distinct positive integers, and let 

equal the number of partitions of n in which all parts are taken from t1, t2,"" tm. 

Define qo = 1. Show that the generating function for QQ, q1, ... , qn, ... is 

m 

II(l-xtk )-l. 

k=l 

26. Determine the conjugate of each of the following partitions: 

(a) 12 = 5 + 4 + 2 + 1 

(b) 15 = 6 + 4 + 3 + 1 + 1 

(c) 20=6+6+4+4 

(d) 21 = 6 + 5 + 4 + 3 + 2 + 1 

( e) 29=8+6+6+4+3+2 

27. For each integer n > 2, determine a self-conjugate partition of n that has at 
least two parts. 

28. Prove that conjugation reverses the order of majorization; that is, if A and 11 are 
partitions of n and A is majorized by 11, then 11* is majorized by A *. 

29. Prove that the number of partitions of the positive integer n into parts each 
of which is at most 2 equals In/2J + 1. (Remark: There is a formula, namely 

the nearest integer to (niil', for the number of partitions of n into parts each 
of which is at most 3 but it is much more difficult to prove. There is also one 
for partitions with no part more than 4, but it is even more complicated and 
difficult to prove.) 

30. Prove that the partition function satisfies 

Pn > Pn-1 (n 2: 2). 
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31. Evaluate h~~l' the number of regions into which k-dimensional space is parti­
tioned by k - 1 hyperplanes in general position. 

32. Use the recurrence relation (8.31) to compute the small Schroder numbers 88 

and 89. 

33. Use the recurrence relation (8.32) to compute the large Schroder numbers R7 
and R8. Verify that R7 = 288 and R8 = 289, as stated in Corollary 8.5.8. 

34. Use the generating function for the large Schroder numbers to compute the first 
few large Schroder numbers. 

35. Use the generating function for the small Schroder numbers to compute the first 
few small Schroder numbers. 

36. Prove that the Catalan number Cn equals the number of lattice paths from (0,0) 
to (2n, 0) using only upsteps (1, 1) and downsteps (1, -1) that never go above the 
horizontal axis (so there are as many up steps as there are downsteps). (These 
are sometimes called Dyck paths.) 

37. * The large Schroder number Cn counts the number of subdiagonal HVD-lattice 
paths from (0,0) to (n, n). The small Schroder number counts the number of 
dissections of a convex polygonal region of n + 1. Since Rn = 28n +1 for n ~ 1, 
there are as many sub diagonal HVD-lattice paths from (0,0) to (n, n) as there 
are dissections of a convex polygonal region of n + 1 sides. Find a one-to-one 
correspondence between these lattice paths and these dissections. 
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Chapter 9 

Systems of Distinct Representatives 

This short chapter serves as an interlude between the basic enumerative Chapters 2 
and 4 to 8, and the remaining chapters of the book. We begin by discussing three 
problems: 

Problem 1. Consider an m-by-n chessboard in which certain squares are forbidden 
and the others are free. What is the largest number of nonattacking rooks that can 
be placed in free positions on the board? 

In previous sections we considered the problem of counting the number of ways to 
place n nonattacking rooks on an n-by-n board. Our underlying assumption was that 
this number was positive; that is, it was possible to place n nonattacking rooks on the 
board. Now we are concerned not only with whether or not it is possible to place n 
nonattacking rooks on the board but, more generally, with the question of the largest 
number of nonattacking rooks that can be placed on a rectangular board. 

Problem 2. Consider again an m-by-n chessboard where certain squares are forbidden 
and the others are free. What is the largest number of dominoes that can be placed on 
the board so that each domino covers two free squares and no two dominoes overlap 
(cover the same square)? 

In Chapter I we considered the special case of this problem concerning when a 
board with forbidden squares has a tiling (perfect cover). For a tiling, we must have, 
in addition, that every free square is covered by a domino. If p is the total number of 
free squares, then there is a tiling if and only if p is even, and the answer to Problem 
2 is p/2. In the general case, some free squares may not be covered by any domino. 

Problem 3. A company has n jobs available, with each job requiring certain qualifi­
cations. There are m people who apply for the n jobs. What is the largest number of 
jobs that can be filled from the applicant pool if a job can be filled only by a person 
who meets its qualifications? 

The first two problems are of a recreational nature. The third problem, however, 
is clearly of a more serious and applied nature. As a matter of fact, Problems 1 and 
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3 are different formulations of the same abstract problem, and Problem 2 is merely 
a special case. In this chapter we solve the abstract problem and thereby solve each 
of Problems 1, 2, and 3. Of course, in Problem 3, we would want to know not only 
the largest number of jobs that can be filled with qualified applicants, but also a 
particular assignment of the largest number of applicants to jobs they qualify for. (A 
similar remark applies to Problems 1 and 2.) We shall discuss this in Chapter 13 in 
the context of a different model for the problem. 

9.1 General Problem Formulation 

Each of Problems 1, 2, and 3 has a common abstract formulation which we now discuss. 
Let Y be a finite set, and let A = (Al' A2, ... ,An) be a familyl of n subsets of 

Y. A family (el' e2, ... , en) of elements of Y is caned a system of representatives, 
abbreviated SR, of A, provided that 

In a system of representatives, the element ei belongs to Ai and thus "represents" the 
set Ai. If, in a system of representatives, the elements el, e2,"" en are all different, 
then (el' e2,"" en) is called a system of distinct representatives, abbreviated SDR. 
Note that even though, for example, Al and A2 may be equal as sets, they must "have 
different representatives in an SDR because they are different terms of the family. 

Example. Let (A 1, A2 , A3 , A4) be the family of subsets of the set Y = {a, b, c, d, e }, 
defined by 

Al = {a,b,c},A2 = {b,d},A3 = {a,b,d},A 4 = {b,d}. 

Then (a, b, b, d) is an SR, and (c, b, a, d) is an SDR. 
o 

A family A = (Al' A2, ... ,An) of nonempty sets always has an SR. We need only 
pick any element from each of the sets A l , A 2, .. . ,An to obtain an SR. However, the 
family A need not have an SDR even though all the sets in the family are nonempty. 
For instance, if there are two sets in the family, say, Al and A 2, each containing only 
one element, and the element in Al is the same as the element in A2, that is, 

Al = {x}, A2 = {x}, 

then the family A does not have an SDR. This is because, in any SR, x has to represent 
both Al and A2, and thus no SDR exists (no matter what A 3, .. . ,An are). But this 
is not the only way in which a family A can fail to have an SDR. 

1 A family as used here is really the same as a sequence, but not a sequence of numbers. We have 
here a sequence whose terms are sets. As in sequences of numbers, different terms can be equal; thus, 
some sets in the family may be equal. 
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Example. Let the family A = (AI, A2, A3, A4) be defined by 

Al = {a,b},A2 = {a,b},A3 = {a,b},A4 = {a,b,c,d}. 

Then A does not have an SDR because in any system of representatives, Al has to 
be represented by either a or b, A2 has to· be represented by either a or b, and A3 has 
to be represented by either a or b. So we have two elements, namely, a and b, from 
which the representatives of three sets, namely, AI, A2 , and A3 , have to be drawn. By 
the pigeonhole principle, two of the three sets AI, A2 and A3 have to be represented 
by the same element. Hence no SDR is possible. 0 

Example. Consider the 4-by-5 board with forbidden positions pictured in Figure 9.1 
and the problem of placing nonattacking rooks on this board. The rooks have to be 
placed in the free squares. 

1 2 3 4 5 
Al X 

A2 X X 

A3 X X X 

A4 X 

Figure 9.1 

In the diagram each row has one of the labels Ar,A2,A3,A4 and each column has 
one of the labels 1,2,3,4,5. These labels indicate that, with this board, we associate 
the family A = (A 1,A2,A3,A4) of subsets of Y = {1,2,3,4,5}, where Ai is the set of 
columns in which the free squares in row i lie: thus, 

Al = {1,3,4,5},A2 = {1,2,4},A3 = {2,4},A4 = {2,3,4,5}. 

It is possible to place four nonattacking rooks on this board if and only if the asso­
ciated family A has an SDR. For example, the four nonattacking rooks in Figure 9.2 
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correspond to the SDR (4,1,2,5) of A2 

1 2 3 4 5 
Al X 0 
A2 0 X X 

A3 X 0 X X 

A4 X 0 

Figure 9.2 
o 

The discussion in the previous example applies in general, to any problem of placing 
nonattacking rooks on a board with forbidden positions. More precisely, with any m­
by-n board B with forbidden positions, we associate a family A = (AI, A2 , ... ,Am) 
of subsets of the set Y = {I, 2, ... ,n}, called the rook family of the board, where 

Ai={k: the kthsquareinrowi is free} (i=1,2, ... ,m) 

is the set of columns having a free square in row i. It is possible to place m nonattacking 
rooks in free positions on the board if and only if the rook family A has an SDR. More 
generally, if k is an integer, then it is possible to place k nonattacking rooks on the 
board if and only ifthere is a subfamily3 A(il, i2, ... ,ik) = (Ai" Ai" ... , Aik ) of k sets, 
where 1 ::; il < i2 < ... ik ::; m , with an SDR. The rooks will go into rows iI, i2, ... , ik 
and the respective columns given by the SDR. 

In fact, this is all reversible in that any family A = (A I, A2 , ... , Am) of m subsets 
of Y = {I, 2, ... ,n} of n elements is the rook family of some m-by-n board with 
forbidden positions, where an SDR corresponding to m nonattacking rooks in free 
positions on the board. We simply construct the m-by-n board of which the position 
in row i and column j is free if and only if j belongs to Ai and is forbidden otherwise. 

Example. Consider a 4-by-5 board whose squares are alternately colored black and 
white and where some of the squares are forbidden. For identification we label the 
free white squares WI, W2, •.. ,W7 and the free black squares bl, b2 , ... , b7, as shown in 
Figure 9.3. 

2 Another was to describe this 4- by-5 board is by a 4- by-5 bit matrix or incidence matrix. This is 
the 4-by-5 matrix 

'[ 1 , 1 
, 0 

o 

o 

1 
1 

1 1 
o 1 
o 

which has a 0 in row i and column j if the corresponding position of the board is forbidden and a 1 
if the position is free. Placing non attacking rooks on the board is equivalent to picking a bunch of 
Is no two from the same row and no two from the same column. The boldface Is correspond to the 
placement of rooks in Figure 9.2. 

3 A family is a sequence of sets; a subfamily is a subsequence of that sequence. 
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WI X W2 bl W3 
b2 

; W4 X Ws b3 
X b4 X bs X 

X w6 b6 W7 b7 

Figure 9.3 

We associate with this board a family A = (AI, A 2, A 3, A 4, As, A 6, A7) of subsets of the 
set of black squares, one subset for each white square, as follows. We let Ai equal the 
set of all black squares that share an edge with white square Wi, (i = 1,2,3,4,5,6,7). 
Thus 

Al = {b2},A2 = {br},A3 = {b l ,b3},A4 = {b2,b4},As = {bl,b3,bs}, 

A6 = {b4, b6}, A7 = {bs , b6, bd· 

If a domino is placed on the board and covers square Wi, then it must cover one of the 
black squares in Ai. Hence A; consists of all the black squares that can be covered by 
a domino that also covers white square Wi. We see that the 4-by-5 board has a tiling 
if and only if A has an SDR. 0 

The discussion in the previous example can be carried out for any tiling problem 
by dominoes. We simply list the free white squares WI, w2, ... ,Wm in some order and 
list the free black squares bl , b2 , ... , bn in some order (the number m of white squares 
must equal the number n of black squares if there is to be a tiling, but we need not 
restrict ourselves in this way), and form the family A = (AI, A2 , .. . ,Am), one set for 
each free white square, where Ai is the set of black squares sharing an edge with white 
square Wi, (i = 1,2, ... , m). The family A is called the domino family of the board. 
There is a tiling of the board if and only if the domino family A has an SDR. More 
generally, if k is an integer, then it is possible to place k nonoveriapping dominoes on 
the board if and only if there is a subfamily A( iI, i2, ... , ik) = (A;" A;2' ... , A;k) of 
k sets, where 1 ::; il < i2 < '" ik ::; m , with an SDR. The dominoes will be placed 
on white squares Wi" Wi2' ... , Wik and the respective black squares corresponding to 
representatives in the SDR. 

It should now be clear that Problem 3 in the introduction, of assigning applicants 
to jobs for which they qualify, is a just a general SDR problem. Let the jobs be labeled 
PI,P2, .. . , Pn· Then to the ith applicant we associate the set A, of jobs for which he 
or she qualifies. Assignment of people to jobs to which they qualify is the same as 
finding an SDR of the family A = (AI, A 2, ... , An) or one of its subfamilies. 

We are now ready to formulate our general problem: 

Let A = (AI, A 2, ... ,An) be a family of subsets of a finite set Y. Determine when 
A has an SDR. If A does not have an SDR, what is the largest number t of sets in a 

subfamily A(il, i2 , ... , it) = (Ai" A i2 ,.·., Ai,) that does have an SDR? 
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Solving this problem solves each of Problems 1, 2, and 3 in the introduction to this 
chapter. 

9.2 Existence of SDRs 

We begin by identifying a general necessary condition for the existence of an SDR. 
Let A = (All A 2 , . .. ,An) be a family ofsets. Let k be an integer with 1 ::; k ::; n. 

In order for A to have an SDR, it is necessary that the union of every k sets of the 
family A contain at least k elements. Why is this so? Suppose, to the contrary, that 
there are k sets, to be explicit, say, AI, A2 , . .. ,Ak , which together contain fewer than 
k elements; that is, 

Al U A2 U ... U Ak = F, where IFI < k. 

Then the representatives of each of the k sets AI, A2 , . .. ,Ak have to be drawn from 
the elements of the set F. Since F has fewer than k elements, it follows from the 
pigeonhole principle that two of the k sets AI, A2, ... ,Ak have to be represented by 
the same element. Hence, there can be no SDR. We formulate this necessary condition 
as the next lemma. 

Lemma 9.2.1 In order for the family A = (AI, A2 , . .. ,An) of sets to have an SDR, 
it is necessary that the following condition hold: 

(MC): For each k = 1, 2, ... ,n and each choice of k distinct indices iI, i2, ... ,ik 

from {1,2, ... ,n}, 

(9.1) 

in short, every k sets of the family collectively contain at least k elements. 
o 

Condition MC in Lemma 9.2.1 is often called the marriage condition. The reason 
stems from the following amusing and classical formulation of the problem of systems 
of distinct representatives. 

Example ( The Marriage Problem). There are n men and m women, and all the men 
are eager to marry. If there were no restrictions on who marries whom, then, in order 
to marry off all .the men, we need only require that the number m of women be at 
least as large as the number n of men. But we would expect that each man and each 
woman would insist on some compatibility with a spouse, thereby eliminating some of 
the women as potential spouses for each man. Thus, each man would arrive at a certain 
set of compatible women from the set of available women.4 Let (AI, A2 , ... ,An) be 

'This is sounding like the problem of assigning applicants to jobs, isn't it? The women are the 
"jobs," and the compatible women for a man are the jobs for which he has the qualifications. 
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the family of subsets of the women, where Ai denotes the set of compatible women 
for the ith man (i = 1, ... , n). Then marrying off all the men corresponds to an SDR 
(WI, W2, ... ,wn) of (AI, A 2, . .. ,An). The correspondence is that the ith man marries 
the woman Wi, (i = 1,2, ... ,n). Since Wi is in Ai, Wi is a woman compatible with the 
ith man. Since (WI, W2, ... ,wn) is a system of distinct representatives, no two men are 
claiming the same woman. 5 In the context of this example, the Me asserts that the 
combined lists of any set of k men have to contain at least k women, and thus this is 
a necessary condition for all the men to be able to marry a compatible woman. 0 

The marriage condition (9.1) is not only a necessary condition for the existence of 
SDR but, surprisngly, a sufficient condition as well. It thus provides a characterization 
for the existence of an SDR. 

Theorem 9.2.2 The family A = (AI' A2, . .. ,An) of subsets of a set Y has an SDR 
if and only if the marriage condition Me holds. 

Proof. By Lemma 9.2.1 we know that if A has an SDR, then the marriage condition 
holds. We now assume that the marriage condition holds and show that A has an 
SDR. The proof we give is by induction on the number n of sets of the family A. 

To get started, if n = 1, that is, A = (Ad, then Me says that IAll 2 1. Hence, 
choosing any element in AI, we get an SDR for A in this case. 

Now suppose that n 2 2. There are two cases to be considered, which could be 
described as the tight case and the room-to-spare case. 

The tight case: There is an integer k with 1 ~ k ~ n - 1 and a subfamily of A of k 
sets whose union contains exactly k elements. (By Me the union cannot contain fewer 
that k elements, so we are tight.) For simplicity of notation, let us assume6 that the 
k sets are the first k sets AI, A 2, ... , A k. So letting E = Al U A2 U··· U A k, we have 

lEI =k. 

Since A satisfies Me, then so does its subfamily (Al' A 2 , . .. ,Ak). Since k < n, it 
follows by the induction hypothesis that (AI, A2, ... ,Ak) has an SDR (el' e2, ... ,ek). 
Because E = Al U A2 U ... U Ako lEI = k, and el, e2, . .. ,ek are distinct, we have 
E = {el' e2, ... , ed. Thus if A is to have an SDR, none of the remaining sets in the 
subfamily (Ak+1' A k+2, .. . ,An) can have their representative from E. 

So we consider thefamily 

A* = (Ak+1 \E,Ak+2 \E, ... ,An \E) 

of n - k sets 0 btained by removing the elements of E from the sets A k+1, A k+2, ... , An. 
Since k 2 1, n-k < n. So if we can show that A* satisfies Me, we can use the induction 

5We forgot to say that no woman is allowed two spouses. 
6 Actually, listing the sets in the family in a different order affects neither the Me nor the existence 

of an SDR. 
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hypothesis again to conclude it has an SDR (Jk+l, h+2,.·., In). None of the f's can 
equal any of the e's, and it will follow that (eb e2, . .. , ek, Ik+1, h+2, ... , In) is an SDR 
for A, completing the induction. 

So let's show that A* satisfies MC. Take any I sets 

of A*, where k + 1 ::; jl < j2 < ... < jz ::; n, and consider the k + I sets 

of the family A. Since MC holds for A, then, using elementary calculations, we have 

IAI U A2 U ... U Ak U Aj, U Ah U ... U Ajll 2: k +1 

IE U Aj, U Ah U ... U Ajll 2: k +1 

lEI + I(Aj, \ E) U (Ah \ E) U ... U (Ajl \ E)I 2: k + 1 

k+I(Ajl \E)U(Ah \E)U···U(Ajl \E)I 2: k + I 
I(Aj, \ E) U (Ah \ E) U··· U (Ajl \ E)I 2: I. 

Thus A* satisfies MC and hence has an SDR, and, as shown, this implies that A has 
an SDR. 

The room to spare case: For every integer k with 1 ::; k ::; n - 1 and every subfamily 
of A of k sets, the union contains at least k + 1 elements. (So the union contains 
more elements than needed for MC, and we have room to spare.) With room to 
spare, the proof ought to be easier, and it is. Each set of the family A contains 
at least one element, indeed two because of room to spare. So take An and any 
element en that it contains. Consider the family A' = (A~, A~, ... , A~_l) obtained 
from AI, A2, . .. , An- l by deleting en from each set that contains it. We claim that A' 
satisfies MC. Indeed, since we have room to spare and we have only eliminated one 
element from AI, A 2, ... , An, for each integer k with 1 ::; k ::; n - 1 and each choice of 
indices il,i2, ... ,ik with 1::; il < i2 < ... < ik::; n -1 we have 

Hence A' satisfies MC and so by the induction hypothesis has an SDR (el, e2, ... , en-I). 
Since none of these elements can equal en, (el, e2, ... , en-I, en) is an SDR of A. There­
fore, the theorem holds by induction. 0 

If the marriage condition fails so that there is no SDR, then we would like to know 
the largest number of sets in a subfamily with an SDR. To answer this we first prove 
the following theorem. 
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Theorem 9.2.3 Let A = (AI, A2 , . .• ,An) be a family of subsets of a finite set Y. Let 
t be an integer with 0 ::; t ::; n. Then there exists a subfamily of t sets of A that has 
an SDR if and only if 

(9.2) 

for all k with k 2: n-t and all choices of k distinct indices iI, i2 , ... ,ik from {I, 2, ... ,n} 

Proof. Note that Theorem 9.2.2 is the special case obtained by taking t = n, and we 
shall actually derive it from that theorem. Let F be a set of n - t elements completely 
disjoint from Y: F n Y = 0. We define a family A* = (Ai, Ai, ... , A~) of subsets of 
F U Y by putting all the elements of F into all the sets of A: 

Ai = Ai U F (i = 1,2, ... ,n). 

We claim that A has a family of t sets with an SDR if and only if A* has an SDR. 
First suppose A* has an SDR. Then since IFI = k, at most k of the elements in this 
SDR come from F, and hence at least n - k come from Y, thereby forming an SDR 
of at least n - k sets of the family A. Conversely, suppose A has a subfamily of t sets 
having an SDR. For convenience of notation, let these t sets be AI, A 2 , ... ,At and let 
the SDR be (Yl, Y2,' .. ,Yt). Let the n - t elements of F be fl+l' h+2,' .. ,fn. Then 

is an SDR of A*. Thus our claim holds. 
We now apply Theorem 9.2.2 to A*. By that theorem, A* has an SDR if and 

only if for each k = 1,2, ... ,n and each choice of k distinct indices i J , i2 , ... ,ik from 
{l,2, ... ,n}, 

Since 

and since 

IAi, U Ai2 U ... U Aik I 2: k. 

I(Ail U Ai2 u··· U A;k)1 + IFI 
IAil U A;2 U ... U Aik I + n - t, 

(9.3) 

we see that the conditions of (9.3) are equivalent to the conditions of (9.2). Hence 
Theorem 9.2.3 follows from Theorem 9.2.2. 0 

As a corollary, we can obtain an expression for the largest number of sets in a 
subfamily with an SDR. 

7If k < n - t, then k - (n - t) < 0, and (9.2) surely holds, so we need not include it in (9.2). 
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Corollary 9.2.4 Let A = (AI, A2, ... , An) be a family of subsets of a finite set Y. 
Then the largest number of sets in a subfamily of A with an SDR equals the smallest 
value taken by the expression 

IAil U Ai2 U ... U Aik I + n - k (9.4) 

over all choices of k = 1,2, ... ,n and all choices of k indices iI, i2, ... ,ik with 1 < 
il < i2 < ... < ik :<::; n. 

Proof. The largest number of sets in a subfamily equals the largest integer t for which 
(9.2) holds for all k with k 2: n - t and for all choices of k distinct indices iI, i2, ... ,ik 
from {I, 2, ... , n}. Since (9.2) can be rewritten as 

lA, U Ai2 u··· U Aikl + (n - k) 2: t, 

the corollary holds; we simply have to choose the smallest value of 

IA;, UAi2 u··· UAikl + (n;- k) 

to find the largest t to work. o 

Example. We define a family A = (AI,A2,A3,A4,A5,A6) of subsets of the set 
{a, b, c, d, e, J} by 

Al = {a,b,c}, A2 = {b,c}, A3 = {b,c}, 
A4 = {b,c}, A5 = {c}, A6 = {a,b,c,d}. 

We have 

hence, 
IA2 U A3 U A4 U A51 + 6 - 4 = 2 + 6 - 4 = 4. 

Thus, with n = 6 and k = 4, we see by Corollary 9.2.4 that at most four of the sets A 
can be chosen so that they have an SDR. Since (AI, A2, A5, A 6) has (a, b, c, d) as all 
SDR, it follows that 4 is the largest number of sets with an SDR. In terms of marriage. 
4 is the largest number of gentlemen that can marry if each gentleman is to marry a 
compatible woman. 0 

9.3 Stable Marriages 

In this section8 we consider a variation of the marriage problem discussed in th(' 
previous section. 

8This section is partly based on the article "College Admissions and the Stability of Marriage" 
by D. Gale and L. S. Shapely, American Mathematical Monthly, 69 (1962), 9-15. A comprehensiVf' 
treatment of the questions considered here can be found in the book The Stable Marriage Problem: 
Structure and Algorithms, by D. Gusfield and R. W. Irving, The MIT Press, Cambridge (1989). 
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There are n women and n men in a community. Each woman ranks each man in 
accordance with her preference for that man as a spouse. No ties are allowed, so that 
if a woman is indifferent between two men, we nonetheless require that she express 
some preference. The preferences are to be purely ordinal, and thus each woman ranks 
the men in the order 1,2, ... , n. Similarly, each man r,anks the women in the order 
1,2, ... , n. There are n! ways in which the women and men can be paired so that a 
complete marriage takes place. We say that a complete marriage is unstable, provided 
that there exist two women A and B and two men a and b such that 

(1) A and a get married; 

(2) Band b get married; 

(3) A prefers (i.e., ranks higher) b to a; 

(4) b prefers A to B. 

Thus, in an uns.table complete marriage, A and b could act independently of the 
others and run off with each other, since both would regard their new partner as more 
preferable than their current spouse. Thus, the complete marriage is "unstable" in the 
sense that it can be upset by a man and a woman acting together in a manner that 
Is beneficial to both. A complete marriage is called stable, provided it is not unstable. 
The question that arises first is, Does there always exist a stable, complete marriage? 

The mathematical model we use for this problem is the preferential ranking matrix. 
This matrix is an n-by-n array of n rows, one for each of the women WI, W2, . .. , W n , 

and n columns, one for each of the n men ml, m2, . .. , m n . In the position at the 
Intersection of row i and column j, we place the pair p, q of numbers representing, 
respectively, the ranking of mj by Wi and the ranking of Wi by mj. A complete 
marriage corresponds to a set of n positions of the matrix that includes exactly one 
position from each row and one position from each column.9 

Example. Let n = 2, and let the preferential ranking matrix be 

ml m2 

[ 21,2 21,2]. 
,1 ,1 

Thus, for instance, the entry 1,2 in the first row and first column means that WI has 
put ml first on her list and ml has put WI second on his list. There are two possible 
complete marriages: 

9The astute reader has no doubt noticed that a complete marriage corresponds to n nonattacking 
rooks, where we treat the n-by-n matrix as an n-by-n board. 
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The first is readily seen to be stable. The second is unstable since W2 prefers m2 to 
her spouse ml, and similarly m2 prefers W2 to his spouse WI. 0 

Example. Let n = 3, and let the preferential ranking matrix be 

[ 
1,3 2,2 3,11 
3,1 1,3 2,2 . 
2,2 3,1 1,3 

There are 3! = 6 possible complete marriages. One is 

(9.5) 

Since each woman gets her first choice, the complete marriage is stable, even though 
each man gets his last choice. Another stable complete marriage is obtained by giving 
each man his first choice. But note that, in general, there may not be a complete 
marriage in which every man (or every woman) gets first choice. For example, this 
happens when all the women have the same first choice and all the men have the same 
first choice. 0 

We now show that a stable complete marriage always exists and, in doing so, obtain 
an algorithm for determining a stable complete marriage. Thus, complete chaos can 
be avoided! 

Theorem 9.3.1 For each preferential ranking matrix, there exists a stable complete 
marriage. 

Proof. We define an algorithm, the deferred acceptance algorithm,lO for determining 
a complete marriage: 

Deferred Acceptance Algorithm 

Begin with every woman marked as rejected. 

While there exists a rejected woman, do the following: 

(1) Each woman marked as rejected chooses the man whom she ranks highest among 
all those men who have not yet rejected her. 

(2) Each man picks out the woman whom he ranks highest among all those women 
who have chosen him and whom he has not yet rejected, defers decision on her 
(and removes her rejection status), and now rejects the others. 

10 Also called the Gale-Shapley algorithm. 
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Thus, during the execution of the algorithm,l1 the women propose to the men, and 
some men and some women become engaged, but the men are able to break engage­
ments if they receive a better offer. Once a man becomes engaged, he remains engaged 
throughout the execution of the algorithm, but his fiancee may change; in his eyes, a 
change is always an improvement. A woman, however, may be engaged and disengaged 
several times during the execution of the algorithm; however, each new engagement re­
sults in a less desirable partner for her. It follows from the description of the algorithm 
that, as soon as there are no rejected women, then each man is engaged to exactly 
one woman, and since there are as many men as women, each woman is engaged to 
exactly one man. We now pair each man with the woman to whom he is engaged and 
obtain a complete marriage. We now show that this marriage is stable. 

Consider women A and B and men a and b such that A is paired with a and B 
is paired with b, but A prefers b to a. We show that b cannot prefer A to B. Since 
A prefers b to a, during some stage of the algorithm A chose b, but A was rejected 
by b for some woman he ranked higher. But the woman b eventually gets paired with 
is at least as high on his list as any woman that he rejected during the course of the 
algorithm. Since A was rejected by b, b must prefer B to A. Thus, there is no unstable 
pair, and this complete marriage is stable. 0 

Example. We apply the deferred acceptance algorithm to the preferential ranking 
matrix in (9.5), designating the women as A, B, C, respectively, and the men as a, b, c, 
respectively.12 In (1), A chooses a, B chooses b, and C chooses c. There are no 
rejections, the algorithm halts, and A marries a, B marries b, C marries c, and, 
hopefully, they live happily ever after. 0 

Example. We apply the deferred acceptance algorithm to the preferential ranking 
matrix 

a b c d 
A 

r 

1,2 2, 1 3,2 
4,1 1 B 2,4 1,2 3,1 4,2 

C 2, 1 3,3 4,3 1,4 
D 1,3 4,4 3,4 2,3 

(9.6) 

The results of the algorithm are as follows: 

(1) A chooses a, B chooses b, C chooses d, D chooses a; a rejects D. 

(2) D chooses d; d rejects C. 

(3) C chooses a; a rejects A. 

(4) A chooses b; b rejects B. 

llNote that we have ;eversed the traditional roles of men and women in which men are the suitors. 
12The BIG guys versus the little guys. 
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(5) B chooses a; a rejects B. 

(6) B chooses c. 

In (vi), there are no rejections, and 

A <-> b, B <-> c, C <-> a, D <-> d 

is a stable complete marriage. o 

If, in the deferred acceptance algorithm, we interchange the roles of the women and 
men and have the men choose women according to their rank preferences, we obtain 
a stable complete marriage which may, but need not, differ from the one obtained by 
having the women choose men. 

Example. We apply the deferred acceptance algorithm to the preferential ranking 
matrix in (9.6), where the men choose the women. The results are as follows: 

(1) a chooses C, b chooses A, c chooses B, d chooses A; A rejects d. 

(2) d chooses B; B rejects d. 

(3) d chooses D. 

The complete marriage 

a <-> C, b <--> A, c <-> B, d <--> D 

is stable. This is the same complete marriage obtained by applying the algorithm the 
other way around. 0 

Example. We apply the deferred acceptance algorithm to the preferential ranking 
matrix in (9.5), where the men choose the women. The results are as follows: 

(1) a chooses B, b chooses C, c chooses A. 

Since there are no rejections, the stable complete marriage obtained is 

a <-> B, b <-> C, c <-> A. 

This is different from the complete marriage obtained by applying the algorithm the 
other way around. 0 

A stable complete marriage is called optimal for a woman, provided that a woman 
gets as a spouse a man whom she ranks at least as high as the spouse she obtains 
in every other stable complete marriage. In other words, there is no stable complete 
marriage in which the woman gets a spouse who is higher on her list. A stable completp 
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maniage is called women-optimal provided that it is optimal for each woman. In a 
similar way, we define a men-optimal stable complete marriage. It is not obvious that 
there exist women-optimal and men-optimal stable complete marriages. In fact, it is 
not even obvious that, if each woman is independently given the best partner that she 
has in all the stable complete marriages, then this results in a pairing of the women 
and the men (it is conceivable that two women might end up with the same man in 
this way). Clearly, there can be only one women-optimal complete marriage and only 
one men-optimal complete marriage. 

Theorem 9.3.2 The stable complete marriage obtained from the deferred acceptance 
algorithm, with the women choosing the men, is women-optimal. If the men choose 
the women in the deferred acceptance algorithm, the resulting complete marriage is 
men-optimal. 

Proof. A man M is called feasible for a woman W, provided that there is some stable 
complete marriage in which M is W's spouse. We shall prove by induction that the 
complete marriage obtained by applying the deferred acceptance algorithm has the 
property that the men who reject a particular woman are not feasible for that woman. 
Because of the nature of the algorithm, this implies that each woman obtains as a 
spouse the man she ranks highest among all the men that are feasible for her, and 
hence the complete marriage is women-optimal. 

The induction is on the number of rounds of the algorithm. To start the induction, 
we show that, at the end of the first round, no woman has been rejected by a man 
that is feasible for her. Suppose that both woman A and woman B choose man a, and 
a rejects A in favor of B. Then any complete marriage in which A is paired with a 
is not stable because a prefers Band B prefers a to whichever man she is eventually 
paired with. 

We now proceed by induction and assume that at the end of some round k 2: 1, 
no woman has been rejected by a man who is feasible for her. Suppose that at the 
end of the (k + l)st round, woman A is rejected by man a in favor of woman B. 
Then B prefers a over all those men that have not yet rejected her. By the induction 
assumption, none of the men who have rejected B in the first k rounds is feasible for 
B, and so there is no stable complete marriage in which B is paired with one of them. 
Thus, in any stable marriage, B is paired with a man who is no higher on her list than 
a is. 

Now suppose that there is a stable complete marriage in which A is paired with a. 
Then a prefers B to A and, by the last remark, B prefers a to whomever she is paired 
with. This contradicts the fact that the complete marriage is stable. The inductive 
step is now complete, and we conclude that the stable complete marriage obtained 
from the deferred acceptance algorithm is optimal for the women. 0 

We now show that in the women-optimal complete marriage, each man has the 
worst partner he can have in any stable complete marriage. 
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Corollary 9.3.3 In the women-optimal stable complete marriage, each man is paired 
with the woman he ranks lowest among all the partners that are possible for him in a 
stable complete marriage. 

Proof. Let man a be paired with woman A in the women-optimal stable complete 
marriage. By Theorem 9.3.2, A prefers a to all other men that are possible for her in 
a stable complete marriage. Suppose there is a stable complete marriage in which a 
is paired with woman B, where a ranks B lower than A. In this stable marriage, A is 
paired with some man b different from a whom she therefore ranks lower than a. But 
then A prefers a, and a prefers A, and this complete marriage is not stable contrary 
to assumption. Hence, there is no stable complete marriage in which a gets a worse 
partner than A. 0 

Suppose the men-optimal and women-optimal stable complete marriages are iden­
tical. Then, by Corollary 9.3.3, in the woman-optimal complete marriage, each man 
gets both his best and worst partner taken over all stable complete marriages. (A 
similar conclusion holds for the women.) It thus follows in this case that there is 
exactly one stable complete marriage. Of course, the converse holds as well: If there is 
only one stable complete marriage, then the men-optimal and women-optimal stable 
complete marriages are identical. 

The deferred acceptance algorithm has been in use since 1952 to match medical 
residents in the United States to hospitals. 13 We can think of the hospitals as being 
the women and the residents as being the men. But now, since a hospital generally 
has places for several residents, polyandrous marriages (in which a woman can haVE' 
several spouses) are allowed. 

We conclude this section with a discussion of a similar problem for which the 
existence of a stable marriage is no longer guaranteed. 

Example. Suppose an even number 2n of girls wish to pair up as roommates. Each 
girl ranks the other girls in the order 1, 2, ... , 2n -1 of preference. A complete marriage 
in this situation is a pairing of the girls into n pairs. A complete marriage is unstable, 
provided there exist two girls who are not roommates such that each of the girls prefers 
the other to her current roommate. A complete marriage is stable provided it is not 
unstable. Does there always exist a stable complete marriage? 

Consider the case of four girls, A, B, C, D, where A ranks B first, B ranks C first, 
C ranks A first, and each of A, B, and Cranks D last. Then, irrespective of thl' 
other rankings, there is no stable complete marriage as the following argument shows. 
Suppose A and D are roommates. Then Band C are also roommates. But C prefers 
A to B, and since A ranks D last, A prefers C to D. Thus, this complete marriage is 
not stable. A similar conclusion holds if Band D are roommates or if C and D arp 
roommates. Since D has a roommate, there is no stable complete marriage. [l 

13It can also be used to match students to colleges, and so on. 
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9.4 Exercises 

1. Consider the chessboard B with forbidden positions shown in Figure 9.4. Con­
struct the rook family A = (AI, A2, A3, A4, A5, A6) of subsets of {l, 2, 3, 4, 5, 6} 
of this board. Find six positions for six nonattacking rooks on B and the corre­
sponding SDR of A. 

x x 
x x 
x x 
x x x x x 
x x x 

x x 

Figure 9.4 

2. Construct the domino family A of subsets of the black squares associated with 
the white squares of the board B in Figure 9.4. (Consider the square in the upper 
left corner to be white.) Determine a tiling of this board and the associated SDR 
of A. 

3. Give an example of a family A of sets that is not the domino family of any board. 

4. Consider an m-by-n chessboard in which both m and n are odd. The board has 
one more square of one color, say, black, than of white. Show that, if exactly 
one black square is forbidden on the board, the resulting board has a tiling with 
dominoes. 

5. Consider an m-by-n chessboard, where at least one of m and n is even. The 
board has an equal number of white and black squares. Show that if m and n 
are at least 2 and if exactly one white and exactly one black square are forbidden, 
the resulting board has a tiling with dominoes. 

6. A corporation has seven available positions YI, Y2, ... , Y7 and there are ten ap­
plicants Xl, X2, . .. , XIO. The set of positions each applicant is qualified for is 
given, respectively, by {YI, Y2, Y6}, {Y2, Y6, Y7}, {Y3, Y4}, {Yl, Y5}, {Y6, Y7}, {Y3}, 
{Y2, Y3}, {YI, Y3}, {yd, {Y5}. Determine the largest number of positions that 
can be filled by the qualified applicants and justify your answer. 

Al {a,b,c}, A2 = {a,b,c,d,e}, A3 = {a,b}, 

A4 {b,c}, A5 = {a}, A6 = {a,c,e}. 
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Does the family A have an SDR? If not, what is the largest number of sets in 
the family with an SDR? 

Al {1,2}, A2 = {2, 3}, A3 = {3, 4}, 

A4 {4,5}, A5 = {5,6}, A6 = {6,1}. 

Determine the number of different SDRs that A has. Generalize to n sets. 

9. Let A = (AI, A2 , . .. , An) be a family of sets with an SDR. Let x be an element 
of AI. Prove that there is an SDR containing x, but show by example that it 
may not be possible to find an SDR in which x represents AI. 

10. Suppose A = (AI, A2 , . .. , An) is a family of sets that "more than satisfies" the 
marriage condition. More precisely, suppose that 

for each k = 1,2, ... , n and each choice of k distinct indices iI, i2, ... , ik. Let x 
be an element of A l . Prove that A has an SDR in which x represents A l . 

11. Let n > 1, and let A = (A I ,A2 , •.• ,An) be the family of subsets of {1,2, ... ,n}, 
where 

A i ={1,2, ... ,n}-{i}, (i = 1,2, ... ,n). 

Prove that A has an SDR and that the number of SDRs is the nth derangement 
number Dn. 

12. Consider a board with forbidden positions which has the property that, if a 
square is forbidden, so is every square to its right in its row and every square 
below it in its column. Prove that the chessboard has a tiling by dominoes if 
and only if the number of allowable white squares equals the number of allowable 
black squares. 

13. * Let A be a matrix with n columns, with integer entries taken from the set 
S = {I, 2, ... , k}. Assume that each integer i in S occurs exactly nT"i times ill 
A, where T"i is an integer. Prove that it is possible to permute the entries in each 
row of A to obtain a matrix B in which each integer i in S appears T"i times ill 
each column. 14 

14E. Kramer, S. Magliveras, T. van Trung, and Q. WU, Some Perpendicular Arrays for Arbitrary 
Large t, Discrete Math., 96 (1991), 101-110. 
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14. Let .A = (AI, A2, ... , Am) be a family of subsets of a set Y = {YI, Y2,···, Yn}. 
Suppose that there is a positive integer p such that each set of A contains at 
least p elements, and each element in Y is contained in at most p sets of A. By 
counting in two different ways, prove that n ~ m. 

15. Let p be a positive integer, and let A = (AI' A2, .. . , An) be a family of n subsets 
of the set Y = {YI, Y2, .. . , Yn} of n elements. Suppose that each set Ai of A 
contains exactly p elements of Y, and each element Yj of Y is contained in 
exactly p sets of A. Prove that A has an SDR. Reformulate this problem in 
terms of non attacking rooks on a board with forbidden positions. 

16. Find a 2-by-2 preferential ranking matrix for which both complete marriages are 
stable. 

17. Consider a preferential ranking matrix in which woman A ranks man a first, and 
man a ranks A first. Show that, in every stable marriage, A is paired with a. 

18. Consider the preferential ranking matrix 

l,n 2,n -1 3,n- 2 n,1 
n,l 1,n 2,n - 1 n -1,2 

n -1,2 n,1 1,n n - 2,3 

3,n - 2 4,n -3 5,n - 4 2,n -1 
2,n -1 3,n - 2 4,n - 3 l,n 

Prove that, for each k = 1,2, ... , n, the complete marriage in which each woman 
gets her kth choice is stable. 

19. Use the deferred acceptance algorithm to obtain both the women-optimal and 
men-optimal stable complete marriages for the preferential ranking matrix 

A 
B 
C 
D 

a 

[ 

1,3 
1,4 
2,2 
4,1 

b 
2,3 
4,1 
1,4 
2,2 

c d 
3,2 4,3] 
3,3 2,2 
3,4 4,1 
3,1 1,4 

Conclude that, for the given preferential ranking matrix, there is only one stable 
complete marriage. 

20. Prove that in every application of the deferred acceptance algorithm with n 
women and n men, there are at most n 2 - n + 1 proposals. 

21. * Extend the deferred acceptance algorithm to the case in which there are more 
men than women. In such a case, not all of the men will get partners. 



340 CHAPTER 9. SYSTEMS OF DISTINCT REPRESENTATIVES 

22. Show, by using Exercise 19, that it is possible that in no stable complete marriage 
does any person get his or her first choice. 

23. Apply the deferred acceptance algorithm to obtain a stable complete marriage 
for the preferential ranking matrix 

A 
B 
C 
D 

a 

r 
1,3 
1,4 
3, 1 
2,2 

b 
2,2 
2,3 
1,4 
3,1 

c d 
3, 1 

4'31 3,2 4,4 
2,3 4,2 
1,4 4, 1 

24. Consider an n-by-n board in which there is a nonnegative number aij in the 
square in row i and column j, (1 ::; i,j ::; n). Assume that the sum of the 
numbers in each row and in each column equals 1. Prove that it is possible 
to place n nonattacking rooks on the board at positions occupied by positive 
numbers. 

25. Apply the deferred-acceptance algorithm to obtain a stable marriage for the 
preferential ranking matrix 

1,4 2,3 3,6 4,2 5,5 6, 1 
3,1 5,2 6,5 2,6 1,3 4,4 
5,5 3,6 6, 1 4,4 2,2 1,3 
6,6 5,5 4,4 3,3 2,1 1,2 
1,3 3,1 5,2 2,5 4,4 6,6 
4,2 5,4 6,3 1,1 2,6 3,4 

where the rows correspond to A,B,C,D,E,F and the columns correspond to 
a,b,c,d,d,j. 



Chapter 10 

Combinatorial Designs 

A combinatorial design, or simply a design, is an arrangement of the objects of a set 
into subsets satisfying certain prescribed properties. This is a very general definition 
and includes a vast amount of combinatorial theory. Many of the examples introduced 
in Chapter 1 can be viewed as designs: (1) perfect covers by dominoes of boards with 
forbidden positions, where we arrange the allowed squares into pairs so that each pair 
can be covered by one domino; (2) magic squares, where we arrange the integers from 
1 to n2 in an n-by-n array so that certain sums are identical; and (3) Latin squares, 
where we arrange the integers from 1 to n in an n-by-n array so that each integer 
occurs once in each row and once in each column. We shall treat Latin squares and 
the notion of orthogonality, briefly introduced in Chapter 1, more thoroughly in this 
chapter. 

The area of combinatorial designs is highly developed, yet many interesting and 
fundamental questions remain unanswered. Many of the methods for constructing 
designs rely on the algebraic structure called a finite field and more general systems 
of arithmetic. In Section 1 we give a brief introduction to these "finite arithmetics," 
concentrating mainly on modular arithmetic. Our discussion will not be comprehensive 
but should be sufficient to enable us to do arithmetic comfortably in these systems. 

10.1 Modular Arithmetic 

Let Z denote the set (If integers 

{ ... , -2, -1: 0,1,2, ... }, 

and let + and x denote ordinary addition and multiplication of integers. The reason 
for being so cautious in pointing out the usual notations for addition and multiplication 
is that we are going to introduce new additions and new multiplications on certain 
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subsets of the set Z of integers, and we don't want the reader to confuse them with 
ordinary addition and multiplication. 

Let n be a positive integer with n ;?: 2, and let 

Zn={O,I, ... ,n-I} 

be the set of nonnegative integers that are less than n. We can think of the integers 
in Zn as the possible remainders when any integer is divided by n: 

If m is an integer, then there exist unique integers q (the quotient) and r 
(the remainder) such that 

m = q x n + r, 0::; r ::; n - 1. 

With this in mind, we define an addition, denoted EB, and a multiplication, denoted 
181, on Zn as follows: 

For any two integers a and b in Zn, a EB b is the (unique) remainder when 
the ordinary sum a + b is divided by n, and a 181 b is the (unique) remainder 
when the ordinary product a x b is divided by n. 

This addition and multiplication depend on the chosen integer n, and we should be 
writing something like EBn and ®n, but such notation gets a little cumbersome.l So we 
just caution the reader that EB and 181 depend on n, and we call them addition mod n 
and multiplication mod n, and with this addition and multiplication we get the system 
of integers mod n.2 We usually denote the arithmetic system of the integers mod n 
with the same symbol Zn that we use for its set of elements. 

Example. The simplest case is n = 2. We have Z2 = {O, I}, and addition and 
multiplication mod 2 are given in the following tables: 

EB 0 1 
o 0 1 
1 1 0 

181 0 1 
o 0 0 
1 0 1 

Notice that mod 2 arithmetic is just like ordinary arithmetic except that 1 EB 1 = O. 
This is because 1 + 1 = 2 and subtracting 2 lands us back at 0 in Z2. 0 

'Shortly, after the reader has gotten familiar with these new additions and multiplications, we shall 
replace the notations Ell and 0 by the ordinary notations + and x and preface our calculations with 
the statement that they are being done mod n. 

2 Mod is short for modulo, which means with respect to a modulus (a quantity, which in our case is 
the quantity n). For instance, to compute a 0 b, we perform the usual multiplication a x b and then 
subtract enough multiples of n from a x b in order to get an integer in Zn. The latter is sometimes 
referred to as "modding out" n. 
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Example. The addition and multiplication tables for the integers mod 3 are as follows: 

EB 0 1 2 ® 0 1 2 
0 0 1 2 0 0 0 0 
1 1 2 0 1 0 1 2 
2 2 0 1 2 0 2 1 

In particular, 2 ® 2 = 1 since 2 x 2 = 4 and 4 = 1 x 3 + l. 0 

Example. Some instances of addition and multiplication in the system of integers 
modulo 6 are 

4 EB 5 = 3, 
2 EB 3 = 5, 
2 ® 2 = 4, 
3®5 = 3, 
3®2 = 0, 
5®5=l. 

o 

As these examples indicate, sometimes addition or multiplication mod n is like 
ordinary addition or multiplication (this happens when the ordinary result is an integer 
in Zn). Other times, addition or multiplication modulo n is quite different from 
ordinary addition and multiplication, and the results can seem quite odd. For instance, 
as displayed in the preceding example, in the integers mod 6 we have 5 ® 5 = 1, which 
suggests that the reciprocal of 5 is itself; that is, the number which, when multiplied 
by 5, gives 1, is 5 itself! We also have 3 ® 2 = 0 in the integers mod 6, which should 
suggest caution, since, in ordinary multiplication, nonzero numbers never multiply to 
zero. 

Before proceeding, we recall some basic notions of arithmetic and algebra as they 
relate to the integers mod n. First, we observe3 that addition and multiplication mod 
n satisfy the usual laws of commutativity, associativity, and distributivity. An additive 
inverse of an integer a in Zn is an integer b in Zn such that a E& b = O. There is an 
obvious candidate for the additive inverse for a: If a = 0, then it's 0; if a =I- 0, then 
n - a is between 1 and n - 1, and n - a is an additive inverse of a, since 

a + (n- a) = n = 1 x n + 0 implying a EB (n - a) = O. 

In all cases, the additive inverse is uniquely determined. Following usual conventions, 
the additive inverse of a is denoted by -a, but keep in mind that -a denotes4 one 

3 Actually, it's more than an observation, but it is elementary, if not tedious, to check that these 
properties hold. Implicit in the word observation is that we don't want to bother to check these 
properties. A student who has never done this before probably should check at least some of them. 

4If we were to follow our defined notation, we should probably be denoting the additive inverse of 
a by Sa 
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of the integers in {O, 1, 2 ... ,n - I}. The fact that all integers in Zn have additive 
inverses means that we can always subtract in Zn, since subtracting b from a is the 
same as adding -b to a: a e b = a El1 (-b). 

A multiplicative inverse of an integer a in Zn is an integer b in Zn such that a®b = 1. 
In contrast to additive inverses, there is no obvious candidate for the multiplicative 
inverse of a. In fact, it should come as no surprise that some nonzero a's may not 
have multiplicative inverses. In the system Z of integers, the integer 2 does not have 
a multiplicative inverse since there is no integer b such that 2 x b = 1.5 Indeed, in 
Z the only numbers that have multiplicative inverses are 1 and -1. Following usual 
conventions, we denote a multiplicative inverse of an integer a in Zn by a-I, if there 
is one. 

Example. In the integers modulo 10, the additive inverses are as follows: 

-0=0 -1=9 -2=8 -3=7 -4=6 
-5 = 5 -9 = 1 -8 = 2 -7 = 3 -6 = 4 

Note that we have the unusual circumstance whereby -5 = 5, but remember that -5 
denotes the integer in ZlO which, when added (mod 10) to 5, gives 0, and 5 does have 
this property: 5 El1 5 = 0. Notice also that, if -a = b, then -b = a; put another way 
-(-a) = a. 

By simply checking all possibilities, we can see that the situation with multiplica­
tive inverses in ZlO is the following: 

1-1 = 1 
3-1 = 7 
7-1 = 3 
9-1 = 9 

(the multiplicative inverse of 1 is always 1) 
(3®7=1) 
(7®3=1) 
(9 ® 9 = 1). 

None of 0,2,4,5,6, and 8 has a multiplicative inverse in ZlO. We thus see that four 
of the integers in ZlO have multiplicative inverses and six do not. 0 

In general, integers in Zn mayor may not have multiplicative inverses. Of course, ° never has a multiplicative inverse since ° x b = ° for all b in Zn. Theorem 10.1.2 
characterizes those integers in Zn which have multiplicative inverses and, when thiH 
characterizing condition is satisfied, its proof points to a method for finding a multi­
plicative inverse. This method relies on the next simple algorithm for computing thl' 
greatest common divisor (GCD) of two positive integers a and b. 

Algorithm to compute the GCD of a and b 

Set A = a and B = b. 
While A x B 1= 0, do the following: 

50f course, 2 has a multiplicative inverse in the system of rational numbers, namely 1/2, but 1/< 
is not an integer. 
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If A;::: B, then replace A by A-B. 
Else, replace B by B - A. 

Set QCD = B. 

345 

In words, we subtract the smaller of the current A and B from the larger and 
continue until one of A and B is 0 (it will be A because, in the case of a tie, we 
subtract B from A). We then let QCD equal the terminal value of B. We prove in the 
next lemma that the algorithm terminates and computes the QCD of a and b correctly. 

Lemma 10.1.1 The preceding algorithm terminates and computes the QCD of a and 
b correctly. 

Proof. We first observe that the algorithm does terminate with the value of A equal 
to O. This is so since A and B are always nonnegative integers and at each step one 
of them decreases. Since we subtract B from A when A = B, A achieves the value 0 
before B does. We next observe that, given two positive integers m and n with m ;::: n, 
we have 

QCD{m,n} = QCD{m - n,n}. 

This is because any common divisor of m and n is also a common divisor of m - nand 
n (if p divides both m and n, then p divides their difference m - n); and, conversely, 
any common divisor of m - nand n is also a common divisor of m and n (if p divides 
both m - nand n, then p divides their sum (m - n) + n = m). Hence, it follows 
that throughout the algorithm, even though the values of A and B are changing, their 
QCD is a constant d. Since initially A = a and B = b, we see that d is the QCD of 
a and b. At the termination of the algorithm, we have A = 0 and B > O. Since the 
QCD of two integers, one of which is 0 and one of which is positive, is the positive 
one,'it'follows that upon termination the QCD of a and b is the value of B. 0 

The QCD algorithm is a remarkably simple algorithm for computing the QCD of 
two nonnegative integers a and b and entails nothing more than repeated subtraction. 
As illustrated in the next example, it is a consequence of this algorithm that the GCD, 
d, of a and b can be written as a linear combination of a and b with integml coefficients: 
integers x and y exist such that 

d = a x x + b x y. 

Example. Compute the QCD of 48 and 126. 

We apply the algorithm and display the results in tabular form: 
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A B 
48 126 
48 78 
48 30 
18 30 
18 12 
6 12 
6 6 
0 6 

We conclude that the GeD of 48 and 126 is the terminal value d = 6 of B. 
If, in applying the algorithm to compute the GeD of two positive integers a and 

b, we subtract A several times consecutively from B or B several times consecutively 
from A, as just occurred, then we can combine these consecutive steps and treat them 
as a division.6 When using the algorithm to compute the GeD by hand, it is generally 
more efficient to apply the algorithm in this way. The results for computing the GeD 
of 48 and 126 are displayed in the following table. 

A B 
48 126 126 = 2 x 48 + 30 
48 30 48 = 1 x 30 + 18 
30 18 30 = 1 x 18 + 12 
12 18 18 = 1 x 12 + 6 
12 6 12 = 2 x 6 + 0 
0 6 d=6 

The last nonzero remainder in these divisions is the GeD d = 6 of 48 and 126. 
We now use the equations in the preceding table to write 6 as a linear combination 

of 48 and 126: 

6 = 18 - 1 x 12 
6 = 18 - 1 x (30 - 1 x 18) = 2 x 18 - 1 x 30 
6 = 2 x (48 - 1 x 30) - 1 x 30 = 2 x 48 - 3 x 30 
6 = 2 x 48 - 3 x (126 - 2 x 48) = 8 x 48 - 3 x 126. 

The final equation, 6 = 8 x 48 - 3 x 126, expresses 6 as an integral linear combination 
of 48 and 126. 0 

We next show how to determine which integers in Zn have mUltiplicative inverses. 

6Division of one positive integer by another is, after all, just successive subtraction. For example, 
when we divide 23 by 5, we get a quotient of 4 and a remainder of 3. This can be displayed as 
23 = 4 X 5 + 3, which means we can subtract four (and no more) 5s from 23 without getting a negative 
number. 
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Theorem 10.1.2 Let n be an integer with n ~ 2 and let a be a nonzero integer in 
Zn = {O, 1, ... , n - I}. Then a has a multiplicative inverse in Zn if and only if the 
ceD of a and n is 1. If a hrLS a multiplicative inverse, then it is unique. 

Proof. We first show that there can be, at most, one multiplicative inverse for an 
integer a in Zn. We shall make use of the rules for addition and multiplication mod 
n that we have already pointed out, namely, commutativity and associativity. We 
let band c be multiplicative inverses of a, and show that b = c. Thus, suppose that 
a 0 b = 1 and a 0 c = 1. Then 

c0(a0b) 
c0(a0b) 

c01 
(c0a)0b 

c 
10 b = b. 

We thus conclude that b = c, and each integer a in Zn has, at most, one multiplicative 
inverse. 

We next show that, if the GCD of a and n is not 1, then a does not have a 
multiplicative inverse. Let m > 1 be the GCD of a and n. Then n/m is a nonzero 
integer in Zn, and since a x (n/m) is a multiple of n (because there is a factor of m 
in a), we have 

a 0 (n/m) = O. 

Suppose there is a multiplicative inverse a-1 . Then, using the associative law again,7 
we see that 

a-1 0 (a 0 (n/m)) 
a- 1 0 (a 0 (n/m)) 

a- 1 00 
(a- 1 0 a) 0 (n/m) 

o 
10n/m = n/m. 

Hence, we have n/m = 0, which is a contradiction since 1 ::; n/m < n. Therefore, a 
does not have a multiplicative inverse. 

We lastly suppose that the GCD of a and n is 1 and show that a has a multiplicative 
inverse. It is a consequence of the GCD algorithm that there exist integers x and y in 
Z such that 

axx+nxy=1. (10.1 ) 

The integer x cannot be a multiple of n, for otherwise equation (10.1) would imply 
that 1 is a multiple of n, contradicting our assumption that n ~ 2. Therefore, x has 
a nonzero remainder when divided by n. That is, there exist integers q and r with 
1 ::; r ::; n - 1 such that 

x = q x n + r. 
Substituting into (10.1), we get 

a x (q x n + r) + n x y = 1, 

7For those students who might have thought that the associative law of arithmetic was not of much 
consequence and maybe even a nuisance, we now have seen two important applications of it. And 
there are more to come! 
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which, upon rewriting, becomes 

a x r = 1 - (a x q + y) x n. 

Thus, a x r differs from 1 by a multiple of n, and it follows that 

aQ9r = 1, 

so r is a (and therefore the unique, by what we have already proved) multiplicative 
inverse of a in Zn. 0 

Corollary 10.1.3 Let n be a prime number. Then each nonzero integer in Zn has a 
multiplicative inverse. 

Proof. Since n is a prime number, the GeD of n and any integer a between 1 and 
n - 1, inclusively, is 1. We now apply Theorem 10.1.2 to complete the proof. 0 

It is common to call two integers whose GeD is 1 relatively prime. Thus, by 
Theorem 10.1.2, the number of integers in Zn that have multiplicative inverses equals 
the number of integers between 1 and n - 1 that are relatively prime to n. 

Applying the algorithm for computing the GeD of two numbers to the nonzero 
number a in Zn and n, we obtain an algorithm for determining whether a has a 
multiplicative inverse in Zn. By Theorem 10.1.2, a has a multiplicative inverse if and 
only if this GeD equals 1. As in the proof of Theorem 10.1.2, we can use the results of 
this algorithm to determine the multiplicative inverse of a when it exists. We illustrate 
this technique in the next example. 

Example. Determine whether 11 has a multiplicative inverse in Z30, and, if so, 
calculate the multiplicative inverse. 

We apply the algorithm for computing the GeD to 11 and n = 30 and display the 
results in the following table. 

A B 
30 11 30=2x11+8 
8 11 11=lx8+3 
8 3 8=2x3+2 
2 3 3=lx2+1 
2 1 2=2xl+0 
0 1 d=1 

Thus, the GeD of 11 and 30 is d = 1, and by Theorem 10.1.2, 11 has a multiplica­
tive inverse in Z30' We use the equations in the preceding table to obtain an equation 
of the form (10.1) in the proof of Theorem 10.1.2: 

1=3-lx2 
1 = 3 - 1 x (8 - 2 x 3) = 3 x 3 - 1 x 8 
1 = 3 x (11 - 1 x 8) - 1 x 8 = 3 x 11 - 4 x 8 
1 = 3 x 11 - 4 x (30 - 2 x 11) = 11 x 11- 4 x 30. 
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The final equation expressing the GCD 1 as a linear combination of 11 and 30, namely, 

1 = 11 x 11 - 4 x 30, 

tells us that, in Z30, 

1=11®11. 

Hence, 
11-1 = 11. 

Of course, now that we know this fact we can check: 11 x 11 
remainder 1 when divided by 30. 

Example. Find the multiplicative inverse of 16 in Z45' 

We display our calculations in the following table: 

A B 
45 16 45 = 2 x 16 + 13 
13 16 16 = 1 x 13 + 3 
13 3 13 = 4 x 3 + 1 
1 3 3=3xl+0 
1 0 d=1 

121, and 121 has 
o 

Note that, contrary to the rules for our algorithm to compute GCDs, we made B equal 
to O. The reason we set up the algorithm the way we did is (for a computer program) 
to know where to look for the GCD. But if we are doing the calculations by hand, we 
can make either A or B equal to 0 (and then choose the other as the GCD). 

Since the GCD is 1, we conclude that 16 has a multiplicative inverse in Z45. The 
resulting equations yield 

1 = 13 - 4 x 3 
1 = 13 - 4 x (16 - 1 x 13) = 5 x 13 - 4 x 16 
1 = 5 x (45 - 2 x 16) - 4 x 16 = 5 x 45 - 14 x 16. 

We conclude that 16-1 = -14 = 31 in Z45. o 

Let n be a prime number. By Corollary 10.1.3, each nonzero integer in Zn has a 
multiplicative inverse. This implies that, not only can we add, subtract, and multiply 
in Zn, but we can also divide by any nonzero integer in Zn: 

a -;- b = a x b-l', (b f= 0). 

In addition, multiplicative inverses imply that the following properties hold in Zn if n 
is a prime: 
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(1) (Cancellation rule 1) a ® b = 0 implies a = 0 or b = D. 

'[If a i- 0, then, multiplying by a-I, we obtain 

0= a-I ® (a ® b) = (a- I ® a) ® b = 1 ® b = b.J 

(2) (Cancellation rule 2) a ® b = a ® c, a i- 0 implies b = c. 

[We apply Cancellation rule 1 to a ® (b - c) = O.J 

(3) (Solutions of linear equations) If a i- 0, the equation 

a®x=b 

has the unique solution x = a-I ® b. 

[Multiplying the equation by a-I and using the associative law once again shows 
that the only possible solution is x = a-I ® b. Then, substituting x = a-I ® b 
into the equation, we see that 

The conclusion that we draw from this discussion is that the usual laws of arith­
metic that we are accustomed to taking for granted in the arithmetic systems of real 
numbers or rational numbers also hold for Zn, provided n is a prime number. If n is 
not a prime, then, as we have seen, many but not all of the usual laws of arithmetic 
h6ld in Zn- For example, if n has the nontrivial factorization n = a x b, (1 < a, b < n), 
then, in Zn, a ® b = 0, and neither a nor b has a multiplicative inverse. What is 
unusual about these arithmetical systems is that they have only a finite number of 
elements (in contrast to the infinite number of rational, real, and complex numbers). 

At this point, we stop using the more cumbersome notation EB and ® for addition 
and multiplication mod n and use instead + and x, respectively. 

There are other methods, however, to obtain finite arithmetical systems which 
satisfy the iaws of arithmetic that we are accustomed to. The name given to thes(' 
systems, like Zn for n a prime number, is a field. B The method is a generalization of 
that used to obtain the complex numbers from the real numbers and can be summa­
rized as follows: 

Recall that the polynomial x 2 + 1 (with real coefficients) has no root in the system 
of real numbers.9 The complex numbers are obtained from the real numbers by "ad­
joining" a root, usually denoted by i, of x2 + 1 = O. The system of complex numbers 

BThe properties that an arithmetical system must satisfy in order to be labeled a field can be found 
in most books on abstract algebra. 

9Because the square of a real number can never be the negative number -1. We hasten to point 
out that this is not one of the usual laws of arithmetic to which we have referred. For example, in Z" 
we have 22 = 4 = -1; in fact, the notion of negative number has no significance here because -1 = 4, 
-2 = 3, -3 = 2, and -4 = 1. We should not think of the additive inverse as a negative number. 
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consists of all numbers of the form a + bi, where a and b are real numbers, for which 
the usual laws of arithmetic hold and where i 2 + 1 = 0 (Le., i 2 = -1). For instance, 

(2 + 3i) x (4 + i) = 8 + 2i + 12i + 3i2 = 8 + 14i - 3 = 5 + 14i. 

This method can be used to construct fields with pk elements for every prime p and 
integer k 2: 2, starting from the field Zp. We illustrate the method by constructing 
fields with 4 and 27 elements, respectively. 

Example. Construction of a field of 4 elements. We start with Z2 and the polynomial 
x2 + x + 1 with coefficients in Z2. This polynomial has no root in Z2, since the only 
possibilities are 0 and 1 and 02 + 0 + 1 = 1 and 12 + 1 + 1 = 1. Because this polynomial 
has degree 2, we conclude that it cannot be factored in any nontrivial way. We adjoin 
a root i of this polynomiallO to Z2, getting i 2 + i + 1 = 0, or, equivalently, 

i2 = -i - 1 = i + 1. 

(Recall that in Z2, we have -1 = 1.) The elements of the resulting field are the four 
elements 

{O,l,i,l +i}, 

with addition table and multiplication tables as follows: 

+ 0 1 l+i 
0 0 1 i 1 + i 
1 1 0 l+i 

i l+i 0 1 
l+i l+i 1 0 

x 0 1 1 + i 
0 0 0 0 0 
1 0 1 1 + i 

0 i l+i 1 
1 + i 0 l+i 1 

Thus, i-I = 1 + i, since i x (1 + i) = i + i 2 = i + (1 + i) = 1. o 

Example. Construction of a field of 33 = 27 elements. We start with Z3 = {O, 1, 2}, 
the integers mod 3. We look for a polynomial of degree 3 with coefficients in Z3 that 
cannot be factored in a nontrivial way. A polynomial of degree 3 will have this property 
if and only if it has no root in Z3Y The polynomial x 3 + 2x + 1 with coefficients in 

lOWe use i as a symbol for the .root to stress the analogy with the complex numbers. It is not true 
that e = -l. 

II This is not a general rule. If a polynomial of degree 2 or 3 is factored nontrivialIy, one of the 
factors is linear and the polynomial has a root. But, for instance, a polynomial of degree 4 may be 
factorable into two polynomials of degree 2, neither of which has a root. 
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Z3 does not have a root in Z3 (we need only test the three elements 0, 1, and 2 of Z3). 
Thus, we adjoin a root i of this polynomial, getting i3 + 2i + 1 = 0 or, equivalently, 

i3 = -1 - 2i = 2 + i. 

(Recall that, in Z3, we have -1 = 2 and -2 = 1.) Now use the usual rules of 
arithmetic, but whenever an i 3 appears, replace it by 2 + i. The elements of the 
resulting field are the 27 elements 

{a + bi + ci2 : a,b and c in Z3}' 

Since there are 27 elements, it is no longer practical to write out the addition and 
multiplication tables. But we illustrate some of the arithmetic in this system as follows: 

(2 + i + 2i2) + (1 + i + i2) = (2 + 1) + (1 + l)i + (2 + 1)i2 = 0 + 2i + Oi2 = 2i; 

(1 + i)(2 + i2) 1 x 2 + i2 + 2i + i x i2 

1 + i 2 ; 

(1 + 2i2)(1 + i + 2i2) 1 + i + 2i2 + 2i2 + 2i3 + 2 X 2i4 

It is straightforward to check that 

1 + i + 2i2 + 2i2 + 2(2 + i) + (i X i3) 

1 + i + i2 + (1 + 2i) + i x (2 + i) 
1 + i + i2 + 1 + 2i + 2i + i2 

2 + 2i + 2i2 . 

o 

We conclude this section with the following remarks: For each prime p and each 
integer k 2: 2 there exists a polynomial of degree k with coefficients in Zp that does not 
have a nontrivial factorization. Thus, in the manner illustrated in the preceding two 
examples, we can construct a field with pk elements. Conversely, it can be proved that, 
if there is a field with a finite number m elements-that is, a finite system satisfyinp; 
the usual rules of arithmetic-then m = pk for some positive integer k and some prime 
number p, and it can be obtained from Zp in the manner previously described (or is 
Zp if k = 1). Thus, only for a prime power number of elements do finite fields exist. 
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10.2 Block Designs 

We begin this section with a simplified motivating example from the design of exper­
iments for statistical analysis. 

Example. Suppose there are seven varieties of a product to be tested for acceptability 
among consumers. The manufacturer plans to ask some random (or typical) consumers 
to compare the different varieties. One way to do this is for each of the consumers 
involved in the testing to do a complete test by comparing all of the seven varieties. 
However, the manufacturer, fully aware of the time required for the comparisons and 
the possible reluctance of individuals to get involved, decides to have each consumer do 
an incomplete test by comparing only some of the varieties. Thus, the manufacturer 
asks each person to compare a certain three of the varieties. To draw meaningful 
conclusions based on statistical analysis of the results, the test must have the property 
that each pair of the seven varieties is compared by exactly one person. Can such a 
testing experiment be designed? 

We label the different varieties 0, 1,2,3,4,5 and 6. 12 There are (;) = 21 pairs of the 
seven varieties. Each tester gets three varieties and thus makes (~) = 3 comparisons. 
Since each pair is to be compared exactly once, the number .of testers must equal 

21 -7 
3 - . 

Thus, in this case, the number of individuals involved in the experiment is the same 
as the number of varieties being tested. Fortunately, the preceding quotient turned 
out to be an integer, for otherwise we would have to conclude that it is impossible 
to design an experiment with the constraints as given. What we now seek is seven 
(one for each person involved in the test) subsets B 1, B2, ... , B7 of the seven varieties, 
which we shall call blocks, with the property that each pair of varieties is together in 
exactly one block. Such a collection of 7 blocks is the following: 

B1 = {a, 1, 3}, B2 = {I, 2, 4}, B3 = {2, 3, 5}, B4 = {3, 4, 6}, 

B5 = {a, 4, 5}, B6 = {I, 5, 6}, B7 = {a, 2, 6}. 

Another way to present this experimental design is given in the array that follows: 
In this array, we have .one column for each of the seven varieties and one row for each 
of the seven blocks. A 1 in row i and column j (i = 1,2, ... ,7; j = 0, 1, ... ,6) means 
that variety j belongs to block Bi, and a ° means that variety j does not belong to 
block Bi. The fact that each block contains three varieties is reflected in the table by 
the fact that each row contains three Is. The fact that each pair of varieties is together 
in one block is equivalent to the property of the table that each pair of columns has 

120f course, we are free to label the varieties in any way we choose. The reason we choose 
0,1,2,3,4,5,6 is that we can think of the varieties as the numbers in Z7, the integers mod 7. 
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Is in exactly one common row. As is evident from the table, each variety occurs in 
three blocks. This array is the incidence array of the experimental design. 

0 1 2 3 4 5 6 
Bl 1 1 0 1 0 0 0 
B2 0 1 1 0 1 0 0 
B3 0 0 1 1 0 1 0 
B4 0 0 0 1 1 0 1 

B5 1 0 0 0 1 1 0 
B6 0 1 0 0 0 1 1 

B7 1 0 1 0 0 0 1 

[1 

Before discussing more examples, we define some terms and discuss some elemen­
tary properties of designs. Let k, A, and v be positive integers with 

2 ~ k ~ v. 

Let X be any set of v elements, called varieties, and let B be a collection B l , B2, . .. ,BI! 
of k-element subsets of X called blocks. 13 Then B is a balanced block design on X, 
provided that each pair of elements of X occurs together in exactly A blocks. Thl' 
number A is called the index of the design. The foregoing assumption that k is at least 
2 is to prevent trivial solutions: If k = 1, then a block contains no pairs and A = O. 

Let B be a balanced block design. If k = v (that is, the complete set of varieties 
Occurs in each block), then the design B is called a complete block design. If k < v, 
then B is a balanced incomplete block design, or BIBD14 for short. A complete desigll 
corresponds to a testing experiment in which each individual compares each pair of 
varieties. From a combinatorial point of view, they are trivial, forming a collection of 
sets all equal to X, and we henceforth deal with incomplete designs-that is, designs 
for which k < v. 

Let B be a BIBD on X. As in the preceding example, we associate with B all 

incidence matrix or incidence array A. The array A has b rows, one corresponding 
to each of the blocks B l , B2, ... , Bb, and v columns, one corresponding to each of tlH' 
varieties Xl, X2, ... , Xv in X. The entry aij at the intersection of row i and column .i 
is 0 or 1: 

aij = 1 if Xj is in Bi , 

aij = 0 if Xj is not in Bi . 

13We do not rule out the possibility that some of the blocks may be identical, although it is mon° 
challenging to find designs all of whose blocks are different. Thus, the collection of blocks is, in general. 
a multiset of blocks. 

14BIBDs were introduced by F. Yates, Complex Experiments (with Discussion), J. Royal Statis/mll 
Society, Suppl. 2, (1935), 181-247. 
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We talk about the incidence matrix of B, even though it depends on the order in 
which we list the blocks and the order in which we list the varieties. The rows of the 
incidence matrix display the varieties contained in each of the blocks. The columns 
of the incidence matrix display the blocks containing each of the varieties. Except for 
the labeling of the varieties and of the blocks, the incidence matrix A contains full 
information about the BIBD. Since each block contains k varieties, each row of the 
incidence matrix A contains k Is. Since there are b blocks, the total number of Is iri A 
equals bk. We now show that each variety is contained in the same number of blocks; 
that is, each column of A contains the same number of Is. 

Lemma 10.2.1 In a BIBD, each variety is contained in 

A(V - 1) 
r = ---O-k-_-l-'-

blocks. 

Proof. We use the important technique of counting in two ways and then equating 
the two counts. Let Xi be anyone of the varieties, and suppose that Xi is contained 
in r blocks 

(10.2) 

Since each block contains k elements, each of these blocks contains k -1 varieties other 
than Xi. We now consider each of the v-I pairs {Xi, y}, where y is a variety different 
from Xi, and for each such pair, we count the number of blocks in which both varieties 
are contained. Each pair {Xi, y} is contained in A blocks (these blocks must be Nof 
the blocks in (10.2) since they are all the blocks containing Xi). Adding, we get 

A(v-l). 

On the other hand, each of the blocks in (10.2) contains k - 1 pairs, one element of 
which is Xi. Adding, we now get 

(k - l)r. 

Equating these two counts, we obtain 

A(V - 1) = (k - l)r. 

Hence, Xi is contained in A(V - 1)/(k - 1) blocks. This is true for each variety Xi, and 
thus each variety is contained in r == A(V - 1)/(k - 1) blocks. 0 

Corollary 10.2.2 In a BIBD, we have 

bk = vr. 
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Proof. We have already observed that counting by rows, the number of Is ·in the 
incidence matrix A of a BlED is bk. By Lemma 10.2.1, we know that each column 
of A contains r Is. Thus, counting by columns, the number of Is in A equals vr. 
Equating the two counts, we obtain bk = vr. 0 

Corollary 10.2.3 In a BIBD, we have 

A < r. 

Proof. Ill. a BlED, we have, by definition, k < V; hence, k - 1 < v-I. Using Lemma 
10.2.1, we conclude that A < r. 0 

As a consequence of Lemma 10.2.1, we now have five parameters, not all indepen­
dent, that are associated with a BlED: 

b: the number of blocks; 

V: the number of varieties; 

k: the number of varieties in each block; 

r: the number of blocks containing each variety; 

A: the number of blocks containing each pair of varieties. 

We call b, v, k, r, A the parameters of the BIBD. The parameters of the design in our 
introductory example are: b = 7, V = 7, k = 3, r = 3, and.\ = 1. 

Example. Is there a BlED with parameters b = 12, k = 4, v = 16, and r = 3 (the 
parameter>' is not specified)? 

The equation bk = vr in Corollary 10.2.2 holds, since both sides have the value 48. 
By Lemma 10.2.1, if there is such a design, its index .\ satisfies 

.\ = r(k - 1) = 3(3) = ~. 
v-I 15 15 

Since this is not an integer, there can be no such design with four of its parameters as 
given. 0 

Example. In this example, we display a design with parameters b = 12, v = 9, k = 

3, r = 4, and>' = 1. It is most convenient to define the design by its 12-by-9 incidence 
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matrix: 
1 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 1 0 0 
0 1 0 0 1 0 0 1 0 

A= 
0 0 1 0 0 1 0 0 1 
1 0 0 0 1 0 0 0 1 
0 0 1 1 0 0 0 1 0 
0 1 0 0 0 1 1 0 0 
1 0 ·0 0 0 1 0 1 0 
0 1 0 1 0 0 0 0 1 
0 0 1 0 1 0 1 0 0 

It is straightforward to check that this matrix defines a BIBD with parameters as 
given. 0 

Example. ConsIder the squares of a 4-by-4 board: 

Let the varieties be the 16 squares of the board. We define blocks as follows: For each 
given square, we take the 6 other squares that are either in its row or in its column 
(so not the given square itself).15 Therefore, each of the 16 squares on the board 
determines a block in this way. We thus have b = 16, v = 16, and k = 6. Each square 
belongs to six blocks, since each square lies in a row with three other squares and in a 
column with three more squares. Thus, we also have T = 6. But we haven't yet shown 
we have a BIBD. So let's take a pair of squares x and y. There are three possibilities: 

1. x and yare in the same row. Then x and yare together in the two blocks 
determined by the other two squares in their row. 

2. x and yare in the same column. Then x and yare together in the two blocks 
determined by the other two squares in their column. 

3. x and yare in different rows and in different columns. Then x and yare together 
in two blocks, one determined by the square at the intersection of the row of x 
and the column of y, the other determined by the intersection of the column of 
x and the row of y. The following array, where the blocks are those determined 
by the squares marked with an asterisk (*), is illustrative: 

15We can think of the varieties as a rook on the 4-by-4 board and the blocks as all the squares that 
a rook on the board can attack. 
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Ffffj 
EfEj 

Since each pair of varieties is together in two blocks, we have a BIBD with A = 2. 
o 

The basic property of designs presented in the next theorem says that, in a BIBD, 
the number of blocks must be at least as large as the number of varieties and is knowIl 
as Fisher's inequality.16 

Theorem 10.2.4 In a BIBD, b ?: v. 

Proof. We outline a linear algebraic proof for those familiar with the ideas it uses. 
Let A be the b-by-v incidence matrix of a BIBD. Since each variety is in r block~ 
and since each pair of varieties is in A blocks, the v-by-v matrix AT A, obtained by 
mUltiplying17 the transpose18 AT of A by A, has each main diagonal entry equal to ,. 
and each off-diagonal element equal to A: 

Since A < r, by Corollary 10.2.3, the matrix AT A can be shown to have a nonzer" 
determinant19 and hence is invertible. Thus, AT A has rank equal to v. Therefore;\ 
has rank at least v, and since A is a b-by-v matrix, we have b ?: v. 20 [I 

A BIBD for which equality holds in Theorem 10.2.4, that is, for which the numbpl' 
b of blocks equals the number v of varieties, is called symmetric,21 and this is shorten('( I 

l6R.A. Fisher, An Examination of the Different' Possible Solutions of a Problem in Incompl!'l.,· 
Blocks, Annals of Eugenics, 10(1940), 52-75. 

I1The product of an m-by-n matrix X with typical entry X,j and an n-by-p matrix Y with typic',,1 
entry y,k is the m-by-p matrix Z whose typical entry is Zik = 2:7=1 XijYjk. 

l8The transpose of an m-by-n matrix X is the n-by-m matrix XT obtained by letting the rows .. I 
X "become" the columns of XT and the columns of X "become" the rows of XT If, as the maIn, 
A in the proof of the theorem, the entries of X are Os and Is, then the typical entry of XT X in row I 

and column j (by the definition of product, it is determined by column i and column j of X) equIlI" 
the number of rows in which both column i and column j have a 1. 

19The value of the determinant is (r - A)V-I (r + (v - 1»-), which is nonzero by Corollary 10.2.:1. 
20If you didn't understand this proof because you never studied elementary linear algebra, I hop,· 

you will now do so. Only then can you appreciate what an elegant and simple proof has just b""11 
shown you. 

2lThe symmetry has to do with the parameters satisfying b = v and, as shown in the next few Ii",·,. 
k = r. 
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to SBIBD. Since a BIBD satisfies bk = vr, we conclude by cancellation that, for an 
SBIBD, we also have k = r. By Lemma 10.2.1, the index A for an SBIBD is determined 
by v and k by 

A = k(k - 1) . 
v-I 

Thus, the parameters associated with an SBIBD are as follows: 

v: the number of blocks; 

v: the number of varieties; 

k: the number of varieties in each block; 

k: the number of blocks containing each variety; 

(10.3) 

A: the number of blocks containing each pair of varieties, where A is given by (10.3). 

Some of our examples have been SBIBDs. 
We now discuss a method for constructing SBIBDs that uses the arithmetic of the 

integers mod n. In this method, the varieties are the integers in Zn, so, to agree with 
our notation, we use v instead of n. 

Thus, let v 2: 2 be an integer, and consider the set of integers mod v: 

Zv = {O, 1,2, ... ,v - I}. 

Note that addition and multiplication in Zv are denoted by the usual symbols + and 
x. Let B = {iI, i2, ... , id be a subset of Zv consisting of k integers. For each integer 
j in Zv, we define 

B + j = {it + j, i2 + j, ... , ik + j} 

to be the subset of Zv obtained by adding mod v the integer j to each of the integers 
in B. The set B + j also contains k integers. This is because if 

ip+j=iq+j (inZv ), 

then cancelling j (by adding the additive inverse -j to both sides) we get ip = iq. The 
v sets 

B = B + 0, B + 1, ... , B + v-I 

so obtained are called the blocks developed from the block B, and B is called the starter 
block. 

Example. Let v = 7 and consider 

Z7 = {0,1,2,3,4,5,6}. 
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Now consider the starter block 

Then we have 
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B = {O, 1,3}. 

B + 0 = {O, 1, 3} 
B + 1 = {1,2,4} 
B + 2 = {2, 3, 5} 
B + 3 = {3, 4, 6} 
B + 4 = {4,5,0} 
B + 5 = {5, 6, I} 
B + 6 = {6, 0, 2}. 

(Each set in this list, other than the first, is obtained by adding 1 mod 7 to the prev.iou~ 
set. In addition, the first set B on the list can be gotten from the last by adding 1 

mod 7.) This is a BIBD, indeed, the same one in the introductory example of thi~ 
section. Since b = v, we have an SBIBD with b = v = 7, k = r = 3, and A = 1. 0 

Example. Let v = 7 as in the previous example, but now let the starter block be 

Then we have 

B = {O, 1,4}. 

B + 0 = {O, 1,4} 
B+ 1 = {1,2,5} 
B + 2 = {2, 3, 6} 
B+3={3,4,0} 
B + 4 = {4, 5, I} 
B + 5 = {5, 6, 2} 
B + 6 = {6,0,3}. 

In this case, we do not obtain a BIBD because, for instance, the varieties 1 and 2 
occur together in one block, while the varieties 1 and 5 are together in two blocks. 0 

It follows from these two examples that sometimes, but not always, the blocks 
developed from a starter block are the blocks of an SBIBD. The property that we 

need in order to obtain an SBIBD in this way is contained in the next definition. Let 
B be a subset of k integers in Zv. Then B is called a difference set mod v, provided 
that each nonzero integer in Zv occurs the same number A of times among the k( k - 1) 
differences among distinct elements of B (in both orders): 

x - y (x,y in B;x i- y). 

Since there are v-I nonzero integers in Zv, each nonzero integer in Zv must occur 

A= k(k-l) 
v-I 
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times as a difference in a difference set. 

Example. Let v = 7 and k = 3 and consider B = {O, 1, 3}. We compute the 
subtraction table for the integers in B, ignoring the O's in the diagonal positions: 

013 
o 0 6 4 
1 1 0 5 
3 3 2 0 

Examining this table, we see that the nonzero integers 1, 2, 3, 4, 5, 6 in Z7 each 
occur exactly once in the off-diagonal positions and hence exactly once as a difference. 
Hence, B is a difference set mod 7. 0 

Example. Again, let v = 7 and k = 3, but now let B = {O, 1, 4}. Computing the 
subtraction table, we now get 

014 
o 0 6 3 
1 1 0 4 
4 4 3 0 

We see that 1 and 6 each occur once as a difference, 3 and 4 each occur twice, and 2 
and 5 do not occur at all. Thus, B is not a difference set in this case. 0 

Theorem 10.2.5 Let B be a subset of k < v elements of Zv that forms a difference 
set mod v. Then the blocks developed from B as a starter block form an SBIBD with 
index 

). = k(k - 1) . 
v-I 

Proof. Since k < v, the blocks are not complete. Each block contains k elements. 
Moreover, the number of blocks is the same as the number v of varieties. Thus, it 
remains to be shown that each pair of elements of Zv is together in the same number 
of blocks. Since B is a difference set, each nonzero integer in Zv occurs as a difference 
exactly). = k(k - 1)/(v - 1) times. We show that each pair of elements of Zv is in ). 
blocks and hence). is the index of the SBIBD. 

Let p and q be distinct integers in Zv. Then p - q =I- 0, and since B is a difference 
set mod v, the equation 

x-y=p-q 

has). solutions with x and yin B. For each such solution x and y, let j = p - x. Then 

p=x+jMdq=y-x+p=y+f 

Thus, p and q are together in the block B + J for each of the). j's. Hence, p and q 
are together in ). blocks. Since 

k(k - 1) 
v(v -1). = v(v - 1) = vk(k - 1), 

v-I 
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it follows that each pair of distinct integers in Zv is together in exactly A blocks. 0 

Example. Find a difference set bf size 5 in Zl1, and use it as a starter block in order 
to construct an SBIBD: 

We show that B = {a, 2, 3, 4, 8} is a difference set with A = 2. We compute the 
subtraction table to obtain 

° 2 3 4 8 

° ° 9 8 7 3 
2 2 ° 10 9 5 
3 3 1 ° 10 6 
4 4 2 1 ° 7 
8 8 6 5 4 ° 

Examining all the off-diagonal positions, we see that each nonzero integer in Zll occurs 
twice as a difference and hence B is a difference set. Using B as a starter block, we 
obtain the following blocks for an SBIBD with parameters b = v = 11, k = r = 5, and 
A = 2: 

B+O= 
B+1 = 
B+2 = 

B+3= 
B+4= 
B+5 = 
B+6= 
B+7= 
B+8 = 
B+9= 
B+lO= 

10.3 Steiner Triple Systems 

{O,2,3,4,8} 
{1,3,4,5,9} 
{2, 4, 5, 6, 1O} 
{O,3,5,6,7} 
{1,4,6,7,8} 
{2,5,7,8,9} 
{3,6,8,9,1O} 
{O,4,7,9,1O} 
{a, 1, 5, 8, 1O} 
{a, 1,2,6, 9} 
{I, 2, 3, 7, 1O}. 

[] 

Let B be a balanced incomplete block design whose parameters are b, v, k, r, A. Sine!' 
B is incomplete, we know, by definition, that k < v; that is, the number of varieties ill 

each block is less than the total number of varieties. Suppose k = 2. Then each block 
in B contains exactly two varieties. for each pair of varieties to occur in the sam!' 
number A of blocks of B, each subset of two varieties must occur as a block exactly A 
times. Thus, for BIBDs, with k = 2, we have no choice but to take each subset of tWIJ 

varieties and write it down A times. 
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Example. A BIBD with v = 6, k = 2, and>' = 1 is given by 

{O,l} {O,2} {O,3} 
{O,4} {O,5} {1,2} 
{1,3} {1,4} {1,5} 
{2,3} {2,4} {2,5} 
{3,4} {3,5} {4,5}. 
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To get a BIBD with>' = 2, simply take each of the blocks twice. To get one with 
>. = 3, take each of the blocks three times. 0 

So BIBDs with block size 2 are trivial. The smallest (in terms of block size) 
interesting case occurs when k = 3. Balanced block designs with block size k = 3 are 
called Steiner triple systems.22 The first example given in Section 10.2 is a Steiner 
triple system. It has seven varieties and seven blocks of size 3. Also, each pair of 
varieties is contained in A = 1 block. This is the only instance of a Steiner triple 
system that forms an SBIBD-that is, one for which the number of blocks equal~ the 
number of varieties. 

Another example of a Steiner triple system is obtained by taking v = 3 varieties 
0,1, and 2 and the one block {O, 1, 2}. We thus have b = 1, and clearly each pair of 
varieties is contained in A = 1 block. This Steiner system is not an incomplete design 
since v = k = 3.23 Every other Steiner triple system is a BlBD. 

Example. The following is an example of a Steiner triple system of index A = 1 with 
nine varieties: 

{O,I,2} {3,4,5} {6,7,S} 
{O,3,6} {1,4,7} {2,5,S} 
{O,4,S} {2,3,7} {1,5,6} 
{O,5,7} {1,3,S} {2,4,6}. 

o 

In: the next theorem, we obtain some relationships that must hold among the 
parameters of a Steiner triple system. 

Theorem 10.3.1 Let B be a Steiner triple system with pammeters b, v, k = 3, r, A. 
Then 

r= 
A(V - 1) 

(10.4) 
2 

and 

b= 
AV(V - 1) 

6 
(10.5) 

22 After J. Steiner, who was one of the first to consider them: Combinatorische Aufgabe, Journal 
JUt'die reine und angewandte Mathematik, 45 (1853), 181~182. 

23We consider it as a Steiner triple system since we shall use it to construct Steiner triple systems 
that are inc<;lmplete designs. 
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If the index is A = 1, then there is a nonnegative integer n such that v = 6n + 1 or 
v = 6n +3. 

Proof. By Theorem 10.2.1, we have 

A(V - 1) 
r = -':k-_-1c-'-

for any BIBD. Since a Steiner triple system is a BIBD with k = 3, we get (10.4). For 
a BIBD, we also have, by Corollary 10.2.2, 

bk = vr. 

Substituting the value of r, as given by (10.4), and using k = 3 again, we get (10.5). 
The equations (10.4) and (10.5) tell us that, if there is a Steiner triple system of 

index A with v varieties, then A(V - 1) is even and AV(V - 1) is divisible by 6. Now 
assume that A = 1. Then v-I is even and hence v is odd, and v( v-I) is divisible by 
6. The latter implies that either v or v-I is divisible by 3. First, suppose that v is 
divisible by 3. Since v is odd, this means that v is 3 times an odd number: 

v = 3 x (2n + 1) = 6n + 3. 

Now suppose that v-I is divisible by 3. Since v is odd, v-I is even and we find that 
v-I is 3 times an even number: 

v-I = 3 x (2n) = 6n and so v = 6n + 1. 

o 

In the remainder of this section we consider only Steiner triple systems of index 
A = 1. By Theorem 10.3.1, the number of varieties in a Steiner triple system of index 
A = 1 is either v = 6n + 1 or v = 6n + 3, where n is a nonnegative integer. This raises 
the question as to whether, for all nonnegative integers n, there exist Steiner triple 
systems with v = 6n + 1 and v = 6n + 3 varieties. The case n = 0 and v = 6n + 1 
has to be eliminated, since, in that case, v = 1 and no triples are possible. For all 
other cases, it was shown by Kirkman24 that Steiner triple systems can be constructed. 
The proof is beyond the scope of this book. We shall be satisfied to give a method 
for constructing a Steiner triple system from two known (possibly the same) Steiner 
systems of smaller order. 

Theorem 10.3.2 If there are Steiner triple systems of index A = 1 with v and 111 

varieties, respectively, then there is a Steiner triple system of index A = 1 with V111 

varieties. 

24T. P. Kirkman, On a Problem in Combinations, Cambridge and Dublin Mathematics Journal, ~ 
(1847), 191-204. This question was also raised later by J. Steiner, who was unaware of Kirkman', 
work (d. footnote 22). It was only later that Kirkman's work became known, and this was long after 
the name Steiner (and not Kirkman) triple systems had become common. 
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Proof. Let B1 be a Steiner triple system of index A = 1 with the v varieties 
al, a2,· .. ,av and let B2 be a Steiner triple system of index A = 1 with the w varieties 
bl, b2 ,.··, bw . We consider a set X of vw varieties Cij, (i = 1, ... , v;j = 1, ... , w), 
which we may think of as the entries (or positions) of a v-by-w array whose rows 
correspond to ai, a2, ... ,av and whose columns correspond to b1, b2, ... , bw :25 

b1 b2 bw 

a1 

[ 'n 
C12 C1w 

1 
a2 C21 C22 C2w (10.6) 

a v Cv1 Cv2 Cvw 

We define a set B of triples of the elements of X. Let {Gir, Cjs, Ckt} be a set of three 
elements of X. Then {Cir,Cjs,Ckt} is a triple of B if and only if one of the following 
holds: 

(1) T = s = t, and {ai,aj,ad is a triple in B 1. Put another way, the 
elements Gir, Cjs, and Ckt are in the same column of the array (10.6), and 
the rows in which they lie correspond to a triple of B1• 

(2) i = j = k, and {br , bs , bd is a triple of B2 • Put another way, the 
elements Cir,Cjs, and Ckt are in the same row of the array (10.6), and the 
columns in which they lie correspond to a triple of B2 • 

(3) i,j, and k are all different and {ai,aj,ad is a triple of B 1, and T,S, 

and t are all different and {br , bSl bt} is a triple of B2• Put another way, 
the elements Cir, Cjs, and Ckt are in three different rows and three different 
columns of the array (10.6), and the rows in which they lie correspond to 
a triple of B1 and, similarly, the columns in which they lie correspond to a 
triple of B2 . 

For the rest of the proof we shall implicitly use the fact that no triple of B lies 
either in exactly two rows or exactly two columns of the array (10.6). We now show 
that this set B of triples of X defines a Steiner triple system of index A = 1. Thus, let 
Cir,Cjs be a pair of distinct elements of X. We need to show that there is exactly one 
triple of B containing both Gir and Cjs; that is, we need to show that there is exactly 
one element Ckt of X such that {Cir' Cjs, ckd is a triple of B. We consider three cases: 

Case 1: T = S and thus i i- j. Our pair of elements in this case is Cir, Cjr lying in the 
same column of (10.6). Since B1 is a Steiner triple system of index A = 1, there is a 

25We could think of Ci; as the ordered pair (a" b;) but, since we are going to be discussing unordered 
pairs and triples, it seems less confusing to invent the new symbols c,;. 
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unique triple {ai, aj, ad containing the distinct pair ai, aj. Hence, {Cir, Cjr, Ckr} is the 
unique triple of 8 containing the pair Cir, Cjr. 

Case 2: i = j and thus r =F s. Our pair of elements is now Cir, Cis lying in the same 
row of (10.6). Since 8 2 is a Steiner triple system of index ,\ = 1, there is a unique 
triple {br,bs,bd containing the distinct pair br,bs' Hence, {Cir,C;s,Cid is the ·unique 
triple of 8 containing the pair Cir, Cis. 

Case 3: i =F j and r =F s. There is a unique triple {ai, aj, ad of 8 1 containing 
the distinct pair a" aj and a unique triple {br , bs, bt } of 8 2 containing the distinct pair 
br , bs. The triple {Cir, Cjs, ckd is then the unique triple of 8 containing the pair Cir, Cjs' 

We have thus shown that 8 is a Steiner triple system of index ,\ = 1 with V'W 

varieties. 0 

Example. The simplest instance in which we may apply Theorem 10.3.2 is that 
obtained by choosing 81 and 82 to be Steiner triple systems with three varieties. The 
result should be a Steiner triple system with 3 x 3 = 9 varieties. 

Let 81 be the Steiner triple system with the three varieties al, a2, a3 and unique 
triple {a1,a2,a3}, and let 8 2 be the Steiner triple system with the three varieties 
b1,b2,b3 and unique triple {b1,b2,b3}. We consider the set X of nine varieties com­
prising the entries of the following array: 

Following the construction in the proof of Theorem 10.3.2, we obtain the following set 
of 12 triples, which constitute a Steiner triple system of index 1 with rline varieties: 

(1) The entries in each of the three rows: 

(2) The entries in each of the three columns: 

(iii) Three entries, no two from the same row or column: 26 

26Considering the array as a 3-by-3 board, these correspond to positions for three nonattackin~ 
rooks on the board. 
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If we replace Cll, C21, C31, C12, C22, C32, C13, e23, C33 by 0,1,2,3,4,5,6,7,8, respectively, 
we obtain the Steiner triple system B with nine varieties given earlier in this section: 

{O, 1, 2} 
{3,4,5} 
{6,7,8} 

{0,3,6} 
{1,4,7} 
{2,5,8} 

{0,4,8} 
{2,3,7} 
{l,5,6} 

{2,4,6} 
{1,3,8} 
{O,5,7} 

(10.7) 

o 

The columns of (10.7) partition the triples of B into parts so that each variety 
occurs in exactly one triple in each part. A Steiner triple system of index A = 1 with 
this property is called resolvable, and each part is called a resolvability class. Note 
that each resolvability class is a partition of the set of varieties into triples. The notion 
of resolvability of Steiner triple systems arose in the following problem, first posed by 
Kirkman;27 

Kirkman's schoolgirl problem: A schoolmistress takes her class of 15 girls on a daily 
walk. The girls are arranged in five rows, with three girls in each row, so that each 
girl has two companions. Is it possible to plan a walk for seven consecutive days so 
that no girl will walk with any of her classmates in a triplet more than once? 

A solution to this problem consists of 7 x 5 = 35 triples of the 15 girls, with each 
pair of girls together in exactly one triple. Moreover, it should be possible to partition 
the 35 triples into 7 groups of 5 triples each so that, in each group, each girl appears in 
exactly 1 triple. Now, the number of triples of a Steiner triple system of index A = 1 
with v = 15 varieties is 

b = v(v - 1) = 35 
6 . 

Thus, Kirkman's schoolgirl problem asks for a resolvable Steiner triple system of index 
A = 1 with v = 15 varieties. The preceding example contains a solution for the 
Kirkman's schoolgirls problem in the case of ninr girls. In this case, there are nine 
girls and arrangements for a daily walk for four days with each girl having different 
companions on all four days. 

Example. Solution of Kirkman's schoolgirl problem. What is required is a resolvable 
Steiner triple system of index A = 1 with 15 varieties. Such a Steiner system, along 
with its resolution into seven parts (one corresponding to each of the seven days), is 

27T. P. Kirkman, Note on an Unanswered Prize Question, Cambridge and Dublin Mathematics 
Journal, 5 (1850), 255--262, and Query VI, Lady's and Gentleman's Diary No. 147, 48. 
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as follows: 
{D,1,2} {D,3,4} {D,5,6} {D,7,8} 
{3,7,11} {1,7,9} {I, 8, 1O} {I, 11, 13} 
{4,9,14} {2, 12, 13} {2, 11, 14} {2,4,5} 
{5, 10, 12} {5,8,14} {3,9,13} {3, 10, 14} 
{6,8,13} {6,1O,11} {4,7,12} {6,9,12} 

{D,9,1O} {D, 11, 12} {D, 13, 14} 
{I, 12, 14} {1,3,5} {1,4,6} 
{2,3,6} {2,8,9} {2,7,1O} 
{4,8,1l} {4, 10, 13} {3,8,12} 
{5, 7, 13} {6, 7, 1O} {5, 9,11}. 

0 

A resolvable Steiner triple system of index .\ = 1 is also called a Kirkman triple 
system. Suppose B is a Kirkman triple system with v varieties. Since we must be able 
to partition the v varieties into triples, v must be divisible by 3. Hence, by Theorem 
10.3.1, in order for a Kirkman system with v varieties to exist, v must be of the form 
6n + 3. The parameters of a Kirkman system are thus of .the form 

v = 6n + 3, 
b = v(v - 1)/6 = (2n + 1)(3n + 1), 
k = 3, 
r = (v - 1)/2 = 3n + 1, 
.\=1. 

The number of triples in each resolvability class is 

v 
3" = 2n + 1, 

which fortunately is an integer. (If this number were not an integer for some n, then 
we would have to conclude that, for such n, a Kirkman triple system with v = 6n + 3 
could not exist.) For over a hundred years, no one knew whether, for each nonnegative 
integer n, there is a Kirkman triple system with v = 6n + 3 varieties; in 1971, Ray­
Chaudhuri and Wilson28 showed how to construct such a system for all n. 

10.4 Latin Squares 

Latin squares were introduced in Section 1.4 in connection with Euler's problem of 
the 36 officers, and you may wish to review that section before proceeding. A formal 

28D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's Schoolgirl Problem, American 
Mathematical Society Proceedings, Symposium on Pure Mathematics, 19 (1971), 187-204. / 
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definition is the following: Let n be a positive integer and let S be a set of n distinct 
elements. A Latin square of order n, based on the set S, is an n-by-n array, each of 
whose entries is an element of S such that each of the n elements of S occurs once 
(and hence exactly once) in each row and once in each column. Thus each of the rows 
and each of the columns of a Latin square is a permutation of the elements of S. It 
follows from the pigeonhole principle that we can check in either of two ways whether 
an n-by-n array based on a set S of n elements is a Latin square: (1) Check that each 
element of S occurs at least once in each row and at least once in each column, or (2) 
Check that no element of S occurs more than once in each row and no more than once 
in each column. 

The actual nature of the elements of S is of no importance and usually we take S 
to be Zn = {O, 1, . .. , n - I}. In this case, we number the rows and the columns of the 
Latin square as 0, 1, ... , n -1, rather than the more conventional 1, 2, ... , n. A I-by-l 
array is always a Latin square based on the set consisting of its unique element. Other 
examples of Latin squares are the following: 

(10.8) 

To confirm our stated convention, row 0 of the last square is the permutation 0, 1, 2, 3, 
and row 2 is the permutation 2,3,0, l. 

Consider a Latin square of order n based on Zn, and let k be any element of Zn. 
Then k occurs n times in A, once in each row and once in each column. Thinking 
of an n-by-n array as n-by-n board, the positions occupied by k are positions for n 
non attacking rooks on an n-by-n board. Let A(k) be the set of positions occupied by 
k's, (k = 0,1, ... , n - 1). Then A(O), A(I), .. . , A(n - 1) is a partition of the set of n 2 

positions of the board. Thus, a Latin square of order n corresponds to a partition of 
the positions of an n-by-n array into n sets 

A(O), A(I), ... , A(n - 1), 

each consisting of n positions for non attacking rooks. This observation is readily 
verified in the preceding examples. Note that, if, in a Latin square, we replace, say, all 
the Is with 2s and all the 2s with Is, the result is a Latin square. The resulting partition 
previously described is the same, except that now the set A(I) has become A(2) and 
A(2) has become A(I). More generally, we can interchange A(O), A(I), ... , A(n - 1) 
at will and the result will always be a Latin square. There are n! Latin squares that 
result in this way. For instance, consider the 4-by-4 Latin square A in (10.8). For this 
A, we have 

A(O) = {(O, 0), (1,3), (2,2), (3, I)} A(I) = {(O, 1), (1,0), (2,3), (3, 2)} 
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A(2) = {(0,2),(1,1),(2,0),(3,3)} A(3) = {(0,3),(1,2),(2,1),(3,0)}. 

We obtain a new Latin square A' by letting 

A'(O) = A(2), A'(1) = A(3), A'(2) = A(O), A'(3) = A(1). 

The result is 

Using this idea of interchanging the positions occupied by the various elements 
0,1, ... , n - 1, we can always bring a Latin square to standard form, whereby in row ° the integers 0,1, ... , n - 1 occur in their natural order. The three Latin squares in 
(10.8) are in standard form. 

The three examples of Latin squares in (10.8) are instances of a general construction 
of a Latin square of order n coming from the addition table of the integers mod n. 

Theorem 10.4.1 Let n be a positive integer. Let A be the n-by-n array whose entry 
aij in row i and column j is 

aij = i + j (addition mod n), (i,j = 0,1, ... , n - 1). 

Then A is a Latin square of order n based on Zn. 

Proof. The Latin property of this array is a consequence of the properties of 
addition in Zn. Suppose, for some row i of the array, the elements in positions in row 
i, column j and row i, column k are identical; that is, 

i + j = i + k. 

Then, adding the additive inverse -i of i in Zn to both sides, we get j = k, showing 
that there is no element repeated in row i. In a similar way, w show that there is no 
element repeated in any ·column. L I 

The Latin square of order n constructed in Theorem 10.4.1 is nothing but thl' 
addition table of Zn. There is a more general construction using the integers mod '1/ 

that produces a wider class of Latin squares. It rests on the existence of multiplicatiw 
inverses of some elements of Zn. (See Theorem 10.1.2.) 

Example. We consider Z5, the integers mod 5. By Theorem 10.1.2, 3 has a mul­
tiplicative inverse in Z5; in fact, 3 x 2 = 1 in Z5. Using the arithmetic of Z5, W(' 
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construct a 5-by-5 array whose entry in row i and column j is aij = 3 x i + j. The 
result is 

0 1 2 3 4 
0 

[ ] 
1 2 3 4 

1 4 0 1 2 
2 2 3 4 0 
3 0 1 2 3 
4 3 4 0 1 

(10.9) 

Inspection reveals that we have a Latin square of order 5. o 

Theorem 10.4.2 Let n be a positive integer and let r be a nonzero integer in Zn such 
that the GCD of rand n is 1. Let A be the n-by-n array whose entry aij in row i and 
column j is 

aij = r x i + j (arithmetic mod n), (i,j = 0, 1, ... ,n - 1). 

Then A is a Latin square of orner n based on Zn. 

Proof. The Latin property of this array follows from the properties of addition and 
multiplication in Zn. Suppose, for some row i of the array, the elements in positions 
(i, j) and (i, k) are identical; that is, 

r x i + j = r x i + k. 

In a manner similar to that used in the proof of Theorem 10.4.1, by adding the additive 
inverse of r x i to both sides, we conclude that j = k and there is no repeated element 
in row i. To show that there is no repeated element in any column, we also must use 
the fact that the GCD of rand n is 1. By Theorem 10.1. 2, r has a mUltiplicative 
inverse r-1 in Zn. Suppose that the elements in positions row i, column j and row k, 
column j are identical; that is, 

r x i + j = r x k + j. 

Subtracting j from both sides and rewriting, we get 

r x (i - k) = o. 

Multiplying by r- 1 , we get i = k, implying that there is no repeated element in column 
j. Hence, A is a Latin square. 0 

Theore 10.4.1 is the special case of Theorem 10.4.2 obtained by taking r = 1. 

The atin square of order n constructed in Theorem 10.4.2, using an integer r with 
a tiplicative inverse in Zn, will be denoted by L~. Thus, the Latin square in (10.9) 
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is L~. If r does not have a multiplicative inverse, then the resulting array L~ will not 
be a Latin square. (See Exercise 39.) 

There is another way to think of the Latin property of a Latin square. Let 

(10.10) 

and 

(10.11) 

be two n-by-n arrays based on Zn with identical columns and rows, respectively, as 
shown. Let A be any n-by-n array based on Zn. Then A is a Latin square if and only 
if the following conditions are satisfied: 

(1) When the arrays Rn and A are juxtaposed29 to form an array Rn x A, 
the set of ordered pairs thus obtained equals the set of all ordered pairs 
(i, j) that can be formed using the elements of Zn; 

(2) When the arrays Sn and A are juxtaposed to form an array Sn x A, 
the set of ordered pairs thus obtained equals the set of all ordered pairs 
(i,j) that can be formed using the elements of Zn. 

Since the juxtaposed arrays contain n2 ordered pairs, which is exactly the number 
of ordered pairs that can be formed using the elements of Zn, it follows from the 
pigeonhole principle that the preceding properties can be expressed by saying that the 
ordered pairs in Rn x A are ail distinct, and the ordered pairs in Sn x A are ail distinct. 

Example. We illustrate the foregoing discussion with a Latin square of order 3: 

[ 1 
0 

~].[ 1 n [ (0,0) (0, 1) (0,2) 

1 
2 ---> (1, 1) (1,2) (1,0) 

2 0 (2,2) (2,0) (2, 1) 

[ ! 1 

~H; 
1 n [ (0,0) (1, 1) (2,2) 

1 
2 ---> (0,1) (1,2) (2,0) 

1 0 (0,2) (1,0) (2,1) 

In each of the two juxtaposed arrays, each ordered pair occurs exactly once. LI 

29Corresponding entries side by side. 
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We now apply the preceding ideas to two Latin squares. Let A and B be Latin 
squares based, for instance, on the integers in Zn. 30 Then A and B are called orthog­
onal, provided that in the juxtaposed array A x B, each of the ordered pairs (i, j) of 
integers in Zn occurs exactly once.31 This notion of orthogonality was introduced in 
Section 1.5 in connection with Euler's problem of the 36 officers, where two orthogonal 
Latin squares of order 3 were given. It is simple to check that there do not exist two 
orthogonal Latin squares of order 2. 

Example. The following two Latin squares of order 4 are orthogonal, as is seen by 
examining their juxtaposed array: 

(0,0) 
(1,3) 
(2,1) 
(3,2) 

(1,1) 
(0,2) 
(3,0) 
(2,3) 

(2,2) 
(3,1) 
(0,3) 
(1,0) 

(3,3) 1 (2,0) 
(1,2) . 
(0,1) 

o 
Orthogonal Latin squares have application to the design of experiments in which 

variational differences need to be kept at a minimum to draw meaningful conclusions. 
We illustrate their use with an example from agriculture. 

Example. It is desired to test the effects of various quantities of water and various 
types (or quantities) of fertilizer on the yield of wheat on a certain type of soil. Suppose 
there are n quantities of water and n types of fertilizer to be tested, so that there are 
n2 possible combinations of water and fertilizer. We have at our disposal a rectangular 
field that is subdivided into n2 plots, one for each of the n2 possible water-fertilizer 
combinations. There is no reason to expect that soil fertility is the same throughout 
the field. Thus, it may very well be that the first row is of high fertility, and therefore 
a higher yield of wheat will occur, which is not due solely to the quantity of water 
and the type of fertilizer used on it. We are likely to minimize the influence of soil 
fertility on the yield of wheat if we insist that each quantity of water occur no more 
than once in any row and in any column, and similarly that each type of fertilizer 
o'ccur no more than once in any row and in any column. Thus, the application of the 
n quantities of water on the n2 plots should determine a Latin square A of order n, 
and also the application of the n types of fertilizer should determine a Latin square B 
of order n. Since all n2 possible water-fertilizer combinations are to be treated, when 
the two Latin squares A and B are juxtaposed, all n2 combinations should occur once. 
Thus, the Latin squares A and B are to be orthogonal. Two orthogonal Latin squares 
of order n, one for the application of the n quantities of water and one for the n types 
of fertilizer, determine a design for an expe~iment to test the effects of water and 

30It is not necessary that the two Latin squares be based on the same set of elements. The choice 
makes for convenience in the exposition. 

31 For emphasis, we repeat that, by the pigeonhole principle, we can instead say that each ordered 
pair occurs at most once. 
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fertilizer on the production of wheat. The two orthogonal Latin squares of order 4 in 
the previous example give us a design for four quantities of water (labeled 0, 1,2, and 
3) and four types of fertilzer (also labeled 0, 1, 2, and 3). D. 

We now extend our notion of orthogonality from two Latin squares to any number 
of Latin squares. Let AI, A 2 , ... , Ak be Latin squares of order n. Without loss of 
generality, we assume that each of these Latin squares is based on Zn. We say that 
AI, A2,"" Ak are mutually orthogonal, provided that each pair A, Aj (i f= j) of them 
is orthogonal. We refer to mutually orthogonal Latin squares as MOLS. If n is a prime 
number, we can construct a set of n - 1 MOLS of order n. 

Theorem 10.4.3 Let n be a prime number. Then L~, L;, ... , L~-l are n - 1 MOLS 
of order n. 

Proof. By Corollary 10.1.3, since n is prime, each nonzero integer in Zn has a multi­
plicative inverse. By Theorem 10.4.2, the arrays L~, L;, . .. , L~-l are Latin squares of 
order n. Let rand s be distinct nonzero integers in Zn. We show that L~ and L~ are 
orthogonal. Suppose that in the juxtaposed array, L~ x L~ some ordered pair occurs 
twice-say, the pair in row i and column j and the pair in row k and column l are the 
same. Recalling the defipition of the Latin squares L~ and L~, we see that this means 
that 

r x i + j = r x k + land s x i + j = s x k + l. 
We rewrite these equations, obtaining 

r x (i - k) = (l- j) and s x (i - k) = (l- j); 

hence 
r x (i - k) = s x (i - k). 

Suppose that i f= k. Then (i - k) f= 0 and hence has a multiplicative inverse in Zn. 
MUltiplying the preceding equation by (i - k)-l-that is, cancelling (i - k)-we get 
r = s, a contradiction. Thus, we must have i = k, and then, substituting into the 
first equation, we get j = l. It follows that the only way two positions in L~ x L~ can 
contain the same ordered pair is for the two positions to be the same position. This 
means that L~ and L~ are orthogonal for all r f= s and hence L~, L;, ... , L~-l are 
MOLS. 0 

At the end of Section 10.1, we discussed briefy the arithmetical system called a 
field, which satisfies the usual laws of arithmetic. We remarked that, for each primc 
number p and each positive integer k, there exists a field with the finite number pk of 
elements (and the number of elements in a finite field is always a power of a prime). 
Theorems 10.4.2 and 10.4.3 generalize to each finite field. We briefly discuss this now. 

Let F be a finite field with n = pk elements for some prime p and positive integer 
k. Let 

ClO =O,ClI,· .. ,Cln-1 
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be the elements of F with QQ, as indicated, the zero element of F. Consider any 
nonzero element Qr, (r # 0) of F, and define an n-by-n array A such that the element 
aij in row i and column j of A is 

aij=QrXQi+Qj, (i,j=0,1, ... ,n-1), 

where the arithmetic is that of the field F. Then a proof like that given for Theorem 
10.4.2 (using only the usual laws of arithmetic, which, since F is a field, are satisfied) 
shows that A is a Latin square of order n based on the elements of F. Denote the 
Latin square A constructed in this way by L~r. Then, following the proof of Theorem 
10.4.3,32 we find that 

(10.12) 

are n - 1 MOLS of order n. We summarize these facts in the next theorem. 

Theorem 10.4.4 Let n = pk be an integer that is a power of a prime number p. Then 
there exist n - 1 MOLS of order n. In fact, the n - 1 Latin squares (10.12) of order 
n constructed from a finite field with n = pk elements are n - 1 MOLS of order n. 0 

Example. We illustrate the preceding construction by obtaining three MOLS of order 
4. In Section 10.1 we constructed a field with four elements. The elements of this field 
are 

Using the arithmetic of this field (the addition and multiplication tables are given in 
Section 10.1), we obtain the following Latin squares: 

[I 
1 i 

T1 Ll = 
0 1 + i 

1 + i 0 
1 

[ 1; i 
1 

T1 L4 = 
l+i 0 

1 
0 1 + i 

W' = [ 

0 1 

T1 1 + i 1 
1 0 1 + i 

1 +i 0 

32 Again, only the usual laws of arithmetic were used. 



376 CHAPTER 10. COMBINATORIAL DESIGNS 

Ll is just the addition table of F. It is straightforward to check that L1, L~, Li+' are 
three MOLS of order 4 based on F. 0 

By Theorem lO.4.4, there exist n - 1 MOLS of order n whenever n is a prime 
power. Is it possible to have a collection of more than n - 1 MOLS of order n? The 
negative answer to this question is given in the next theorem. 

Theorem 10.4.5 Let n ;::: 2 be an integer, and let AI, A2,"" Ak be k MOLS of order 
n. Then k :=::: n - 1; that is, the largest number of MOLS of order n is at most n - l. 

Proof. We may assume without loss of generality that each of the given Latin squares 
is based on the elements of Zn. We first observe the following: Each of the Latin 
squares AI, A2, ... , Ak can be brought to standard form, and this does not affect their 
mutual orthogonality. This latter fact is easy to check for: If, after bringing two Latin 
squares to standard form, their juxtaposed array had a repeated ordered pair, then the 
juxtaposed array must have had a repeated ordered pair to begin with. Thus, we may 
assume that each of A I ,A2, ... ,Ak is in standard form. Then, for each pair Ai,AJ , 

the juxtaposed array Ai x Aj has first row equal to (0,0), (1,1), ... , (n - 1, n - 1). 
Now consider the entry in the position of row 1, column 0 of each Ai' None of these 
entries can equal 0, since 0 is already occurring in the position directly above it in 
column O. Therefore, in each of AI, A2 , . .. , Ak , the entry in row 1, column 0 is one 
of 1,2, ... , n - l. Moreover, no two of AI, A2, . .. , Ak can have the same integer in 
this position. For if Ai and Aj both had, say, r in this position, then the juxtaposed 
array Ai x Aj would contain the pair (r, r) twice, since it is already occurring in row 
O. Thus, each of AI, A 2, .. . , Ak contains one of the integers 1,2, ... , n - 1 in the row 
1, column 0 position, and no two of them contain the same integer in this position. 
By the pigeonhole principle, we have k :=::: n - 1, and the theorem is proved. 0 

For n a positive integer, let N(n) denote the largest number of MOLS of order n. 
We have N(I) = 2 because a Latin square of order 1 is orthogonal to itself. 33 Since 
no two Latin squares of order 2 are orthogonal, we have N(2) = l. It follows from 
Theorems lO.4.4 and and 10.4.5 that 

N(n) = n - 1 if n is a prime power. 

It is natural to wonder whether N(n) = n - 1 for all integers n ;::: 2. Unfortunately, 
N(n) may be less than n - l. (By Theorem lO.4.4, n cannot be a prime power if this 
happens.) The smallest integer that is not a prime power is n = 6, and not only do 
we have N(6) l' 5, but we also have N(6) = 1; that is, there do not even exist two 
orthogonal Latin squares of order 6! This was verified34 by Tarry35 around 1900. W(' 

33 A Latin square of order n :::: 2 can never be orthogonal to itself. 
34Not a trivial verification indeed! 
35C. Tarry, Le probleme de 36 Officiers, Comptes Rendu de {'Association Fran9aise POIJl 

{'Avancement de Science Naturel, 1 (1900), 122-123 and 2 (1901), 170-203. 
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can use the integers mod n to show that for each odd integer n there exists a pair of 
MOLS of order n. 

Theorem 10.4.6 N(n) ~ 2 for each odd integer n. 

Proof. Let n be an odd integer. We shall show that the addition table A and the 
subtraction table B of Zn are MOLS. The entry aij in row i and column j of A is 
aij = i + j (addition mod n), and we know by Theorem 10.4.1 that A is a Latin square 
of order n. The entry bij in row i and column j of B is bij = i - j (subtraction mod 
n), and we first show that B is a Latin square. This is straighforward and is like the 
proof of Theorem 10.4.1. Suppose that the integers in row i of B and columns j and 
k are the same. This means that 

i - j = i - k. 

Adding -i to both sides, we obtain -j = -k and hence j = k. Hence, there are no 
repeated elements in a rowand, in a similar way, we show that there are no repeated 
elements in a column. Thus, B is a Latin square. 

We now show that A and B are orthogonal. Suppose that in the juxtaposed array 
A x B, some ordered pair occurs twice, say, 

This means that 
i + j = k + I and i - j = k - l. 

Adding and subtracting these two equations, we get 

2i = 2k and 2j = 2l. 

Now, remembering that n is odd, we observe that the QCD of 2 and n is 1, and hence 
by Theorem 10.1.2, 2 has a multiplicative inverse 2-1 in Zn. Cancelling the 2 in the 
preceding equations, we get i = k and j = l. Hence, the only way A x B can have 
the same ordered pair in two positions is for the positions to be the same. We thus 
conclude that A and B are orthogonal. 0 

There is a way to· combine MOLS in order to get MOLS of larger order. The 
notation for carrying out and verifying this construction is a little cumbersome since 
we must deal with ordered pairs of ordered pairs. But the idea of the construction is 
very simple. We illustrate it by obtaining two MOLS of order 12 from two MOLS of 
order 3 and two MOLS of order 4. Consider the two MOLS of order 3 given by 

[ 0 1 2] A2 = [021 ~ o~] 
A 1 = ~ ~ ~ 
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These are the addition table and subtraction table of Z3, respectively. Consider also 
the two MOLS of order 4 given by 

These are the first two MOLS of order 4 constructed following Theorem 10.4.4 with i 
replaced by 2 and 1 + i replaced by 3. We now form the 12-by-12 arrays Al 0 BI and 
A2 0 B 2, which are defined as follows: First we replace each entry a}j of Al by the 
4-by-4 array 

The result is the 12-by-12 array Al 0 BI based on the 12 ordered pairs of integers 
(p,q) with pin Z3 and q in Z4' We obtain the 12-by-12 array A2 0 B2 in a similar 
way from A2 and B2. It is elementary to check that Al 0 BI and A2 0 B2 are Latin 
squares, based on the set of 12 ordered pairs and that they are orthogonal. We leave 
this verification for the exercises. Now, in order to have these 12-by-12 arrays based 
on Z12,36 we set up a one-to-one correspondence between ZI2 and the ordered pairs 
(p, q). Any of the 12! such correspondences will do. One is the following (the one 
obtained by taking the ordered pairs in lexicographic order): 

(0,0) -+ 0, (0,1) -+ 1, (0,2) -+ 2, (0,3) -+ 3, 

(1,0) -+ 4, (1,1) -+ 5, (1,2) -+ 6, (1,3) -+ 7, 

(2,0) -+ 8, (2,1) -+ 9, (2,2) -+ 10, (2,3) -+ 11. 

36This is, of course, not necessary. We do it only to avoid having Latin squares based on a set oj 
elements that are ordered pairs. 
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The two MOLS of order 12 obtained in this way are as follows: 

0 2 3 4 5 6 7 8 9 10 11 
1 0 3 2 5 4 7 6 9 8 11 10 
2 3 0 1 6 7 4 5 10 11 8 9 
3 2 1 0 7 6 5 4 11 10 9 8 
4 5 6 7 8 9 10 11 0 1 2 3 
5 4 7 6 9 8 11 10 1 0 3 2 
6 7 4 5 10 11 8 9 2 3 0 1 
7 6 5 4 11 10 9 8 3 2 1 0 
8 9 10 11 0 1 2 3 4 5 6 7 
9 8 11 10 0 3 2 5 4 7 6 
10 11 8 9 2 3 0 1 6 7 4 5 
11 10 9 8 3 2 1 0 7 6 5 4 

0 1 2 3 8 9 10 11 4 5 6 7 
2 3 0 1 10 11 8 9 6 7 4 5 
3 2 1 0 11 10 9 8 7 6 5 4 
1 0 3 2 9 8 11 10 5 4 7 6 
4 5 6 7 0 1 2 3 8 9 10 11 
6 7 4 5 2 3 0 1 10 11 8 9 
7 6 5 4 3 2 1 0 11 10 9 8 
5 4 7 6 1 0 3 2 9 8 11 10 
8 9 10 11 4 5 6 7 0 1 2 3 
10 11 8 9 6 7 4 5 2 3 0 1 
11 10 9 8 7 6 5 4 3 2 1 0 
9 8 11 10 5 4 7 6 1 0 3 2 

The preceding construction works in general, and it yields the following result. 

Theorem 10.4.7 If there is a pair of MOLS of order m and there is a pair of MOLS 
of order k, then there is a pair of MOLS of order mk. More generally, 

N(mk) ~ min{N(m), N(k)}. 

0 

We can combine Theorem 10.4.7 with Theorem 10.4.4 to obtain the next result. 

Theorem 10.4.8 Let n ~ 2 be an integer and let 

n = p~' X p~2 X ..•. X p~k 

be the factorization of n into distinct prime numbers PI, P2, ... ,Pk· Then 

N(n) ~ min{p:' - 1 : i = 1,2, ... , k}. 
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Proof. Using Theorem 10.4.7 and a simple induction argument on the number k of 
distinct prime factors of n, we get 

N(n):2: min{N(p~'): i = 1,2, ... ,k}. 

By Theorem 10.4.4, we have 

and the theorem follows. o 

Corollary 10.4.9 Let n :2: 2 be an integer that is not twice an odd number. Then 
there exists a pair of orthogonal Latin squares of order n. 

Proof. If p is a prime number and e is a positive integer, we have pe - 1 :2: 2 unless 
p = 2 and e = 1. Hence, by Theorem 10.4.8, we have N(n) :2: 2, provided that the 
prime factorization of n does not contain exactly one 2; that is, provided n is not twice 
an odd number. 0 

The integers n for which Corollary 10.4.9 does not guarantee the existence of a 
pair of MOLS of order n are the integers 

2,6,10,14,18, ... ,4k +2, .... (10.13) 

We have already remarked that there do not exist pairs of MOLS of order 2 and of 
order 6. Thus, the first undecided n is n = 10. It was conjectured by Euler in 1782 
that for no integer n in the sequence (10.13) does there exist a pair of MOLS of order 
n. The combined efforts of Bose, Shrikhande, and Parker37 succeeded in showing that 
Euler's conjecture holds only for n = 2 and n = 6; that is, except for 2 and 6 for 
each integer n in the sequence (10.13), there exists a pair of MOLS of order n. We du 
not prove this result, but the following is a pair of MOLS of order 10 constructed by 

Parker38 in 1959: 
0 6 5 4 7 8 9 2 3 
9 1 0 6 5 7 8 2 3 4 
8 9 2 1 0 6 7 3 4 5 
7 8 9 3 2 1 0 4 5 6 
1 7 8 9 4 3 2 5 6 0 
3 2 7 8 9 5 4 6 0 1 
5 4 3 7 8 9 6 0 1 2 
2 3 4 5 6 0 1 7 8 9 
4 5 6 0 1 2 3 9 7 8 
6 0 1 2 3 4 5 8 9 7 

37R. C. Bose, S. S. Shrikhande, and E. T. Parker: Further Results on the Construction of Mutually 
orthogonal Latin Squares and the Falsity of Euler's Conjecture, Canadian J. Math., 12 (1960), 1H!1 
203. See also the account written by Martin Gardner in his Mathematical Games column in till' 
Scientific American (November, 1959). 

3BE. T. Parker: Orthogonal Latin Squares, Proc. Nat. Acad. Sciences, 45 (1959), 859-862. 
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0 9 8 7 1 3 5 2 4 6 
6 1 9 8 7 2 4 3 5 0 
5 0 2 9 8 7 3 4 6 1 
4 6 1 3 9 8 7 5 0 2 

7 5 0 2 4 9 8 6 1 3 
8 7 6 1 3 5 9 0 2 4 
9 8 7 0 2 4 6 1 3 5 

2 3 4 5 6 0 7 8 9 
2 3 4 5 6 0 1 8 9 7 
3 4 5 6 0 1 2 9 7 8 

For nearly 200 years, 10 was the smallest undecided case of Euler's conjecture. 
By Theorem 10.4.5, for each integer n;::: 2, we have N(n) s: n-l, and by Theorem 

10.4.4, we have equality if n is a power of a prime. There are no other known values 
of n for which N(n) = n -1. We establish a connection between n -1 MOLS of order 
n and the block designs of Section 10.2. Let AI, A 2 , .•. ,An - l denote n - 1 MOLS of 
order n. We use the n + 1 arrays 

(10.14) 

where Rn and Sn are defined in (10.10) and (10.11), to construct a block design B 
with parameters 

b = n 2 + n, v = n2 , k = n, r = n + 1, ,\ = 1. 

Recall that Ai (k) denotes the set of positions of Ai occupied by k, (k = 0, 1, ... , n - 1). 
Since Ai is a Latin square, Ai(k) contains one position from each row and each column; 
in particular, no two positions in Ai(k) belong to the same row or to the same column. 
We also use this notation for Rn and Sn. For instance, Rn(O) denotes the set of 
positions of Rn that are occupied by Os, and this set is the set of positions of row 0, 
and Sn(1) denotes the set of positions of Sn that are occupied by Is and this is the 
set of positions of column 1. 

We take the set X of varieties to be the set of v = n 2 positions of an ·n-by-n array; 
that is, 

X = {(i,j) : i = 0, 1, ... ,n - l;j = 0, 1, ... ,n -t}. 

Each of the n + 1 arrays in (10.14) determines n blocks: 

Rn(O) Rn(I) 

Sn(O) Sn(l) 

(10.15) 

(10.16) 
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(10.17) 

Thus, we have b = n x (n + 1) = n 2 + n blocks, each containing k = n varieties. Let 
B denote this collection of blocks. To conclude that B is a BIBD with the specified 
parameters, we need only check that each pair of varieties occur together in exactly 
A = 1 block. There are three possibilities to consider: 

(1) Two varieties in the same row: These are together in precisely one of the blocks 
in (10.15) and in no other blocks. 

(2) Two varieties in the same column: These are together in precisely one of the blocks 
in (10.16) and in no other blocks. 

(3) Two varieties (i,j) and (p, q) belonging to different rows and to different columns: 
Th~e two varieties are not together in any of the blocks in (10.15) and (10.16). Sup­
pose that they are together in blocks Ar(e) and As(f). This means that there is an e 
in positions row i, column j and row p, column q of Ar and an f in the same positions 
of As. If r i- s, then, in the juxtaposed array Ar x A., the ordered pair (e, f) appears 
twice, contradicting the orthogonality of Ar and As. Thus, r = s, which implies that 
Ar has both an e and an f in positions row i, column j and row p, column q. We 
also conclude that e = f. Hence, Ar(e) and As(f) are the same block, and we now 
conclude that (i,j) and (p, q) are together in at most one block. 

At this point, we know that each pair of varieties is together in, at most, one block. 
This is now enough for us to conclude that each pair of varieties is together in exactly 
one block. This follows by a counting argument similar to one we have made in Section 
10.2: There are n 2 varieties, we can form n 2(n2 - 1)/2 pairs of them, and we know 
that each pair is in, at most, one of the n2 + n blocks. Each block has n varieties and 
thus contains n(n - 1)/2 pairs. For all blocks, this gives a total of 

( 2 ) n(n - 1) n 2 (n2 - 1) 
n +n x 2 = 2 

pairs, which is exactly the total number of pairs of varieties. Hence, by the pigeonhole 
principle, each pair of varieties must be in exactly one block. Thus, B is a BIBD of 
index A = 1. 

We note that the design B constructed is resolvable in the sense used in Section 
10.2 for Steiner systems. The collection of n 2 + n blocks is partitioned into n + 1 parts 
(resolvability classes) of n blocks each (see (10.15), (10.16), and (10.17)), and each 
resolvability class is a partition of the n 2 varieties. 

Example. We illustrate the preceding construction of a BIBD using the two Latin 
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squares of order 3: 

The varieties are the nine positions of a 9-by-9 array, and the blocks are pictured 
geometrically by resolvability classes as follows: 

• • • 
• • • 

• • • 

· . · . · . · . · . · . · . · . · . 
• • • 

• • • 
• • • 

• • • 
• • • 

• • • 

If we think of the varieties as points and the blocks as lines, and, as usual, call two 
lines parallel, provided that they have no point in common, then each of the preceding 
displays (the resolvability classes) consists of three parallel lines. Each pair of varieties 
being together in exactly one block translates to two points determining exactly one 
line. The resolvability of the design also translates to the property that, given a line 
and a point not on it, there is exactly one line parallel to the first containing the given 
p~int. This is the so-called parallel postulate of Euclidean geometry. 

Theorem 10.4.10 Let n ~ 2 be an integer. If there exist n - 1 MOLS of order n, 
then there exists a resolvable BIBD with parameters 

(10.18) 

Conversely, if there exists a resolvable BIBD with parameters (10.18), then there exist 
n - 1 MOLS of order n. 
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Proof. Previously, we showed how to construct a resolvable BIBD with parameters 
(10.18) from n - 1 MOLS of order n. This process can be reversed. We outline how 
and leave some of the details for the Exercises. Suppose we have a resolvable BIBD 
B with parameters (10.18). Since there are n2 varieties and each block contains n 
varieties, each resolvability class contains n blocks. Moreover, since there are n2 + n 
blocks, there are n + 1 resolvability classes 

We use two of the resolvability classes Bn and Bn+1 in order to "coordinatize" the 
varieties. Let the blocks in Bn be 

and let the blocks in Bn+1 be 

Vo, VI"'" Vn - I · 

(H is for horizontal and V is for vertical.) Given any variety x, there is a unique i 
between 0 and n - 1 such that x is in Hi and a unique j between 0 and n - 1 such that 
x is in \-j. This gives an ordered pair of coordinates (i,j) to each variety x. Moreover, 
since the index .\ equals 1, two different varieties do not get the same coordinates 
(if x and y both had coordinates (i,j), then x and y would be together in the two 
blocks Hi and \-j). We may now think of the set X of varieties as the coordinate pairs 
themselves: 39 

X={(i,j) :i=0,1, ... ,n-1;j=0,1, ... ,n-1}. 

Now consider any other resolvability class Bp,' (p = 0,1, . .. , n - 1). Let the blocks in 
Bp be labeled 

Ap(O), Ap(l), ... , Ap(n - 1). 

These blocks partition X into n sets of size n. Also, as the notation suggests, let Ap 
be the n-by-n array that has a k in each position of Ap(k). If, for instance, there wen' 
two k's in row i of Ap, this would imply that there are two varieties (i, a) and (i, b) 
that are in both of the blocks Hi and Ai(k). Thus, Ap is a Latin square. Moreover, for 
P /0 q, Ap and Aq are orthogonal: If the juxtaposed array Ap x Aq contained the sam(' 
ordered pair in both pos.itions row i, column j and row u, column v, then the two 
varieties (i,j) and (u,v) would be in two blocks. Hence, A I ,A2 , .•. ,An - I are MOLS 
of order n. 0 

We conclude this section with some questions that naturally arise when we attempt 
to construct a Latin square. 

There are three natural ways to construct a Latin square of order n: 

'·We make a similar identification in analytic geometry when we give the points of the plan,' 
coordinates and the coordinates "become" the points. 
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1. row by row, 

2. column by column, and 

3. element by element. 

The first two ways are quite similar, and we consider only the first. 

To construct a Latin square row by row means to put in one complete row at a 
time. Thus, we can construct a Latin square of order 3 by first choosing a permutation 
of {O, 1, 2} for row 0, say, 2, 1, 0, then a permutation for row 1 (which doesn't give a 
repeated integer in any column), say, 0, 2, 1, and then a permutation for row 2, say, 
1, 0, 2 (actually, if we know all but the last row of a Latin square, then the last row 
can be filled in uniquely because we must put in each column the integer that is not 
yet there). The result is 

[ ~ 2 ~ 1 
102 

Will we ever get stuck if we construct a Latin square in this way, at each step choosing 
an allowable permutation for the next row? 

To construct a Latin square element by element means to put in all the occurrences 
of each of the elements, one element at a time. Thus, we could have constructed the 
preceding Latin square of order 3 by first choosing three positions for the Os (three 
positions for nonattacking rooks), then three positions for the Is, and finally three 
positions for the 2s, (as in the row by row construction, the last step is uniquely 
determined). Will we ever get stuck if we construct a Latin square in this way, at each 
step choosing the set of positions for the next integer? 

We show that Theorem 9.2.2 of Chapter 9 allows us to answer both of these 
questions.4o First, we make a definition that is suggested by the first question. 

Let m and n be integers with m :s: n. An m-by-n Latin rectangle, based on the 
integers in Zn, is an m-by-n array such that no integer is repeated in any row or 
in any column. Each of the rows of an m-by-n Latin rectangle is a permutation of 
{O, 1, ... ,n - I} and no column contains a repeated integer. If m = n, then our 
definition of a Latin rectangle is equivalent to that of a Latin square.41 An example 
of a 3-by-5 Latin rectangle is 

[ 
0 1 2 341 
3 4 0 1 2 . 
4 0 3 2 1 

We say that an m-by-n Latin rectangle L ~an be completed, provided it is possible 
to attach n - m rows to L and obtain a Latin square L * of order n. Such a Latin 

40 Letting the "cat out of the bag," we never get stuck. 
41The pigeonhole principle again! 



386 CHAPTER 10. COMBINATORIAL QESIGNS 

square L* is called a completion of L. For example, a completion of the previous Latin 
rectangle L is 

l; 
1 2 3 4 
4 0 1 2 
0 3 2 1 

3 1 4 0 
2 4 0 3 

The answer to our first question is a consequence of the next theorem. 

Theorem 10.4.11 Let L be an m-by-n Latin rectangle based on Zn with m < n. 
Then L has a completion. 

Proof. It suffices to show that we can adjoin one new row to L to get an (m + 1)­
by-n Latin rectangle because then we can proceed inductively until we obtain a Latin 
square of order n. We define a family A = (AI, A2,"" An) of subsets of the set 
Zn = {O, 1, ... , n - I} by defining each Ai to bet the set of integers in Zn that are 
missing in column i. Since L is an m-by-n Latin rectangle, each Ai contains exactly 
n - m elements. Moreover, since each integer in Zn occurs once in each of the m rows 
of L and in different columns, each integer in Zn occurs in exactly n - m of the sets 
of A. 

Suppose there is an SDR (aI, a2, ... , an) of A. Then aI, a2, ... , an are the integers 
0,1, ... , n - 1 in some order and, since for each i, ai is in Ai, ai does not occur in 
column i of L. We can then adjoin aI, a2, ... , an as a new row (row m + 1) of Land 
obtain, as desired, an (m + l)-by-n Latin rectangle. So we have .}lnly to show that A 
does indeed have an SDR. By Theorem 9.2.2, we have only to show that A satisfies 
the marriage condition MC (cf. Exercise 15 of Chapter 9). 

Consider k distinct integers il, i2, .. . , ik from {I, 2, ... , n}, and let 

We evaluate 
a = IAill + IAi21 + ... + IAi.1 

in two ways. On the one hand, since each set in A contains exactly n - m integers, 
a = k(n - m). On the other hand, each integer in Zn occurs in exactly n - m of the 
sets of A, and hence each of the q integers in Ai, U Ai2 U ... U Ai. occurs in at most 
n - m of the sets Ai" Ai2" .. ,Ai •. Thus a :::; q(n - m). Thus we have 

k(n - m) = a :::; q(n - m). 

Cancelling n - m :,?: 1, we get k:::; q, that is, 
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Thus MC is satisfied and A has an SDR. Since A has an SDR, we conclude that the 
Latin rectangle L has a completion. 0 

The following definition is motivated by our second question. Consider an n-by-n 
array L in which some positions are unoccupied and other positions are occupied by 
one of the integers {O, 1, ... ,n - I}. Suppose that, if an integer k occurs in L, then 
it occurs n times and no two k's belong to the same row or column. Then we call L 
a semi-Latin square. If m different integers occur in L, then we say L has index m. 
A semi-Latin square of order n and index m has exactly mn occupied positions. An 
example of a semi-Latin square of order 5 and index 3 is 

1 0 2 
2 1 0 

0 1 2 
2 0 1 

, 2 0 1 

We can think of this example as a 5-by-5 board (and we have illustrated it as such) 
on which there are five red nonattacking rooks (the Os), five white nonattacking rooks 
(the Is), and five blue nonattacking rooks (the 2s). What we seek are positions for 
five green nonattacking rooks and five yellow nonattacking rooks on this board. If we 
think of 3 as green and 4 as yellow, then a solution is given by 

We say that a semi-Latin square L of order n can be completed to a Latin square, 
provided that it is possible to fill in the unoccupied positions to obtain a Latin square 
L# of order n. Such a Latin square L# is called a completion of L. The answer to our 
second question is a consequence of the final theorem of this chapter. 

Theorem 10.4.12 Let L be a semi-Latin square of order n and index m, where m < 
n. Then L has a completion. 

Proof. Suppose the integers that occur in L ar.e 0,1, ... , m - 1. It suffices to show 
that we can find n unoccupied positions in which to put m to get a Latin square of 
order n of index m + 1, because then we can proceed inductively. 

As in the proof of Theorem 10.4.11, a famjly A = (Ai, A2, ... , An) of subsets of the 
set Zn = {O, 1, ... , n - I} is defined where for each i, Ai consists of all those positions 
i'cin row i that are unoccupied. Then IAil = n - m for each i and each integer in Zn 
occurs in exactly n - m of the sets in A. As in the proof of Theorem 10.4.11, the 
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family A has an SDR. The SDR tells us where to put the integer m + 1 in each row 
so as to obtain a semi-Latin square of index m. 0 

The similarity between Theorems 10.4.11 and 10.4.12 is not accidental. There is 
a one-to-one correspondence between m-by-n Latin rectangles and semi-Latin squares 
of order n and index m that transforms the proof of Theorem 10.4.11 into that of 
Theorem 10.4.12 and vice versa. This correspondence is the following: Let L be an 
m-by-n Latin rectangle (based on Zn) and let the entry in position row i, column j 
be denoted by aij. We define an n-by-n array B by letting the entry bij in position 
row i, column j be k, provided that i occurs in column j of row k of L. Thus, 

bij = k if and only if akj = i. 

Some positions in B are unoccupied since, if m < n, some integers are missing in the 
columns of L. We leave it as an exercise to show that the array B constructed from 
L in this way is a semi-Latin square of index m. 

Example. Consider the 3-by-5 Latin rectangle 

[ 
0 1 2 3 

A= 3 4 1 0 
1 0 4 2 

Then, following the preceding construction, we obtain the semi-Latin square B of 
order 5 and index 3: 

O· 2 1 
2 0 1 

B= 0 2 1 
1 0 2 

1 2 0 

o 

10.5 Exercises 

1. Compute the addition table and the multiplication table for the integers mod 4. 

2. Compute the subtraction table for the integers mod 4. How does it compare 
with the addition table computed in Exercise 1? 

3. Compute the addition table and the multiplication table for the integers mod 5. 

4. Compute the subtraction table of the integers mod 5. How does it compare with 
the addition table computed in Exercise 3? 
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5. Prove that no two integers in Zn, arithmetic mod n, have the same additive 
inverse. Conclude from the pigeonhole principle that 

{-O, -1, -2, ... ,-(n - I)} = {O, 1,2, ... ,n - I}. 

(Remember that -a is the integer which, when added to a in Zn, gives 0.) 

6. Prove that the columns of the subtraction table of Zn are a rearrangement of 
the columns of the addition table of Zn (cf. Exercises 2 and 4). 

7. Compute the addition table and multiplication table for the integers mod 6. 

8. Determine the additive inverses of the integers in Zs, with arithmetic mod 8. 

9. Determine the additive inverses of 3, 7, 8, and 19 in the integers mod 20. 

10. Determine which integers in Z12 have multiplicative inverses, and find the mul­
tiplicative inverses when they exist. 

11. For each of the following integers in Z24, determine the multiplicative inverse if 
a multiplicative inverse exists: 

4, 9, 11, 15, 17, 23. 

12. Prove that n - 1 always has a multiplicative inverse in Zn, (n ~ 2). 

13. Let n = 2m + 1 be an odd integer with m ~ 2. Prove that the mUltiplicative 
inverse of m + 1 in Zn is 2. 

14. Use the algorithm in Section 10.1 to find the GCD of the following pairs of 
integers: 

(a) 12 and 31 

(b) 24 and 82 

(c) 26 and 97 

(d) 186 and 334 

(e) 423 and 618 

15. For each of the pairs of integers in Exercise 14, let m denote the first integer 
and let n denote the second integer of th~ pair. When it exists, determine the 
multiplicative inverse of m in Zn. 

16. Apply the algorithm for the GCD in Section 10.1 to 15 and 46, and then use the 
results to determine the multiplicative inverse of 15 in Z46. 
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17. Start with the field Z2 and show that x3 +X+ 1 cannot be factored in a nontrivial 
way (into polynomials with coefficients in Zz), and then use this polynomial to 
construct a field with 23 = 8 elements. Let i be the root of this polynomial 
adjoined to Z2, and then do the following computations: 

(a) (1 + i) + (1 + i + i 2 ) 

(b) (1 + i 2 ) + (1 + i2 ) 

(c) i-I 

(d) i 2 x (1 + i + i 2) 

(e) (1+i)(1+i+i2) 

(f) (1 + i)-l 

18. Does there exist a BIBD with parameters b = 10, v = 8 r = 5, and k == 4? 

19. Does there exist a BIBD whose parameters satisfy b = 20, v = 18, k = 9, and 
r = 1O? 

20. Let B be a BIBD with parameters b, v, k, r,'\ whose set of varieties is X = 
{Xl, X2, ... , Xv} and whose blocks are B l , B2, ... ,Bb. For each block Bi , let B, 
denote the set of varieties which do not belong to Bi . Let Be be the collection 
of subsets B l , B2, . .. ,Bb of X. Prove that Be is a block design with parameter~ 

b' = b, v' = v, k' = v - k, r' = b - r, ,\' = b - 2r + '\, 

provided that we have b - 2r + ,\ > 0. The BIBD Be is called the complementary 
design of B. 

21. Determine the complementary design of the BIBD with parameters b = v ~ 

7, k = r = 3,'\ = 1 in Section 10.2. 

22. Determine the complementary design of the BIBD with parameters b = v 

16, k = r = 6, ,\ = 2 given in Section 10.2. 

23. How are the incidence matrices of a BIBD and its complement related? 

24. Show that a BIBD, with v varieties whose block size k equals v-I, does not 
have a complementary design. 

25. Prove that a BIBD with parameters b, v, k, r,'\ has a complementary design il 
and only if 2 ~ k ~ v - 2 (Cf. Exercises 20 and 24). 

26. Let B be a difference set in Zn. Show that, for each integer k in Zn, B + k is 
also a difference set. (This implies that we can always assume without loss 01 
generality that a difference set contains ° for, if it did not, we can replace it by 
B + k, where k is the additive inverse of any integer in B.) 
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27. Pwve that Zv is itself a difference set in Zv. (These are trivial difference sets.) 

28. Show that B = {a, 1, 3, 9} is a difference set in Z13, and use this difference set 
as a starter block to construct an SBIBD. Identify the parameters of the block 
design. 

29. Is B = {a, 2, 5, 11} a difference set in Z12? 

30. Show that B = {a, 2, 3, 4, 8} is a difference set in Zll. What are the parameters 
of the SBIBD developed from B? 

31. Prove that B = {a, 3, 4, 9,11} is a difference set in Z21. 

32. Use Theorem 10.3.2 to construct a Steiner triple system of index 1 having 21 
varieties. 

33. Let t be a positive integer. Use Theorem 10.3.2 to prove that there exists a 
Steiner triple system of index 1 having 3t varieties. 

34. Let t be a positive integer. Prove that, if there exists a Steiner triple system of 
index 1 having v varieties, then there exists a Steiner triple system having vt 

varieties (cf. Exercise 33). 

35. Assume a Steiner triple system exists with parameters b, v, k, r, >., where k = 3. 
Let a be the remainder when>. is divided by 6. Use Theorem 10.3.1 to show the 
following: 

(1) If a = 1 or 5, then v has remainder 1 or 3 when divided by 6. 

(2) If a = 2 or 4, then v has remainder ° or 1 when divided by 3. 

(3) If a = 3, then v is odd. 

36. Verify that the following three steps construct a Steiner triple system of index 1 
with 13 varieties (we begin with Z13). 

(1) Each of the integers 1,3,4,9,10, 12 occurs exactly once as a difference of 
two integers in Bl = {a, 1,4}. 

(2) Each of the integers 2,5,6,7,8,11 occurs exactly once as a difference of two 
integers in B2 = {a, 2, 7}. 

(3) The 12 blocks developed from Bl together with the 12 blocks developed 
from B2 are the blocks of a Steiner triple system of index 1 with 13 varieties. 

37. Prove that, if we interchange the rows of f1 Latin square in any way and inter­
change the columns in any way, the result is always a Latin square. 

38. Use the method in Theorem 10.4.2 with n = 6 and r = 5 to construct a Latin 
square of order 6. 
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39. Let n be a positive integer and let r be a nonzero integer in Zn such that the 
GCD of rand n is not 1. Prove that the array constructed using the prescription 
in Theorem 10.4.2 is not a Latin square. 

40. Let n be a positive integer and let rand r' be distinct nonzero integers in Zn 
such that the GCD of rand n is 1 and the GCD of r' and n is 1. Show that the 
Latin squares constructed by using Theorem 10.4.2 need not be orthogonal. 

41. Use the method in Theorem 10.4.2 with n = 8 and r = 3 to construct a Latin 
square of order 8. 

42. Construct four MOLS of order 5. 

43. Construct three MOLS of order 7. 

44. Construct two MOLS of order 9. 

45. Construct two MOLS of order 15. 

46. Construct two MOLS of order 8. 

47. Let A be a Latin square of order n for which there exists a Latin square B 01 
order n such that A and B are orthogonal. B is called an orthogonal mate of A. 
Think of the Os in A as rooks of color red, the Is as rooks of color white, the 2s 
as rooks of color blue, and so on. Prove that there are n nonattacking rooks ill 
A, no two of which have the same color. Indeed, prove that the entire set of '/1 1 

rooks can be partitioned into n sets of n nonattacking rooks each, with no tW() 
rooks in the same set having the same color. 

48. Prove that the addition table of Z4 is a Latin square without an orthogonal mat (. 
(d. Exercise 47). 

49. First construct 4 MOLS of order 5, and then construct the resolvable BIBI) 
corresponding to them as given in Theorem 10.4.10. 

50. Let Al and A2 be !VIOLS of order m and let BI and B2 be MOLS of order 1/ 

Prove that Al ® Bi and A2 ® B2 are MOLS of order mn. 

51. Fill in the details in the proof of Theorem 10.4.10 . 

. 52. Construct a completion of the 3-by-6 Latin rectangle 

[ 
0 1 2 3 
4 3 1 5 
5 430 

4 5 1 2 0 . 
1 2 
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53. Construct a completion of the 3-by-7 Latin rectangle 

[ 
0 1 2 3 4 5 6 1 
2306541. 
1460235 

54. How many 2-by-n Latin rectangles have first row equal to 

55. 

56. 

012"'n-1? 

Construct a completion of the semi-Latin square 

2 0 1 
2 0 1 
0 2 1 

1 2 0 
1 0 2 

1 0 2 

Construct a completion of the semi-Latin square 

o 2 1 
2 0 1 
3 0 2 1 

3 

3 2 0 1 

3 

3 0 2 1 
1 3 0 2 

1 3 2 0 

393 

57. Let n ;::: 2 be an integer. Prove that an (n - 2)-by-n Latin rectangle has at 
least two completions, and, for each n, find an example that has exactly two 
completions. 

58. A Latin square A of order n is symmetric, provided the entry ail at row i, column 
j equals the entry aj' at column j, row i for all i f= j. Prove that the addition 
table of Zn is a symmetric Latin square. 

59. A Latin square of order n (based on Zn) is idempotent, provided that its entries 
on the diagonal running from upper left to lower right are 0,1,2, ... ,n - 1. 

(1) Construct an example of an idempotent Latin square of order 5. 

(2) Construct an example of a symmetric, idempotent Latin square of order 5. 

60. Prove that a symmetric, idempotent Latin square has odd order. 
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61. Let n = 2m + 1, where m is a positive integer. Prove that the n-by-n array A 
whose entry aij in row i, column j satisfies 

aij = (m + 1) x (i + j) (arithmetic mod n) 

is a symmetric, idempotent Latin square of order n. (Remark: The integer 
m + 1 is the multiplicative inverse of 2 in Zn. Thus, our prescription for aij is 
to "average" i and j.) 

62. Let L be an m-by-n Latin rectangle (based on Zn) and let the entry in row i, 
column j be denoted byaij' We define an n-by-n array B whose entry bij in 
position row i, column j satisfies 

bij = k, provided akj = i 

.and is blank otherwise. Prove that B is a semi-Latin square of order n and index 
m. In particular, if A is a Latin square of order n, so is B. 



Chapter 11 

Introduction to Graph Theory 

Take a street map of your favorite cityl and put a bold dot. at each place where two 
or more streets come together or at a dead-end street. What you get is an example of 
what is called a (combinatorial) graph. Most likely, some of the streets in your favorite 
city are one-way streets, which permit traffic in only one direction. Put an arrow (--t) 
on each one-way street, which indicates the permitted direction of traffic flow, and a 
double arrow (<-+) on two-way streets. You now have an example of what is called 
a directed graph, or digraph. Now consider the people in your favorite city. Run a 
string between each pair of people that like each other. You have another example 
Of;a graph. Recognizing the fact that sometimes one's fondness for another person is 
not always reciprocated, you may have to put arrows on your strings as you did for 
streets, with the result being a digraph. Now take your favorite chemical molecule,2 
made up of atoms, some of which are chemically bound to others. You've got another 
graph, with the bonds play·ing the role of the streets or strings. Finally, consider all 
the different types of animals, insects, and plants that inhabit your favorite city. Put 
an arrow from one type to another, provided the first preys on the second. This time 
yOu get a digraph. Two species may share a common prey. Putting a string between 
each pair that does, you get a graph which that displays competition between species. 

As the preceding discussion suggests, graphs and digraphs provide mathematical 
models for a set of objects that are related or bound together in some way or other. The 
first paper on graph theory was written by the famous Swiss mathematician Leonhard 
Euler, in 1736, and dealt with the well-known Konigsberg bridge problem. Graph 
theory has its historic roots in puzzles and games, but today it provides a natural and 
very important language and framework for investigations in many disciplines, such as 
networks, chemistry, psychology, social science, ecology, and genetics. Graphs are also 
some of the most useful models in computer science, since many questions that arise 

lMine is Madison, Wisconsin. 
'Play along, and suppose you do have a favorite chemical molecule! 
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there can be most easily expressed, investigated, and solved by graph algorithms. We 
consider graphs in this chapter and digraphs in Chapter 13. 

11.1 Basic Properties 

A graph G (also called a simple graph) is composed of two types of objects. It has a 
finite set 

v = {a, b, c, ... } 

of elements called vertices (sometimes also called nodes) and a set E of pairs of distinct 
vertices called edges. We denote the graph whose vertex set is V and whose edge set 
is E by 

G = (V,E). 

The number n of vertices in the set V is called the order of the graph G. If 

a = {x,y} = {y,x} 

is an edge of G, then we say that a joins x and y, and that x and yare adjacent; we 
also say that x and a are incident, and y and a are incident. We also call x and y the 
vertices of the edge a. A graph is, by definition, an abstract mathematical entity. But 
we can also think of a graph as a geometrical entity, by representing it with a diagram 
in the plane. We take one distinct point, a vertex-point, for each vertex x (labeling the 
vertex-point with the vertex) and connect two vertex-points by a simple curve3 if and 
only if the corresponding vertices determine an edge a of G. We call such a curve an 
edge-curve and label it with a. In our diagrams, we must take care that an edge-curve 
a passes through a vertex-point x only if x is a vertex of the edge a, for otherwise our 
diagram will be ambiguous. 

Example. Let a graph G of order 5 be defined by 

V = {a,b,c,d,e} 

and 

E = {{a, b}, {b, c}, {c, d}, {d, a}, {e, a}, {e, b}, {e, d}} . 

A geometric illustration of this graph is shown in Figure 11.1. o 

3 A non-self-intersecting curve. 
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a 

b tE-----4I-----7td 

c 

Figure 11.1 

If we alter the definition of a graph to allow a pair of vertices to form more than one 
edge, then the resulting structure is called a multigraph. In a multigraph G = (V, E), 
E is a multiset. The multiplicity of an edge Q = {x, y} is the number of times, m{ x, y}, 
it occurs in E. The further generalization by allowing loops, edges of the form {x, x} 
making a vertex adjacent to itself,4 is called a general graph. 

A graph of order n is called complete, provided that each pair of distinct vertices 
forms an edge. Thus, in a complete graph, each vertex is adjacent to every other 
vertex. A complete graph of order n has n(n - 1)/2 edges and is denoted Kn. We 
used this notation in our discussion of Ramsey numbers in Section 2.3. 

Example. In Figure 11.2 we have drawn a multigraph of order 4 with nine edges. In 
Figure 11.3 we have a general graph of order 13 with 21 edges, called GraphBuster. 5 

o 

a 

b~~-------------~d 

c 

Figure 11.2 

4Thus, a loop is a multiset consisting of one vertex with repetition number 2. 
5 "Who you gonna call?" GraphBuster! (a.k.a. Ghostbuster). 
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b 

m 

Figure 11.3 

Sometimes, in drawing a geometrical representation of a graph (or multigraph or 
general graph), we may be forced to draw a curve that intersects another.6 

Figure 11.4 

Example. The complete graphs K 1 , K 2 , K 3, K 4, and K5 are drawn in Figure 11.4. 
It is not difficult to convince oneself that, in each drawing of K 5 , there are always at. 
least two edge-curves which intersect at a point that is not a vertex-point. Another 
way to draw Ks is as a pentagon with an inscribed pentagram. LJ 

A general graph G is called planar, provided that it ·can be represented by iI 

drawing in the plane in the manner just described in such a way that two edgt·­
curves intersect only at vertex-points. Such a drawing is called a plane-graph and is 
a planar representation of G. The drawings of K 1 , K 2 , K3, and K4 in Figure 11.4 an' 
plane-graphs, and, consequently, those graphs are planar. The drawing of K5 is not iI 

6But remember our rule that does not allow an edge-curve a to contain a vertex-point x unl"" 
vertex x is incident with edge a. 



11.1. BASIC PROPERTIES 399 

plane-graph, because two edge-curves intersect at a point that is not a vertex-point, 
and, indeed, K5 is not planar. Planar graphs are discussed in Chapter 13. 

The degree (valence) of a vertex x in a general graph G is the number deg( x) of 
edges that are incident with x. If a = {x, x} is a loop joining x to itself, then a 
contributes 2 to the degree of x.7 To each general graph G we associate a sequence of 
numbers that is the list of the degrees of the graph's vertices in nonincreasing order: 

We call this sequence the degree sequence of G. 
The degree sequence of the general graph in Figure 11.3 is 

(6,5,5,5,5,5,3,2,2,1,1,1,1). 

The degree sequence of a complete graph Kn is 

(n - 1, n - 1, ... , n - 1), (( n - 1) repeated n times). 

The result stated in Theorem 11.1.1 appeared in Euler's first paper on graphs. 

Theorem 11.1.1 Let G be a general graph. The sum 

of the degrees of all the vertices of G .is an even number, and, consequently, the number 
of vertices of G with odd degree is even. 

Proof. Each edge of G contributes 2 to the sum of the vertex degrees, 1 to each of 
its two vertices, or 2 to one vertex in the case of a loop. If a sum of integers is even, 
then the number of odd integer summands must also be even. 0 

Example. At a party, a lot of handshaking takes place among the guests. Show that, 
at the end of the party, the number of guests who have shaken hands an odd number 
of times is even. 

The handshaking at the party can be modeled by a multigraph. The vertices are 
the guests. Each time two guests shake hands we join them by a new edge. The result 
is a multigraph to which we can apply Theorem 11.1.1. 0 

Two general graphs G = (V, E) and G' = (V', E') are called isomorphic, provided 
that there is a one-to-one correspondence 

8: V ~ V' 

between their vertex sets such that, for each pair of vertices x and y of V, there are 
as many edges of G joining x and y as there are edges of G' joining 8(x) and 8(y). 

7Because both vertices of a = {x, x} equal x, a is incident "twice" with x. 
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The one-to-one correspondence e is called an isomorphism of G and G'. The notion of 
isomorphism is one of "sameness." Two general graphs are isomorphic if and only if, 
apart from the labeling of their vertices, they are the same.s If G and G' are graphs, 
then we can express the fact that the two graphs G and G' are isomorphic by asserting 
that there is a one-to-one correspondence between their vertex sets V and V', such 
that two vertices of V are adjacent in G if and only if the corresponding vertices are 
adjacent in G'. This relationship holds because, in graphs, two vertices are joined by 
either one or zero edges. 

G G' 

Figure 11.5 

Example. Isomorphic graphs have the same order and the same number of edges, 
but these properties do not guarantee that two graphs are isomorphic. 

First, consider the two graphs G and G' shown in Figure 1l.5. These graphs an" 
isomorphic since each is a graph of order 4 with each pair of distinct vertices adjacent, 
and thus each graph is a complete graph of order 4. This example illustrates the fact 
that a graph may be drawn in various ways (as in this example one drawing may bl' 
a plane-graph and the other not) and the actual way in which it is drawn is of no 
significance insofar as isomorphism is concerned. What matters is only whether two 
vertices are adjacent or not (or, in the case of general graphs, how many edges joill 
each pair of vertices). [I 

G G' 

Figure 11.6 

Now consider the two graphs G and G' drawn in Figure 1l.6. Are these graphs 
isomorphic? They have the same order and they have the same number of edges. But 

Sput another way, two general graphs are isomorphic, provided that one is the other in disgui8<' 
The one-to-one correspondence (} is the "unmasking" of G' to reveal that G' is really G: If 8(x) = y', 
then under the "mask" sits x. 
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the graph G has a vertex whose degree equals 1, while there is no vertex of G' with 
degree equal to 1. Such a situation cannot occur if two graphs are isomorphic. For 
~uppose that there is an isomorphism 8 between G and G'. Then, for each vertex x of 
G, the vertex 8(x) of G' has the same degree as x. In particular, if a number occurs 
as the degree of a vertex of G, then it must also occur as the degree of a vertex of 
G'. We conclude that G and G' are not isomorphic. More generally, the same kind of 
reasoning shows that isomorphic graphs must have the same degree sequence. 0 

Example. In this example we show that two graphs may not be isomorphic, even if 
they have the same degree sequence. Consider the two graphs in Figure 11.7. Each 
of the graphs has degree sequence equal to (3,3,3,3,3,3). Yet these graphs are not 
isomorphic. This can be seen as follows: In the first graph, G in Figure 11.7, there 
are three vertices x, y, and z, the members of each pair of which are adjacent.9 In the 
second graph, G' of that figure, no set of three vertices has this property. If 8 were an 
isomorphism between the two graphs, then 8(x), 8(y), and 8(z) would be three vertices 
of G', the members of each pair of which were adjacent. We conclude that G and G' 
are not isomorphic. 0 

Figure 11.7 

We summarize our observations in the next theorem. 

Theorem 11.1.2 Two isomorphic general graphs have the same degree sequence, but 
two graphs with the same degree sequence need not be isomorphic. 

In the example preceding the theorem, we used another necessary condition for 
two graphs to be isomorphic. Before recording it, we introduce more basic concepts. 

Let G = (V, E) be·a general graph. A sequence of m edges of the form 

(11.1) 

is called a walk of length m, and this walk joins t,he vertices Xo and X m . We also denote 
the walk (11.1) by 

Xo - Xl - X2 - ... - x m · (11.2) 

9They form a K 3 . 
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The walk (11.2) is closed or open depending on whether Xo = Xm or Xo l' Xm- A walk 
may have repeated edges.lO If a walk has distinct edges, then it is called a tmil.ll If, 
in addition, a walk has distinct vertices (except, possibly, Xo = xm ), then the walk 
is called a path. A closed path is called a cycle. It is easy to show, and is left as 
an exercise, that the edges of a trail joining vertices Xo and Xm can be partitioned 
so that one part of the partition determines a path joining Xo and Xm , and the other 
parts determine cycles. In particular, the edges of a closed trail can be partitioned 
into cycles. The length of a cycle of a graph is at least 3. In a general graph, a loop 
forms a cycle of length 1, and an edge {a, b} of multiplicity m ;?: 2 determines .a cycle 
{a, b}, {b, a} (or a - b - a) of length 2. 

Example. Consider the general graph GraphBuster in Figure 11.3. Then we have 
the following statements: 

(1) a - d - b - d - c - d - h - 9 - h - m - k - i is a walk of length 11 joining vertex 
a and vertex i, but it is not a trail. 

(2) a - d - e - f - e - m - k - I - k - i is a trail of length 9 joining a and i, but it. 
is not a path. 

(3) a - d - e - m - k - i is a path of length 5 joining a and i. 

(4) d - e - f - e - m - h - d is a closed trail of length 6, but it is not a cycle. 

(5) Each of f - f, e - f - e, and d - e - m - h - d is a cycle. o 

A general graph G is called connected, provided that, for each pair of vertices x and 
y, there is a walk joining x and y (equivalently, a path joining x and y). Otherwise, G 
is disconnected. In a disconnected general graph there is at least one pair of vertices ;1" 

and y for which there is no way to get from x to y (or from y to x) by "walking" alon~ 
the edges of G. For most purposes, it suffices to consider only connected graphs. III 
a connected graph, d(x, y) denotes the shortest length of a walk joining the vertices 
x and y and is called the distance between x and y. We define d(x, x) = 0 for each 
vertex x. It is clear that 'a walk joining x and y of length d(x, y) is a path. 

IOThis comment requires further explanation in case we are dealing with a general graph that is lllli 

a graph. In a general graph G, each edge has a multiplicity that may be greater than 1. We do nlll 

regard an edge as repeated in a walk if the number of times it occurs in the walk does not exceed it., 
multiplicity. An edge is repeated only if the number of times it occurs in the walk is greater than tIll' 
number of "copies" available in G. This is perfectly reasonable when we consider a drawing of G, ['" 
if an edge a = {a, b} has multiplicity 5, say, then in the drawing there are five different edge-curv," 
joining the vertex-points a and b. 

llThus, in a trail the number of times an edge occurs cannot exceed its multiplicity. 
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Figure 11.8 

a 

----.. g 

c 

b 

Figure 11.9 

Example. The graph drawn in Figure 11.8 is disconnected. There is no walk from 
vertex a to vertex d. This example illustrates the fact that a disconnected graph can 
always (and should always!) be drawn so that the resulting geometric entity consists 
of two disjoint parts. Another way to draw the graph of this example is given in Figure 
11.9, but it would be foolish to draw it that way. In general, we try to draw a graph 
in a way that reveals its structure. 0 

Let G = (V, E) be a general graph. Let U be a subset of V and let F be a 
submultiset of E, such that the vertices of each edge in F belong to U. Then G' = 
(U, F) is also a general graph called a general subgraph of G. 12 If F consists of all 
edges of G that join vertices in U, then G' is called an induced general subgraph of G 
and is denoted by Gu. In case U is the entire set V of vertices of G then G' is called 
spanning. Thus, an induced general subgraph of G is obtained by selecting some of the 
vertices of G and all of the edges of G that join them. A spanning general subgraph 
Is obtained by taking all the vertices of G and some (possibly all) of the edges of G. 

Example. Let G be the general graph GraphBuster in Figure 11.3. In Figure 11.10, 
there is given 

(1) A general subgraph that is neither induced nor spanning 

(2) A general subgraph that is induced but not spanning 

12If G is a graph (or multigraph), then G' is also a graph (multigraph) and is called a subgmph 
(.ubmultigmph). In all definitions like this one, we shall drop the modifier geneml when we are dealing 
with graphs. 



404 CHAPTER 11. INT.RODUCTION TO GRAPH THEORY 

(3) A general sub graph (which happens to be a graph) that is spanning, but not 
induced. 0 

+ 
(i) (ii) (iii) 

Figure 11.10 

The next theorem, which states that a general graph consists of one or more 
connected general graphs, is clear intuitively. We leave the formal verfication for the' 
Exercises. 

Theorem 11.1.3 Let G = (V, E) be a general graph. Then the vertex set V can bl' 
uniquely partitioned into nonempty parts VI, V2 , . .. , Vk so that the following conditions 
are satisfied: 

(1) The general subgraphs GI = (VI, Ell, G2 = (V2, E 2 ), ... , Gk = (Vb Ek) induced 
by VI, V2 , ... , Vk , respectively, are connected. 

(2) For each i =I j and each pair of vertices x in Vi and y in I-j, there is no walk 
that joins x and y. 

The general graphs G I , G2 , ... , Gk in Theorem 11.1.3 are the connected compo­
nents of G. Part (1) of the theorem says that the connected components are indeed 
connected; part (2) asserts that the connected components are maximal connected 
induced general subgraphs; that is, for each i and for each set U of vertices, such thaL 
Vi is contained in U but Vi =I U, the general subgraph induced by U is disconnected. 

In the next theorem we formulate additional necessary conditions in order that 
general graphs be isomorphic. Its proof should now be obvious, and formal verificatioll 
is left for the Exercises. 

Theorem 11.1.4 Let G and G' be two general graphs. Then the following are neces­
sary conditions for G and G' to be isomorphic: 

(1) IfG is a graph, so is G'. 

(2) If G is connected, so is G'. More generally, G and G' have the same number oj 
connected components. 

(3) If G has a cycle of length equal to some integer k, then so does G'. 
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(4) If G has an (induced) general subgraph that is a complete graph Km of order m, 
so does G'. 

The graphs G and G' in Figure 11. 7 are not isomorphic since one has a cycle of 
length 3 (a subgraph isomorphic to K 3 ) and the other doesn't. 

We conclude this section by showing that a general graph may also be described 
by a matrix whose entries are nonnegative integers. 

Let G be a general graph of order n and let its vertices be, in some order, 
ai, a2,··· , an· Let A be the n-by-n array such that the entry aij in row i, column 
j equals the number of edges joining the vertices ai and aj, (1 :s: i,j :s: n). We always 
have13 aij = aji, and aii counts the number of loops at vertex ai. The matrix A is 
called the adjacency matrix of G. In case G is a graph, then A is a matrix of Os and 
is and the entry aij equals 1 if and only if ai and aj are adjacent in G. 

Figure 11.11 

Example. Figure 11.11 shows a general graph of order 6 whose 6-by-6 adjacency 
matrix is 

0 1 2 0 1 0 
1 1 0 0 2 0 
2 0 0 1 1 1 
0 0 1 1 2 2 
1 2 1 2 0 0 
0 0 1 2 0 0 

We can start with either the general graph or the adjacency matrix and then construct 
~~~. 0 

The adjacency matrix is uniquely determined by a general graph, apart from the 
ordering of its rows and columns. This is because, before we can form the adjacency 
matrix, we must first list the vertices in some order. Conversely, the adjacency matrix 

13The matrix is symmetric. 
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of a general graph uniquely determines the general graph up to isomorphism; that is, 
any two general graphs with the same adjacency matrix are isomorphic. 

11.2 Eulerian Trails 

In his paper on graph theory published in 1736, Euler solved the now famous Konigsberg 
bridge problem: 

Figure 11.12 

The old city of Konigsberg in East Prussia was located along the banks and 
on two islands of the Pregel River, with the four parts of the city connected 
by seven bridges as shown in Figure 11.12. On Sundays, the citizens of 
Konigsberg would promenade about town, and the problem arose as to 
whether it was possible to plan a promenade so that each bridge is crossed 
once and only once, ending the promenade where it began. 

Euler replaced the map of Konigsberg with the general graph G drawn in Figure' 
11.13. In terms of G and the terminology we have now introduced, the problem is til 
determine whether there exists a closed trail that contains all the edges of G. 

A 

B*-----------------~~C 

D 

Figure 11.13 
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Example. Consider the plight of the mail carrier14 who, starting at the post office, 
wishes to deliver the mail to the houses on the preassigned streets and then end up 
back at the post office at the end of the day. What the mail carrier would like is a 
way to deliver all the mail without having to walk over any street after having already 
delivered the mail on that street. Can we help the mail carrier? 

Well, maybe we can and maybe we can't. But we surely should recognize his 
or her problem as a problem in graph theory. Let G be the general graph that can 
be associated with the street map of a city. (See the introductory remarks for this 
chapter.) Let G' be the general subgraph consisting of the vertices and edges of G that 
correspond to the mail carrier's assigned streets. The mail carrier desires a closed trail 
in G' that contains each edge of G' exactly once. Thus, we have the same mathematical 
problem as the citizens of Konigsberg had over 200 year~ ago, but relative to a different 
general graph. 0 

Motivated by these problems, we make some definitions. A trail in a general graph 
G is called Eulerian, provided that it contains every edge of G. Recall that a trail in 
a general graph by definition contains each edge at most once, where we interpret this 
to mean that the number of times that an edge occurs on the trail does not exceed 
its multiplicity. Both the citizens of Konigsberg and the mail carrier seek a closed 
Eulerian trail. We can easily see that the Konigsberg bridge general graph in Figure 
11.13 does not have a closed Eulerian trail. We reason as follows: Imagine actually 
promenading on a closed Eulerian trail in a general graph. Except for the first time 
you leave the vertex at which you begin, every time you go into a vertex you leave 
it (by a new edge; that is, by one that you had not yet gone over). When you finish 
up, you go into the beginning vertex but don't leave it. This means that the edges 
which are incident with a given vertex can be paired up: One edge of each pair is used 
to enter the vertex and one is used to leave it. 15 If the edges incident with a vertex 
can be paired up, that means that there must be an even number of edges at each 
vertex. We thus conclude that for a general graph to have a closed Eulerian trail, 
the degree of each vertex must be even. Since the four vertices of the general graph 
for the Konigsberg bridge problem have odd degree, the graph does not have a closed 
Eulerian trail. 

Theorem 11.2.2 asserts that the necessary condition for a closed Eulerian trail 
derived in the preceding discussion is also sufficient for a connected general graph. 
Before proving it, we establish a lemma, which is also of independent interest. 

Lemma 11.2.1 Let G = (V, E) be a general graph and assume that the degree of each 
vertex is even. Then each edge of G belongs to a closed trail and hence to a cycle. 

l4Changemail carrier to street sweeper or snowplow operator to obtain a different formulation of 
the same mathematical problem. 

15If we think of starting our promenade in the "middle" of an edge, then we do not need to distinguish 
a beginning vertex: Each time we enter a vertex we also leave it. 
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Proof. We can find a closed trail containing any prescribed edge QI = {xo, xd using 
the next a1gorithm. In this algorithm, we construct a set W of vertices and a set F of 
edges. 

(1) Put i = 1. 

(2) Put W = {xo,xd. 

(3) Put F = {Qd. 

Algorithm for a closed trail 

( 4) While Xi of- Xo, do t he following: 

(a) Locate an edge QHI = {Xi,Xi+1} not in F. 

(b) Put Xi+l in W (Xi+! may already be in W). 

(c) Put QHI in F. 

( d) Increase i by 1. 

Thus, after the initialization in (1)-(3), at each stage of the algorithm we locate a 
new edgel6 Qi+! = {Xi,XHd incident with the most recent vertex Xi put in W, add 
XHI to Wand Qi+! to F, and then increase i by 1 and repeat until we finally arrive 
at Xo again. 

Suppose that an edge Qi+! satisfying (4) (a) exists whenever Xi of- Xo. Let the 
terminal value of i be k, giving -the set W = {Xo, Xl, ... , Xk} of vertices and the multiset 
F = {QI, ..• , Qk} of edges. It then follows from the description of the algorithm that 

(11.3) 

is a closed trail containing the initial edge Qo. Thus, we have only to show that, jf 
Xi of- Xo, then there is an edge not in F that is incident with Xi. It is here where the 
hypothesis of even degrees comes in. 

It is readily seen that, at the end of each step (4)(d) of the algorithm, each vertex 
of the general graph H = (W, F) has even degree, except possibly for the vertex Xo 
(which starts out with odd degree 1) and the most recent new vertex Xi (whose degre(' 
has just been increased by 1). Moreover, Xo and Xi have even degree if and only if 
Xo = Xi. Thus, if Xi of- Xo, Xi has odd degree in the general graph H. Since Xi has evell 
degree in G, there must be an edge QHI = {Xi, xi+d not yet in F that is incidenl. 
with Xi. Thus, at the end of the algorithm, Xk = Xo and (11.3) is a closed trail. 

The edges of a closed trail can be partitioned into cycles, and the proof of tll(' 
lemma is complete. r 1 

16More precisely, one whose multiplicity in F is less than that in the edge set E of our graph C. 
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Example. We apply the algorithm for a closed trail to the general graph G drawn 
in Figure 11.14. One way to carry out the algorithml7 is illustrated in the following 
table, where the initial edge is {a, b}: 

i Xi . eli W F 
1 b , {a,b} a,b {a, b} 
2 c {b,c} a,b,c {a,b},{b,c} 
3 d {c,d} a,b,c,d {a,b},{b,c},{c,d} 
4 b {d, b} a, b,c,d {a,b},{b,c},{c,d},{d,b} 
5 h {b,h} a,b,c,d,h {a,b},{b,c},{c,d},{d,b}, 

{b, h} 
6 a {h,a} . a,b,c,d,h {a,b},{b,c},{c,d},{d,b}, 

{h, b}, {h, a} 

We thus obtain the closed tTail 

{a,b},{b,c},{c,d}, {d,b},{h,b},{h,a} 

and the cycle 
{a,b},{b,h},{h,a} 

containing the edge {a, b}. o 

h 

d 

e 

Figure 11.14 

Theorem 11.2.2 Let.G be a connected geneml gmph. Then G has a closed Eulerian 
tmil if and only if the degree of each vertex is even. 

Proof. We have already observed that, if G has a closed Eulerian trail, then each 
vertex has even degree. 

Now assume that every vertex of G has even degree, and let GI = (V, E I ) be the 
gtraph G. We choose any edge ell of GI and apply the algorithm for a closed trail 

17Since at each stage of the algorithm there may be more than one choice for a new edge, there will, 
in general, be many ways in which to carry out the algorithm. 
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given in the proof of Lemma 11.2.1 to obtain a closed trail 1'1 containing the edge a1. 
Let C2 = (V, E2 ) be the general graph obtained by removing· from E1 the edges that 
belong to the closed trail 1'1. All vertices have even degree in G2 . If E2 contains at 
least one edge, then since we started with G1 connected, there must be an edge a2 of 
G 2 that is incident with a vertex zIon the closed trail 1'1. We apply the algorithm 
for a closed trail to G2 and the edge a2 and obtain a closed trail 1'2 containing the 
edge a2. We now patch18 1'1 and 1'2 together at the vertex Zl and obtain a closed 

trail 1'1 "11'2 that includes all the edges of both 1'1 and 1'2. Let G3 = (V, E3) be the 
general graph obtained by removing the edges of 1'2 from E2 . If E3 contains at least 
one edge, then it contains an edge a3 which is incident with a vertex Z2 on the closed 
trail 1'1 "1 1'2. We apply the algorithm for a closed trail to G3 and the edge a3 and 
obtain a closed trail 1'2 containing the edge a3. We then patch 1'1 "11'2 and 1'3 together 
at vertex Z2 and obtain the closed trail 1'1 "11'2 Z11'3, which19 includes all the edge~ 
of 1'1, 1'2 and 1'3. We continue like this until all edges have been included in a closed 

Zl Z2 Zk-l 
trail 1'1 * 1'2 * ... * I'k. Thus, repeated calls to our algorithm for a closed trail give 
an algorithm to construct a closed Eulerian trail in a connected general graph, each 
of whose vertices has even degree. [J 

Example. We continue with the preceding example and obtain a closed Eulerian trail 
in the general graph G of Figure 11.14, using the algorithm in the proof of Theorem 
11.2.2. Since the algorithm requires us to make choices, there are several ways to carry 
out the algorithm. One possible result is the following: 

1'1 = a - b - c - d - b - h - a, 
1'2 = b - e - b, (Zl = b), 

b 
1'1 * 1'2 = a - b - e - b - c - d - b - h - a, 

1'3 = b - 9 - b, (Z2 = b), 

b b 
1'1 * 1'2 * 1'3 = a - b - 9 - b - e - b - c - d - b - h - a, 

1'4 = h - i -:- a - h, (Z3 = h), 

b b h 
1'1 * 1'2 * 1'3 * 1'4 = 

a - b - 9 - b - e - b - c - d - b - h - i-a - h - a. 

L I 

18We traverse /1 until we first come to the vertex ZI, completely traverse /2 ending up at vertex z" 
and then finish our traversal of /1. 

19This notation is a little ambiguous. Do you know why? 
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Theorem 11.2.2 and its proof furnish a characterization of general graphs with a 
closed Eulerian trail and an algorithm for constructing a closed Eulerian trail if one 
exists. For an open Eulerian trail we have the next theorem. 

Theorem 11.2.3 Let G be a connected general graph. Then G has an open Eulerian 
trail if and only if there are exactly two vertices u and v of odd degree. Every open 
Eulerian trail in G joins u and v. 

Proof. First, we recall from Theorem 11.1.1 that the number of vertices of G of odd 
degree is even. If there is in G an open Eulerian trail, then it must join two vertices 
u and v of G of odd degree, and every other vertex of G must have even degree (since 
each time the Eulerian trail goes into a vertex x different from u and v it leaves, 
resulting in a pairing of the edges incident with x). Now assume that G is connected 
and has exactly two vertices u and v of odd degree. Let G' be the general graph 
obtained from G by adding a new edge {u, v} joining u and v. Then G' is connected 
and each vertex now has even degree. Hence, by Theorem 11.2.2, G' has an Eulerian 
trail "('. We can think of "(' as beginning at the vertex v with first edge being the new 
edge {u, v} joining u and v. Removing this edge from "(' and starting at the vertex u, 
we obtain an open Eulerian trail "( in G joining u and v. We can apply the algorithm 
for a closed Eulerian trail to G' and thereby obtain an algorithm for an open Eulerian 
trail in G. 0 

The previous theorem is further generalized in the next theorem. We leave the 
proof for the Exercises. 

Theorem 11.2.4 Let G be a connected general graph and suppose that the number of 
vertices of G with odd degree is m > O. Then the edges of G can be partitioned into 
m/2 open trails. It is impossible to partition the edges of G into fewer than m/2 open 
trails. 

Figure 11.15 
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Figure 11.16 

Example. Consider the graphs drawn in Figures 11.15, 11.16, and 11.17. Is it 
possible to trace these plane graphs with a pencil without removing the pencil from 
the paper? 

To trace a plane graph without removing our pencil from the paper, it is necessary 
and sufficient that there is an Eulerian trail, either open or closed. The vertices of the 
graph drawn in Figure 11.15 all have degree equal to 4 and hence, by Theorem 11.2.2, 
the graph is traceable. The graph drawn in Figure 11.16 has two vertices of odd degree 
and hence, by Theorem 11.2.3, has an open Eulerian trail joining the two vertices of 
odd degree. The graph drawn in Figure 11.17 has four vertices of odd degree and 
hence, by Theorem 11.2.3, is not traceable. However it follows from Theorem 11.2.4 
that this graph can be traced if we are allowed to lift the pencil once from the paper. 
The proof of Theorem 11.2.2 contains an algorithm to trace a plane graph when a 
tracing exists. 0 

Figure 11.17 

By Theorem 11.2.4, if a general graph G has m > 0 vertices of odd degree, then 
the edges can be partitioned into m/2 open trails, each trail joining two vertices of 
odd degree. If we want to trace out G as discussed in the previous example, thell 
it is necessary to lift the pencil only (m/2) - 1 times. In tracing out G, lifting the 
pencil is no great hardship, but if G represents the route of a mail carrier (as discussed 
in the example at the beginning of this section) who has to deliver mail on foot 011 

each of the streets corresponding to the edges of G, then what's the mail carrier tu 
do? Fly? If the mail carrier's route does not contain a closed Eulerian trail, then ill 
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order for all the mail to be delivered and for the mail carrier to return to the post 
office, the mail carrier will have to walk over some streets more than once. How can 
we minimize the number of streets that the mail carrier will have to walk over after 
already having delivered the mail at the houses on those streets? This problem is 
known as the Chinese postman problem. 2o A precise formulation is the following: 

Chinese postman problem: Let G be a connected general graph. Find a 
closed walk of shortest length which uses each edge of G at least once. 21 

We close this section with a simple observation concerning the solution of the 
Chinese postman problem. 

Theorem 11.2.5 Let G be a connected general graph having K edges. Then there is 
a closed walk in G of length 2K in which the number of times an edge is used equals 
twice its multiplicity. 

Proof. Let G* be the general graph obtained from G by doubling the multiplicity of 
each edge of G. Then G* is a connected graph with 2K edges. Moreover, each vertex 
of G* has even degree (twice its degree in G). Applying Theorem 11.2.2 to G*, we see 
that G* has a closed Eulerian trail. This closed trail in G* is a closed walk in G of the 
required type. 0 

Example. Consider a graph Gwith vertices 1,2, ... ,n and edges {1,2}, {2,3}, ... ,'{n-
1, n}. Thus, the edges of G form a path joining vertex 1 to vertex n. Any closed walk 
in G that includes each edge must include each edge at least twice. Thus, if the post 
office is at vertex k, our Chinese postman can do no better than to walk to vertex 1, 
retrace his steps back to the post office, walk to vertex n, and retrace his steps back 
to the post office. The length of such a' walk is 2(n - 1), that is, twice the number of 
edges. The graph G is a simple instance of a tree. Trees are studied in Sections 11.5 
and 11. 7. For a tree, the smallest length of a closed walk that includes each edge at 
least once equals twice the number of edges. (See Exercise 78.) 0 

While the Chinese postman problem, as we have phrased it, may be interesting 
from a purely mathematical point of view, it is not very practical. This is because we 
have not taken into account the length of the streets. Some streets may be very long, 
while others are very short. If the mail carrier has to repeat some streets, obviously 
the shorter ones are to be preferred. To make the problem practical, we should attach 
a nonnegative weight to each edge and then measure a walk not by its length (the 
number of its edges) but by its total weight (the sum of the weights of its edges, 

20Not because it has particular relevance to China, btlt because it was introduced by the Chinese 
mathematician M, K. Kwan in a paper, Graphic Programming Using Odd or Even Points, Chinese 
Math., 1 (1962), 273-277. 

2\ A solution to this problem is given in J. Edmonds and E. L. Johnson, Matching, Euler Tours and 
the Chinese Postman, Math. Programming, 5 (1973),88-124. 
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counting the weight of an edge the number of times that it is used in the walk). The 
practical Chinese postman problem is to determine a walk of smallest weight which 
includes each edge at least once. This problem has also been solved satisfactorily from 
an algorithmic point of view. 22 

11.3 Hamilton Paths and Cycles 

In the nineteenth century, Sir William Rowan Hamilton invented a puzzle whose object 
was to determine a route on the sides of a dodecahedron23 that started at some corner 
and returned there after having visited every other corner exactly once. The corners 
and sides of a dodecahedron determine a graph with 20 vertices and 30 edges, which 
is drawn in Figure 11.18. There are many readily discovered solutions to Hamilton's 
puzzle.24 

Figure 11.18 

Hamilton's puzzle can be formulated for any graph: 

Given a graph G, can one determine a route along the edges of G that 
begins at some vertex and then returns there after having visited every 
other vertex exactly once? 

Today, a solution to Hamilton's puzzle for a graph G is called a Hamilton cycle. Mon· 
precisely, a Hamilton cycle of a graph G of order n is a cycle of G of length n. Hence, 
a Hamilton cycle in the graph G of order n is a cycle 

Xl - X2 - ... - Xn - Xl 

22Ibid. 
23The dodecahedron is one of the regular solids. It is 'bounded by 12 regular pentagons which con", 

together at 30 sides, determining 20 corner points. 
24And this perhaps explains why Hamilton's puzzle was not a great commercial success. 
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of length n, where Xl, X2, .•. , Xn are the n vertices of G in some order. A Hamilton 
path in G joining vertices a and b is a path 

a = Xl - X2 - ... - Xn = b 

of length n - 1 of G. Thus, a Hamilton path in G is given by a permutation of the ,n 
yertices of G in which consecutive vertices are joined by an edge of G. The Hamilton 
path joins the first vertex of the permutation to the last. The edges of a Hamilton 
path and of a Hamilton cycle are necessarily distinct. 

We can also consider Hamilton paths and cycles in general graphs, but higher 
multiplicities of edges have no impact on the existence and nonexistence of Hamilton 
paths and cycles. Whether or not there is a Hamilton path or Hamilton cycle is 
determined solely by which pairs of vertices are joined by an edge and not by the 
mUltiplicity of an edge joining a pair of vertices. For this reason. we consider only 
graphs, and not general graphs, in this section. 

Example. A complete graph Kn of order n ~ 3 has a Hamilton cycle. In fact, since 
each pair of distinct vertices of Kn forms an edge, each permutation of the n vertices 
of Kn is a Hamilton path. Since the first vertex and last vertex are joined by an edge, 
each Hamilton path can be extended to a Hamilton cycle. We thus see that Kn has n! 
Hamilton paths and (n -1)! Hamilton cycles (corresponding to circular permutations 
of length n). 0 

Example. For each of the two graphs drawn in Figure 11.19, determine whether there 
is a Hamilton path or cycle. 

First, consider the graph on the left. Then a - b - c - d - I - e - a is a Hamilton 
cycle, and thus a - b - c - d - I - e is a Hamilton path. Another Hamilton path is 
a - b - c - d - e - I, but this Hamilton path cannot be extended to a Hamilton cycle 
since a and I are not joined by an edge. 

Now consider the "dumbbell" graph on the right. A Hamilton path is a - b - c - d­
e - I, but this graph does not have a Hamilton cycle. The reason is that a Hamilton 
cycle is closed, and thus would have to cross the "bar" of the dumbbell twice, but this 
is not allowed in a Hamilton cycle. 0 

a .. __________________ .. e 

b 

Figure 11.19 



416 CHAPTER 11. INTRODUCTION TO GRAPH THEORY 

At first glance, the question of the existence of a Hamilton cycle in a graph seems 
similar to the question of the existence of a closed Eulerian trail in a graph. For the 
latter, we seek a closed trail that includes every edge exactly once. For the former, 
we seek a closed path that includes every vertex exactly once. Beyond this superficial 
resemblance, the two questions are very much different. In Theorem 11.1.1 an easily 
verifiable characterization of (general) graphs with a closed Eulerian trail is given, 
and we have a satisfactory algorithm for constructing one when those conditions are 
met. No such characterization exists for graphs with a Hamilton cycle, nor is there 
a satisfactory algorithm for constructing a Hamilton cycle in a graph, should one 
exist. The problem of the existence and construction of Hamilton cycles (and paths) 
in graphs has been investigated quite extensively and continues as a major research 
question in graph theory. 

So if we cannot characterize graphs with Hamilton cycles (that is, find conditions 
which are both necessary and sufficient for their existence in a graph), we must be 
content to find conditions that are sufficient for their existence (that is, guarantee a 
Hamilton cycle) and, separately, conditions that are necessary for their existence (so if 
they are not met, guarantee that there is no Hamilton cycle). One obvious necessary 
condition for a Hamilton cycle is that the graph must be connected. Another less 
obvious condition was hinted at in our analysis of the dumbbell graph in Figure 11.19. 

An edge of a connected graph is called a bridge, provided its removal from the graph 
leaves a disconnected graph. In a certain sense, a connected graph with a bridge i~ 
just barely connected: Remove the bridge and the graph "breaks apart." The bar of 
the dumbbell graph in Figure 11.19 is a bridge. 

Theorem 11.3.1 A connected graph of order n ~ 3 with a bridge does not have (J. 

Hamilton cycle.25 

Proof. Suppose that a = {x, y} is a bridge of a connected graph G. Let G' 1)(' 
the graph obtained from G by removing the edge a but not any vertices. Since (,' 
is connected, G' has two connected components. 26 Suppose G has a Hamilton cych· 
'Y. Then'Y would, say, begin in one of the components in G'; would eventually crO~H 
over to the other, via a; and then would have to cross back to the first, also via n. 
But then 'Y is not a Hamilton cycle since it would include the edge a twice (in fact, G 
cannot even have an Eulerian cycle). L I 

We now discuss a simple sufficent condition for a Hamilton cycle in a graph whi('1i 
is due to Ore.27 

Let G be a: graph of order n, and consider the following property which mayor 
may not be satisfied in G: 

25 Although it might have a Hamilton path. 
26If G' had more than two connected components, then putting the edge a back could only comhi,,.. 

two of these components and the resulting graph (namely, G) would be disconnected, contrary I" 

assumption. 
270. Ore, A Note on Hamilton Circuits, Amer. Math. Monthly, 67 (1960), 55. 
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Ore property: For all pairs of distinct vertices x and y that are not adjacent, 

deg(x) + deg(y) 2: n. 

What are the implications for a graph which satisfies the Ore property? A graph 
all of whose vertices have "large" degree28 must have a lot of edges, and these edges 
are distributed somewhat uniformly throughout the graph. We would hope that such 
a graph would have a Hamilton cycle. 29 Suppose, for instance, that G is a graph 
with n = 50 vertices which satisfies the Ore property. If G had a vertex x of small 
degree, say, 4, this would imply that there are 45 vertices different from x that are 
not adjacent to x. By the Ore property, each of these 45 vertices has degree at least 
46. Thus, the Ore property implies either that all vertices have large degree or that 
there are some vertices of small degree and very many vertices of very large degree. 
Therefore, the Ore property compensates for the possible presence of vertices of small 
degree (which might keep a graph from having a Hamilton cycle) by forcing there to 
be a lot of vertices of high degree (which might help a graph to have a Hamilton cycle). 

Theorem 11.3.2 Let G be a graph of order n 2: 3 that satisfies the Ore property. 
Then G has a Hamilton cycle. 

Proof. Suppose that G is not connected. We then show that G cannot satisfy the 
Ore property. Since G is not connected, its vertices can be partitioned into two parts, 
U and W, in such a way that there are no edges joining a vertex in U with a vertex 
in W. Let r be -the number of vertices in U and let s be the number of verticed in W. 
Then r + s = n, and each vertex in U has degree at most r - 1, and each vertex in 
W has degree at most s - 1. Let x be any vertex in U and let y be any vertex in W. 
Then x and yare not adjacent, but the sum of their degrees is, at most, 

(r - 1) + (s - 1) = r + s - 2 = n - 2, 

and this contradicts the Ore property. We conclude that if G satisfies the Ore property, 
then G must be connected. 

To complete the proof of the theorem, we describe an aigorithm30 for constructing 
a Hamilton cycle in a graph that satisfies the Ore property. 

Algorithm for a Hamilton cycle 

(1) Start with any vertex and, by attaching adjacent vertices at either end, construct 
a longer and longer path until it is not possible to make it any longer. Let the 
path be 

I : Yl - Y2 - ... - Ym· 

28This will be made precise in Corollary 11.3.3. 
29If having a lot of edges well distributed over the graph did not guarantee a Hamilton cycle, what 

chance would we ever have of finding a condition that would? 
30The algorithm is implicit in Ore's proof of Theorem 11.3.2 and was explicitly formulated by M. 

O. Albertson. 
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(2) Check to see if Yl and Ym are adjacent. 

(i) If Yl and Ym are not adjacent, go to (3). Else Yl and Ym are adjacent, and 
go to (ii). 

(ii) If m = n, then stop and output the Hamilton cycle 

Yl - Y2 - ... - Ym - Yl· 

Else, Yl and Ym are adjacent and m < n, and go to (iii). 

(iii) Locate a vertex z not on I and a vertex Yk on I such that z is adjacent to 
Yk. Replace I with the path of length m + 1 given by 

z - Yk - ... - Ym - Yl ... - Yk-l, 

and go back to (2). 

(3) Locate a vertex Yk with 1 < k < m such that Yl and Yk are adjacent and Yk-J 

and Ym are adjacent. Replace I with the path 

Yl - ... - Yk-l - Ym - ... - Yk· 

The two ends of this path, namely, Yl and Yk, are adjacent, and go back to 
(2)(ii). 

To prove that the algorithm does construct a Hamilton cycle when the Ore property 
holds, we have to show that in (2)(iii) we can locate the specified vertex z, and in (3) 
we can locate the specified vertex Yk. 

First, consider (2)(iii). We have m < n. Since we have already shown that the Ore 
property implies that G is connected, there must be some vertex z not on the cycle I 
which is adjacent to one of the vertices Yl,··· , Ym. 

Now consider (3). We know that Yl and Ym are not adjacent. Let the degree of Yl 
be r and let the degree of Ym be s. By the Ore property, we have r + s ~ n. Since I is 
a longest path from step (1), Yl is adjacent to only vertices OR I and hence to r of the 
vertices Y2, ... , Ym-l· Similarly, Ym is adjacent to s of the vertices Y2, .. · , Ym-l. Each 
of the r vertices joined to Yl is preceded in the path I by some vertex, and one of 
these must be adjacent to Ym' For, if not, then Ym is adjacent to at most (m - 1) - r 
vertices and hence s ::; m - 1 - r. This means that 

r + s ::; m - 1 ::; n - 1, 

contrary to the Ore property. Thus, there is a vertex Yk such that Yl is adjacent to 
Yk and Ym is adjacent to Yk-!. Hence, the algorithm stops after having constructed It 
Hamilton cycle in G. 0 
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One way to guarantee the Ore property in a graph is to assume that all vertices 
have degree equal to or greater than half the order of the graph. This results in a 
theorem of Dirac,31, which was proved in 1952 before Theorem 11.3.2 but now is a 
consequence of it. 

Corollary 11.3.3 A graph of order n 2 3, in which each vertex has degree at least 
n/2, has a Hamilton cycle. 

A proof with algorithm similar to that given for Theorem 11.3.2 can be constructed 
for the next theorem in which a sufficient condition is given for a Hamilton path in a 
graph. We leave the proof as an exercise. 

Theorem 11.3.4 A graph of order n, in which the sum of the degrees of each pair of 
nonadjacent vertices is at least n - 1, has a Hamilton path. 

Example. The traveling salesperson problem. Consider a salesperson who is planning 
a business trip that takes him (or her) to certain cities in which he has customers and 
then brings him back home to the city from whence he started. Between some of the 
pairs of cities he has to visit, there is direct air service; between others there is not. 
Can he plan the trip so that he flies into each city to be visited exactly once? 

Let the number of cities to be visited, including his home city, be n. We let these 
cities be the vertices of a graph G of order n, in which there is an edge between 
two cities, provided that there is direct air service between them. Then what the 
salesperson seeks is a Hamilton cycle in G. If the graph G has the Ore property, then 
we know from Theorem 11.3.2 that there is a Hamilton cycle and, fram its proof, 
a good way to construct one. But, in general, there is no good algorithm known 
which will construct a Hamilton cycle for the salesperson or which will tell him that 
no Hamilton cycle exists. The problem as formulated is not the real problem that a 
traveling salesperson faces. This is because distances between the cities he has to visit 
will in general vary, and what he would like is a Hamilton cycle in which the total 
distance travelled is as small as possible.32 0 

11.4 Bipartite Multigraphs 

Let G = (V, E) be a multigraph. Then G is called bipartite, provided that the vertex 
set V may be partitioned into two subsets X and Y so that each edge of G has one 
vertex in X and one vertex in Y. A pair X, Y with this property is called a bipartition 

31G. A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc.,2 (1952), 69-8l. 
320n the other hand, he may want a Hamilton cycle that minimizes the total cost of his trip. 

Mathematically, there is no difference since, rather than attaching a weight to each edge that represents 
the distance between the cities it joins, we attach a weight that represents costs. In both cases we 
want a Hamilton cycle in which the sum of the weights attached to the edges of the cycle is minimum. 
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of G (and of its vertex set V). Two vertices in the same part of the bipartition are 
not adjacent. We usually picture a bipartite multigraph so that the vertices in X 
are on the left (and so are often called left vertices) and the vertices in Yare on the 
right (and so are often called right vertices).33 Note that a bipartite multigraph does 
not have any loops. A multigraph that is a subgraph of a bipartite multigraph or is 
isomorphic to a bipartite multigraph is also bipartite. 

Example. A bipartite multigraph with bipartition X, Y, where X = {a, b, c, d} and 
Y = {u,v,w}, is shown in Figure 11.20. 0 

Example. Consider the graph G shown in Figure 11.21. Although it is not apparent 
from the drawing, G is a bipartite graph. This is because we may also draw G as 
in Figure 11.22, which reveals that G has a bipartition X = {a, c, g, h, j, k}, Y 
{b, d, e, J, i}. 0 

a 

---_...,,;;;~u 

b 

v 

c 

w 

d 

Figure 11.20 

d 

Figure 11.21 

The previous example demonstrates that a drawing of a bipartite graph or a listiug 
of its edges may not directly reveal the bipartite property. A description of the edg('s 
of a graph may reveal a bipartition of its vertices. 

330f course, left and right are interchangeable. 
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a~:--___ b 

k 

Figure 11.22 

Example. Let G be the graph whose vertices are the integers from 1 to 20, with 
two integers joined by an edge if and only if their difference is an odd integer. We 
partition the vertices of G into the even integers and the odd integers. Since the 
difference between two odd integers is even and so is the difference between two even 
integers, two integers are adjacent in G if and only if one is odd and one is even. Thus, 
G is a bipartite graph with bipartition X = {I, 3, ... , 17, 19}, Y = {2, 4, ... , 18, 20}. 
o 

A bipartite graph34 G with bipartition X, Y is called complete, provided that each 
vertex in .X is adjacent to each vertex in Y. Accordingly, if X contains m vertices 
and Y contains n vertices, then G has m x n edges. A complete bipartite graph with 
m left vertices and n right vertices is denoted by Km,n. The graph G in the previous 
example is a KlO,lO. 

Since the bipartiteness of a multigraph may not be apparent from the way it is 
presented, we would like to have some alternative way to recognize bipartite multi­
graphs. 

Theorem 11.4.1 A multigraph is bipartite if and only if each of its cycles has even 
length. 

Proof. First, assume that G is a bipartite multigraph with bipartition X, Y. The 
vertices of a walk of G must alternate between X and Y. Since a cycle is closed, this 
implies that a cycle contains as many left vertices as it does right vertices and hence 
has even length. 

Now suppose that each cycle of G has even length. First, assume that G is con­
nected. Let x be any vertex of G. Let X be the set consisting of those vertices whose 
distance to x is even and let Y be the set consisting of those vertices whose distance 
to x is odd. Since G is assumed to be connected, X, Y is a partition of the vertices of 
G. We show that X, Y is a bipartition; that is, that no two vertices in X, respectively 
Y, are adjacent. Suppose, to the contrary, that there exists an edge {a, b} where a 
and b are both in X. Let 

a : x - ... - a and f3 : x - ... - b (H.4) 

34Not bipartite multigraph. 
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be walks of shortest length from x to a and x to b, respectively. Since the first vertex 
of each of these walks is x, there is a vertex z that is the last common vertex of these 
two walks. Thus, the walks in (11.4) are of the form 

a : x - ... - z - ... - a and /3 : x - ... - z - ... - b. (11.5) 

We break each of these walks into two smaller walks: 

al : x - ... - a and a2 : z - ... - a, 

and 
/31 : x - ... - z and i32 : z - ... - b. 

The walks a2 and i32 have no vertices in common other than z. Since the walks a 
from x to a and /3 from x to b in (11.5) are shortest walks, the walks al and /31 must 
have the same length; if, for instance, al had smaller length than /31, then we could 
combine al with /32 and produce a walk from x to b of length smaller than that of /3, 
a contradiction. Therefore, the two walks a2 and /32 are both of odd length or both 
of even length. The edge {a, b} now implies the existence of a cycle 

z-···-a-b-· .. -z 

of odd length, contrary to hypothesis. Thus, there cannot be an edge joining two 
vertices in X, and, similarly, we show that there can be no edge joining two vertices 
in Y. Hence G is bipartite. 

If G is not connected, then we apply the preceding argument to each connected 
component of G and conclude that each component is bipartite. But this implies that 
G is bipartite as well. 0 

In Section 11.7 we give a simple algorithm for determining the distances from a 
specified vertex x of a connected graph to every other vertex. Referring to the proof 
of Theorem 11.4.1, this will determine a bipartition of G if G is bipartite. 

Example. Let n be a positive integer. We consider the set of all n-tuples of Os and 
Is as the vertices of a graph Qn with two vertices joined by an edge if and only if they 
differ in exactly one coordinate. If x = (Xl, ... , xn) and Y = (Yl, ... , Yn) are joined by 
an edge, then the number of Is in Y is either one more or one less than the number of 
Is in x. Let X consist of those n-tuples that have an even number of Is; let Y consist 
of those n-tuples that have an odd number of Is. Then two distinct vertices in X 
differ in at least two coordinates and hence are not adjacent. Similarly, two distinct 
vertices in Yare not adjacent. Hence, Qn is a bipartite graph with bipartition X, Y. 

Qn is the graph of vertices and edges of an n-dimensional cube. The graphs Q2 
and Q3 are shown in Figures 4.2-4.3, however, in a way that does not automatically 
reveal their bIpartite nature; the drawings given in Figure 11.23 do. The reflected 
Gray code constructed in Section 4.3 is a Hamilton cycle in the graph Qn. Thus, the 
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search for a method to generate all the subsets of an n-element set with consecutive 
subsets differing as little as possible (one new element in or one old element out) is 
the same as the search for a Hamilton cycle {or path) in the n-cube graph Qn. 0 

• • 

Figure 11.23 

Example. Consider an n-by-n chessboard. Define a graph Bn whose vertices are 
the 64 squares of the board, where two squares are joined by an edge if and only 
if they have a common side.35 Equivalently, two squares are adjacent if and only if 
they can be simultaneously covered by a domino. If we think of the squares of the 
board as alternately colored black and white, then we see that no two black squares 
are adjacent and no two white squares are adjacent. Thus, the usual coloring of a 
chessboard determines a bipartition of the vertices into its black squares and white 
squares, respectively, and hence the graph is bipartite. This graph is the domino 
bipartite graph of the board, and we may associate such a graph with any board with 
forbidden positions. We refer to Exercise 3 of Chapter 1, which asked whether it is 
possible to walk from one corner of an 8-by-8 board to the opposite corner, passing 
through each square exactly once. We now recognize this problem as asking whether 
the graph Bs has a Hamilton path. Now Bs is a bipartite graph with 32 white (or 
left) vertices and 32 black (or right) vertices. The desired Hamilton path starts and 
ends at vertices of the same color, say, black. Since Bs is bipartite, the colors of the 
vertices in a path must alternate. Thus, it is impossible to include all the vertices in a 
Hamilton path from on'e corner to its opposite corner, since such a path must include 
one more black square than white square. 

In a similar way, with any m-by-n board with forbidden positions, we may associate 
a domino bipartite graph whose vertices are the free positions of the board. G 

Reasoning similar to that used in the preceding example establishes the following 
elementary result. 

35That is, two squares are adjacent as vertices of Bn if and only if they are adjacent squares on the 
board. 
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Theorem 11.4.2 Let G be a bipartite graph with bipartition X, Y. If IXI =1= lVI, then 
G does not have a Hamilton cycle. If IXI = lVI, then G does not have a Hamilton 
path that begins at a vertex in X and ends at a vertex in X. If X and Y differ by at 
least 2, then G does not have a Hamilton path. If IXI = IVI + 1, then G does not have 
a Hamilton path that begins at X and ends at Y, or vice versa. 0 

Notice that Theorem 11.4.2 has no positive conclusion. Each assertion in it only 
rules out the possibility of a Hamilton cycle or Hamilton path. 

We close this section by discussing another old recreational problem36 which, in 
modern language, also asks for a Hamilton cycle in a certain graph. 

Example. The knight's tour problem. Consider an 8-by-8 chessboard and the chess 
piece known as a knight. A knight moves from its current location by moving two 
squares vertically and one square horizontally or one square vertically and two squares 
horizontally. Is it possible to place the knight on the board so that, with legal moves, 
the knight lands in each square exactly once? Such a tour is called a knight's tour, 
and we can ask for a knight's tour which has the property that the move from the 
last square to the first square is also a legal knight's move. A knight's tour with this 
property is called reentrant. 

A solution of the problem, due to Euler, is 

58 43 60 37 52 41 62 35 
49 46 57 42 61 36 53 40 
44 59 48 51 38 55 34 63 
47 50 45 56 33 64 39 54 
22 7 32 1 24 13 18 15 
31 2 23 6 19 16 27 12 
8 21 4 '1 29 10 25 14 17 
3 30 9 20 5 28 11 26 

where the numbers indicate the order in which the squares are visited by the knight. 
In particular, square 1 is the initial position of the knight, and square 64 is the last. 
Since the move from square 1 to square 64 is a legal knight's move, this special tour 
is reentrant. Note that, in this tour, the knight first visits all the squares on the lower 
half of the board before entering the upper half. 

The problem of the knight's tour can be considered on any m-by-n board, and w(' 
recognize it as a problem of the existence of a Hamilton path in a graph. Consider th(' 
squares of an m-by-n board to be the vertices of a graph ICm,n in which two square~ 
are joined by an edge if and only if the move from one to the other is a legal knight'~ 
move. A Hamilton path in ICm,n represents a knight's tour on the m-by-n board, and 
a Hamilton cycle represents a reentrant tour. Considering the squares of the board to 

36This problem was apparently first posed and solved by Indian chess players around 200 B.C. 
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be alternately colored black and white, as usual, we see that a knight always moves 
from a square of one color to a square of the other color. Thus, the graph ICm,n is 
a bipartite graph of order m x n. If m and n are both odd, then there is one more 
square of one color than the other and hence, by Theorem 11.4.2, a reentrant knight's 
tour cannot exist. If at least one of m and n is even, then there is an equal number of 
black and white squares, and hence a reentrant tour possibly exists. 

On a I-by-n board, a knight cannot move at all. On a 2-by-n board, each of the 
four corner squares is accesssible by a knight from only one square. This means that in 
the graph ICm,n, the corner squares each have degree equal to 1, and hence a knight's 
tour is impossible. What about a 3-by-3 board? On such a board the square in the 
middle is accessible by a knight from no other square. Hence, in the graph IC3,3 the 
middle square has degree 0, and no tour is possible. Do not despair, for here is a 
nonreentrant tour, for a knight on a 3-by-4 board: 

1 4 7 10 
12 9 2 5 
3 6 11 8 

The labeling of the squares from 1 to n2 , using a knight's tour on an n-by-n 
board, results in a square array of numbers in which each of the numbers from 1 to n2 

appears exactly once. A person interested in magic squares37 might ask whether there 
are knight's tours that result in magic squares, magic knight's tours.38 It is known 
that magic knight's tours are not possible if n is odd, and that magic knight's tours 
exist if n = 4k with k > 2. It has now been verified by exhaustive computer search 
that there does not exist a magic knight's tour on an 8-by-8 board. There exist many 
knight's tours that are semimagic in the sense that the integers in each row and in 
each column, but not the diagonals, add to the same number. An old example39 is 

1 30 47 52 5 28 43 54 
48 51 2 29 44 53 6 27 
31 46 49 4 25 8 55 42 
50 3 32 45 56 41 26 7 
33 62 15 20 9 24 39 58 
16 19 34 61 40 57 10 23 
63 14 17 36 21 12 59 38 
18 35 64 13 60 37 22 11 

37 See Section 1.3. 
38See H. E. Dudeney, Amusements in Mathematics, Dover Publishing Co., New York, 1958. 
39W. Beverley, Philos. Mag., p. 102, April 1848. 

o 
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11.5 Trees 

Suppose we want to build a connected graph of order n, using the smallest number of 
edges that we can "get away with.,,4o One simple method of construction is to select 
one vertex and join it by an edge to each of the other n - 1 vertices. The result is 
a complete bipartite graph Ki,n-I, called a star. The star Ki,n-i is connected and 
has n - 1 edges. If we remove any edge from it, we obtain a disconnected graph with 
a vertex meeting no edges. Another simple method of construction is to join the n 
vertices in a path. The resulting graph also is connected and has n - 1 edges, and if 
we remove any edge, we obtain a disconnected graph. Can we construct a connected 
graph with n vertices that has fewer than n - 1 edges? 

Suppose we have a connected graph G of order n. Let's think of putting in the 
edges of G one by one. Thus, we start with n vertices and no edges and hence with 
a graph with n connected components. Each time we put in an edge we can decrease 
the number of connected components by, at most, 1: If the new edge joins two vertices 
that were already in the same component, then the number of components stays the 
same; if the new edge joins two vertices that were in different components, then those 
two components become one and all others are unaltered. Since we start with n 
components, and an edge can decrease the number of components by at most ~1, we 
require at least n - 1 edges to reduce the number of components to 1; that is, to get 
a connected graph. So we have proved the next elementary result. 

Theorem 11.5.1 A connected graph of order n has at least n - 1 edges. Moreover, 
for each positive integer n, there exist connected graphs with exactly n - 1 edges. 
Removing any edge from a connected graph of order n with exactly n - 1 edges leaves 
a disconnected graph, and hence each edge is a bridge. 0 

A tree is defined to be a connected graph that becomes disconnected upon the 
removal of any edge. Thus, a tree is a connected graph, each of whose edges is a 
bridge: Each edge is essential for the connectedness of the graph. We now prove that 
a connected graph can be shown to be a tree, simply by counting the number of its 
edges. 

Theorem 11.5.2 A connected graph of order n 2: 1 is a tree if and only if it has 
exactly n - 1 edges. 

Proof. By Theorem 11.5.1 a connected graph of order n with exactly n - 1 edges 
is a tree, since each of its edges is a bridge. Conversely, we prove by induction on n 
that a tree G of order n has exactly n - 1 edges. If n = 1, then G has no edges, and 
the conclusion is vacuously true. Assume that n 2: 2. Let Q be any edge of G and 

40For example, connect n cities by roads, using the fewest number of roads, in such a way that it iH 
possible to get from each city to every other one. 
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let G' be the graph obtained from G by removing 0:. Since 0: is a bridge, G' has two 
connected components, G~ and G2, consisting of k and 1 vertices, respectively, where 
k and 1 are positive integers with k + 1 = n. Each edge of G~ is a bridge of G~, for, 
otherwise, its removal from G would clearly leave a connected graph, contrary to our 
assumption that 'G is a tree. Similarly, each edge of G2 is a bridge of G2. Thus, G~ 
and G2 are trees, and, by the induction hypothesis, G~ has k - 1 edges, and G2 has 
l- 1. Hence, G has (k - 1) + (1 - 1) + 1 = n - 1 edges, as desired. 0 

Another characterization of a tree is given in the next theorem, but first we prove 
a lemma. 

Lemma 11.5.3 Let G be a connected graph and let 0: = {x,y} be an edge ofG. Then 
0: is a bridge if and only if there does not exist a cycle of G containing 0:. 

Proof. First suppose that 0: is a bridge. Then G consists of two connected graphs 
held together by 0:, and there can be no cycle containing 0:. 41 Now suppose that 0: is 
not a bridge. Then removing 0: from G leaves a connected graph G'. Hence, there is 
in G', and hence in G, a path 

x - ... -y 

that joins x and y and that does not contain the edge 0:. Then 

x-"'-y-x 

is a cycle containing the edge 0:. o 

Theorem 11.5.4 Let G be a connected graph of order n. Then G is a tree if and only 
if G does not have any cycles. 

Proof. We know that each edge of a tree is a bridge and hence, by Lemma 11.5.3, is 
not contained in any cycle. Thus, if G is a tree, then G does not have any cycle. Now 
suppose that G does not have any cycles. Since there are no cycles, it follows from 
Lemma 11.5.3, again, that each edge of G is a bridge and hence that G is a tree. 0 

Theorem 11.5.4 implies another characterization of trees. 

Theorem 11.5.5 A graph G is a tree if and only if every pair of distinct vertices x 
and y is joined by a unique path. This path is necessarily a shortest path joining x 
and Yi that is, a path of length d(x, y). 

Proof. First, suppose that G is a tree. Since G is connected, each pair of distinct 
vertices is joined by some path. If some pair of vertices is joined by two different 
paths, then it is easy to see that G contains a cycle,42 contradicting Theorem 11.5.4. 

41 Keep in mind that the edges of a cycle are all different. 
42Suppose that there are two different paths /'1 and /'2 from x to y. Both parts start at x and, since 

they are different, break apart at some vertex u. Since both paths end at y, they must come back 
together for the first time at some vertex v. We then have a cycle: Proceed from u to v along /'1 and 
then from v to u along /'2 in the opposite direction. 
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Now suppose that each pair of distinct vertices of G is joined by a unique path. 
Then G is connected. Since each pair of vertices of a cycle is joined by two different 
paths, G cannot have any cycles and, once again by Theorem 11.5.4, G is a tree. 0 

Let G be a graph. A pendent vertex of G is a vertex whose degree is equal to 1. 
Thus, a pendent vertex is incident with exactly one edge, and any edge incident with 
a pendent vertex is called a pendent edge. 

Example. The graph G of order n = 7, shown in Figure 11.24, has three pendent 
vertices, namely, a, b, and g, and three pendent edges. This graph is not a tree. This 
is because the edge {c, d} is not a bridge, or because it has 7 > 6 edges (cf. Theorem 
11.5.2), or because it has a cycle (cf. Theorem 11.5.4). 0 

d a 

:>--... g 

b e 

Figure 11.24 

Theorem 11.5.6 Let G be a tree of order n 2: 2. Then G has at least two pendent 
vertices. 

Proof. Let the degrees of the vertices of G be db d2, ... , dn . Since G has n - 1 edges, 
it follows from Theorem 11.1.1 that 

dl + d2 + ... + dn = 2(n - 1). 

If at most one of the di equals 1, we have 

d 1 + d2 + ... + dn 2: 1 + 2( n - 1), 

a contradiction. Hence, at least two of the d; equal 1; that is, there are at least two 
pendent vertices. -0 

Example. What is the smallest and largest number of pendent vertices a tree G of 
order n 2: 2 can have? 

Each of the two vertices of a tree of order 2 is pendent. Now let n 2: 3. If all th .. 
vertices of a tree were pendent, then the tree would not be connected (in fact, n would 
have to be even and no two edges would be incident). A star K1,n-l has n -1 pendent 
vertices, and hence n - 1 is the largest number of pendent vertices a tree of order 
n 2: 3 can have. A tree whose edges are arranged in a path has exactly two pendent. 
vertices. Thus, by Theorem 11.5.6, 2 is the smallest number of pendent vertices for a 
tree of order n 2: 2. LI 
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Example. How to grow trees. By Theorem 11.5.6, a tree has a pendent vertex and 
hence a pendent edge. If we remove an edge from a tree, G, then we get a graph 
with two connected components each of which is also a tree. If the edge removed is 
pendent, then one of the smaller trees consists of a single vertex, and the other is a 
tree G' of order n - 1. Conversely, if we have a tree G' of order n - 1, then, selecting 
a new vertex u and joining it by an edge {u, x} to a vertex x of G', we get a tree G 
in which u is a pendent vertex. This implies that every tree can be constructed as 
follows: Start with a single vertex and iteratively choose a new vertex, and put in a 
new edge joining the new vertex to any old vertex. A tree of order 5 is constructed in 
Figure 11.25 in this way. 0 

Figure 11.25 

Using the method of construction of the previous example, it is not difficult to now 
show that the number tn of non isomorphic trees of order n satisfies t1 = 1, t2 = 1, t3 = 

1, t4 = 2, t5 = 3, and t6 = 6. The different trees with six vertices are shown in Figure 
11.26. 

We have defined a tree to be a connected graph, each of whose edges is a bridge. 
Thus, if a connected graph G is not a tree, then it has a nonbridge; that is, an edge 
whose removal does not disconnect the graph. If we iteratively remove non bridge edges 
until every edge is a bridge of the remaining graph, we get a tree with the same set 
of vertices as G and some of its edges; that is, we get a spanning subgraph that is a 
tree. A tree that is a spanning subgraph of a graph G is called a spanning tree of G. 

* Figure 11.26 
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Theorem 11.5.7 Every connected graph has a spanning tree. 

Proof. The algorithmic proof is contained in the preceding paragraph. We give a 
more precise formulation of the algorithm. Recall from Lemma 11.3.1 that an edge of 
a connected graph is a bridge if and only if it is not contained in any cycle. 

Algorithm for a spanning tree 

Let G = (V, E) be a connected graph of order n. 

(i) Set F equal to E. 

(ii) While there is an edge a of F such that a is not a bridge of the graph T = (V, F), 
remove a from F. 

The terminal graph T = (V, F) is a spanning tree of G. 

As we have argued, the terminal graph T = (V, F) is connected and does not haw 
any bridges; hence, it is a tree. 0 

We remark that our restriction to graphs in Theorem 11.5.7 is not essentiaL If G 
is a general graph, then we can immediately remove all loops, and all but one copy of 
each edge in G, and then apply Theorem 11.5.7 and the algorithm in its proof. Thus, 
every connected general graph has a spanning tree as well. 

Example. Let G be the connected graph of order 7, shown on the left in Figure 11.27. 
This graph has exactly one bridge, namely the edge {2,3}; hence, we can begin the 
algorithm for a spanning tree by removing any other edge, say the edge {1,2}. The 
edges {I, 4}, {4, 5}, {2, 5}, and {2,3} are now bridges and can no longer be removed. 
Removing the edge {6, 7} leaves the spanning tree shown on the right. 0 

:I~ L7\ ]---L7\, 
Figure 11.27 

We conclude this section with two properties of spanning trees that will be used 
in subsequent sections of this chapter. 

Theorem 11.5.8 Let T be a spanning tree of a connected graph G. Let a = {a,b} 
be an edge of G that is not an edge of T. Then there is an edge f3 of T such that tht' 
graph T' obtained from T by inserting a and deleting f3 is also a spanning tree of G. 
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Proof. Let the graph G, and hence the graph T, have n vertices. First, consider the 
graph T' obtained from T by inserting the given edge Q. Since T' is not a tree, it 
has, by Theorem 11.5.4, a cycle 'Y which necessarily contains at least one edge of T. 
By Lemma 11.3.1, each edge of 'Y is not a bridge of T'. Let j3 be any edge of'Y other 
than Q. Removing j3 from T' results in a graph with n vertices and n - 1 edges that 
is connected and hence is a tree. 0 

'I:heorem 11.5.9 Let TI and T2 be spanning trees of a connected graph G. Let j3 be 
an edge of TI. Then there is an edge Q of T2 such that the graph obtained from TI by 
inserting Q and deleting j3 is a spanning tree of G. 

Proof. We first remark on the difference between Theorems 11.5.8 and 11.5.9. In 
Theorem 11.5.8 we are given a spanning tree and 'some edge Q not in it, and we want 
to put Q in T and take out any edge j3 of T as long as the result is a spanning tree. 
~p. Theorem 11.5.9 we are given a spanning tree TI and we want to take out a specific 
edge j3 of TI and put in any edge of T2 as long as the result is a spanning tree. 

To prove the theorem, first remove the edge j3 from the spanning tree TI of G. 
The result is a graph with two connected components T{ and T~' (both of which must 
be trees). Since T2 is also a spanning tree of G, T2 is connected with the same set of 
vertices as T I, and hence there must be some edge Q of T2 that joins a vertex of T{ 
and a vertex of T~'. The graph obtained from Tl by inserting the edge Q and removing 
~he edge j3 is a conne!2ted graph with n - 1 edges; hence, it is a tree. (We note that 
If j3 is not an edge of T2, then Q is not an edge of T I , for otherwise we would get a 
connected graph of order n with fewer than n - 1 edges.) 0 

It is natural" for us to ask for the number of spanning trees of a connected graph. 
The number of spanning trees of any connected graph can be computed by an algebraic 
{c,>rmu,la,43 but such a formula is beyond the scope of this book. 

Example. The number of spanning trees of the graph of order 4 shown in Figure 
11.28 (a cycle of length 4) is 4. Each of these spanning trees is a path of length 3, as 
drawn in the figure. Consequently, all are isomorphic. 0 

A famous formula of Cayley asserts that the number of spanning trees of a complete 
graph Kn is n n-2, a surprisingly simple formula. As illustrated in the preceding 
example, many of these trees may be isomorphic to each other. Thus, while each tree 
of order n occurs as a spanning tree of K n , it may occur many times (with different 
labels on its vertices). Thus, nn-2 does not represent the number of non isomorphic 
trees of order n. The latter number is a more complicated function of n. 

43It is the absolute value of the determinant of any submatrix of order n - 1 of the Laplacian matrix 
of a. graph. 
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aOb 
c d ar----b aUb a--,b anb 

CL--d c d C---1d C d 
Figure 11.28 

11.6 The Shannon Switching Game 

We discuss in this section a game that can be played on any multigraph. It was 
invented by C. Shannon44 and its elegant solution was found by A. Lehman.45 The 
remainder of this book is independent of this section. 

Shannon's game is played by two people, called here the positive player P and the 
negative player N, who alternate turns.46 Let G = (V, E) be a multigraph in which 
two of its vertices u and v have been distinguished. Thus, the "gameboard" consists 
of a multigraph with two distinguished vertices. The goal of the positive player is to 
construct a path between the distinguished vertices u and v. The goal of the negative 
player is to deny the positive player his goal, that is, to destroy all paths between u 
and v. The play of the game proceeds as follows: When it is N's turn, N destroys 
some edge of G by putting a negative sign - on it.47 When it is P's turn, P puts 
a positive sign + on some edge of G, which now cannot be destroyed by N. Play 
proceeds until one of the players achieves his or her goal: 

(1) There is a path between u and v that has only + signs on its edges. In this case, 
the positive player has won. 

(2) Every path in G between u and v contains a - sign on at least one of its edges; 
that is, N has destroyed all paths between u and v. In this case the negative 
player has won. 

"Clause Shannon, 1916-2001, laid the foundation of modern communication theory while workin!l, 
at Bell Labs. 

45 A. Lehman, A Solution of the Shannon switching Game, J. Society Industrial and Applied Math­
ematics, 12 (1964), 687-725. Our description of the game and its solution is based on Section 3 of th .. 
author's article, Networks and the Shannon Switching Game, Delta, 4 (1974), 1-23. 

46We could call the positive player the constructive player and the negative player the destruct,,1t' 
player. 

47If the game is played by drawing G on paper with a pencil, then N can destroy an edge by erasin!l; 
the edge. 



11.6. THE SHANNON SWITCHING GAME 433 

It is evident that, after all edges of the multigraph G have been played (that is, have 
either a + or a - on them), exactly one of the players will have won. In particular, 
the game never ends in a draw. If G is not connected and u and v lie in different 
connected components of G, then we can immediately declare N the winner.48 

We consider the following questions: 

(1) Does there exist a strategy for P to follow which will guarantee him or her a 
win, no matter how well N plays? If so, determine such a winning strategy for 
P. 

(2) Does there exist a strategy for N to follow which will guarantee him or her a 
win, no matter how well P plays? If so, determine such a winning strategy for 
N. 

The answers to these questions may sometimes depend on whether the positive or 
negative player has the first move. 

Example. First, consider the multigraph on the left in Figure 11.29, with distin­
guished vertices u and v as shown. In this game the positive player P wins whether 
he or she plays first or second. This is because a + on either edge determines a path 
between u and v. Now consider the middle graph in Figure 11.29. In this game the 
negative player N wins, whether he or she plays first or second. This is because a -
on either of the two edges destroys all paths between u and v. Finally, consider the 
right graph in Figure 11.29. In this game, whichever player goes first, and thereby 
claims the only edge of the graph, is the winner. 0 

u u 

o u 

I 
v v 

v 

Figure 11.29 

Motivated by the preceding example, we make the following definitions: A game is 
called a positive game provided that the positive player has a winning strategy whether 
he or she plays first or second. A game is called a negative game provided that the 
negative player has a winning strategy whether he or she plays first or second. A 
game is called a neutral game provided that the player who plays first has a winning 

4B And P should be embarrassed for getting involved in a game in which it was impossible for him 
or her to win. 
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strategy. We note that, if the positive player has a winning strategy when playing 
second, then he or she also has a -winning strategy playing first. This is because the 
positive player can ignore his or her first move49 and play according to the winning 
strategy as the second player. If the strategy calls for the positive player to put a + 
on an edge that already has one, he or she then has a "free move" and can put a + 
on any available edge. Similarly, if the negative player has a winning strategy playing 
second, then he or she has a winning strategy playing first. 

Figure 11.30 

Example. Consider the game determined by the left graph in Figure 11.30, with 
distinguished vertices u and v as shown. Assume that P has first move and puts a + 
on edge e. We pair up the remaining edges by pairing a with band c with d. If P 
counters a move by N on an edge, by a move on the other edge of its pair, then P is 
guaranteed a win. Thus, P can win this game, provided he or she has first move. Now 
assume that N has first move and puts a - on edge e. We now pair up the remaining 
edges by pairing a with c and b with d. If N counters a move by P on an edge by a 
move on the other edge of its pair, then N is guaranteed a win. Hence, N can will 
this game, provided he or she has first move. We conclude that the game determined 
by Figure 11.30 is a neutral game. 

Now suppose that we add a new edge f, which joins the distinguished vertices 11 

and v, resulting in the graph shown on the right in Figure 11.30. Suppose the negative 
player makes the first move in this new game. If N does not put a - on the new edge 
f, then the positive player can put a + on that edge, thereby winning the game. If N 
does put a - on f, then the rest of the game is the same as the previous game, with 
P making the first move, and hence P can win. Thus, P has a winning strategy a.~ 
second player, and this game is a positive game. [J 

The principle illustrated in the previous example holds in general. 

Theorem 11.6.1 A neutral game is converted into a positive game if a new edgl' 
joining the distinguished vertices u and v is added to the multigraph of the game. 

A characterization of positive games is given in the next theorem. Recall that, if 
G = (V, E) is a multigraph and U is a subset of the vertex set V, then Gu denotes till' 

49But the negative player cannot. 
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multisubgraph of G induced by U-that is, the multigraph with vertex set U whose 
edges are all the edges of G that join two vertices in U. Put another way, Gu is 
obtained from G by deleting all vertices in U = V - U and all edges that are incident 
with at least one vertex in U. 

Theorem 11.6.2 The game determined by a multigraph G = (V, E) with distin­
guished vertices u and v is a positive game if and only if there is a subset U containing 
u and v of the vertex set V such that the induced multisubgraph Gu has two spanning 
trees, Tl and T2, with no common edges. 

Otherwise stated, a game is a positive game if and only if there are two trees Tl 
and T2 in G such that Tl and T2 have the same set of vertices, both u and v are 
vertices of Tl and T2, and Tl and T2 have no edges in common. The game determined 
by the right graph in Figure 11.30 was shown to be a positive game. For Tl and T2, 
we can take the two trees in Figure 11.31. In this case Tl and T2 are spanning trees 
of G (that is, U = V), but this need not always be so. It is possible that the set U 
contain only some of the vertices of V. 

u u 

a 

Figure 11.31 

We shall not give a complete proof of Theorem 11.6.2. Rather, we shall show only 
how to use the pair of trees Tl and T2 to devise a winning strategy for the positive 
player P when the negative player N makes the first move. After each sequence of 
play, consisting of a move by the negative player followed by a move by the positive 
player, we shall construct a new pair of spanning trees of Gu that have one more edge 
in common than the previous pair. Initially, we have the spanning trees Tl and T2 of 
Gu with no edges in common, and we now label these trees as 

The first sequenc~ of play 

Player N goes first and puts a - on some edge {3. We consider two cases: 

Case 1: (3 is an edge of one of the trees T1(D) and TiD), say, the tree T1(D). 
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Since TIQ) and TJO) are spanning trees of Gu, it foHows from Theorem 

11.5.9 that there is an edge a of TJO) such that the graph obtained from 

TiO) by inserting a and deleting f3 is a spanning tree TP) of Gu. Our 

instructions to P are -to put a + on the edge a. We let TP) = TJO). The 

trees TP) and TJl) have exactly one edge in common, namely, the edge a 
with a + on it. 

Case 2: f3 is neither an edge of TIO) nor an edge of TJO) . 

Our instructions to P are now to place a + on any edge a of TIO) or of 

TJO) , say, an edge a of TiO).5O Since TJO) is a spanning tree of Gu and a 
is an edge of Gu, it follows from Theorem 11.5.9 that there is an edge "y 

of TJO) such that the graph obtained from TJO) by inserting a and deleting· 

"y is a spanning tree TP) of Gu. We let TP) = TiO) . The trees TP) and 

TP) have only the edge a with a + in common. 

We conclude that, at the end of the first sequence of play, there are two spanning 
trees, TP) and TP), of Gu that have exactly one edge in common, namely, the edge 
with a + on it that was played by P. -

The second sequence of play 

Player N puts a - on a second edge 6 of G, and we seek a countermove for P. 
The determination of an edge p on which P should put a + is very much like that in 
the first sequence of play, and we shall be briefer in ·our description: 

Case 1: 6 is an edge of one of the two trees TP) and TJl) , say, the tree 

TP)· 

There is an edge p of TP) such that the graph TF) obtained from TP) by 
inserting the edge 6 and deleting the edge p is a spanning tree of Gu. Our 
instructions to P are to place a + on the edge p. We let TP) = TP). 

Case 2: 6 is neither an edge of TP) nor of TJl). 

Our instructions to P are to place a + on any available edge51 of TP) and 

TJl), say, an edge p of TP). There exists an edge € of TJl) such that the 

graph TP) obtained from TJl) by inserting the edge p and deleting the 

edge € is a spanning tree of Gu. We let TF) = TP). 

5DIn this case, N has "wasted" his or her move and P gets a "free" move anywhere on one of til<' 
trees TI(D) and TiD). 

5IThat is, an edge that has not yet been "signed." 
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We conclude that, at the end of the second sequence of play, there are two spanning 
trees, TF) and TP), of Cu that have exactly two edges in common, namely, the two 
edges with a + on them that were played by P. 

The description of the remainder of the strategy for P is very similar to that given 
for the first and second sequences of play. At the end of the kth sequence of play, there 
are two spanning trees, Tik) and TJk) of Cu, which have exactly k edges in common, 
namely, the k edges with a + on them that have been played up to this point by P. 
Let the number of vertices in U be m. Then, at the end of the (m - l)st sequence 
of play, the spanning trees Tim-I) and TJm-I) of Cu have exactly m - 1 edges in 

common. Since a tree with m vertices has only m - 1 edges, this means that Tim-I) 

is the same tree as TJm-I), and thus the edges with a + on them are the edges of a 
spanning tree of Cu. Because u and v belong to U, there is a path of edges with a 
+ on them joining the distinguished vertices u and v. We therefore conclude that, 
had the positive player P followed our instructions, then, at the end of the (m - l)st 
sequence of play, if not before, he or she would have put + signs on a set of edges that 
contains a path joining u and v and thus would have won the game. Our instructions 
to P are thus a winning strategy. 0 

Theorem 11.6.2 can be used to classify neutral and negative games as follows: 
Let C = (V, E) be a multigraph with distinguished vertices u and v. Let C* be 
the multigraph obtained from C by inserting a new edge joining u and v. Then the 
following conclusions can be drawn: 

1. The game played with C, u, and v is a neutral game if and only if it is not a 
positive game, but the game played with C*, u, and v is a positive game. 

2. The game played with C, u, and v is a negative game if and only if neither the 
game played with C, u, and v nor the game played with C*:, u, and v is a positive 
games. 

Thus, by Theorem 11.6.2, the game played with C, u, and v is a neutral game if and 
only if C does not contain two disjoint trees with the same set of vertices including 
u and v, but by inserting a new edge joining u and v we are able to find two such 
trees. The game played with C, u, and v is a negative game if and only if, even with 
the new edge joining u and v, two such trees do not exist. In a neutral game C, the 
positive player can win when he or shegoes first' by pretending that the game is being 
played with C* with N going first and that N's first move was to put a - on the new 
edge joining u and v. In general, there is no easily describable winning strategy for 
negative games in which N goes second or for neutral games in which N goes first. 
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11.7 More on Trees 

In the proof of Theorem 11.5.7, we have given an algorithm for obtaining a spanning 
tree of a connected graph. Reviewing this algorithm, we see that it is more "de­
structive" than it is constructive: Iteratively, we locate an edge that is in a cycle-a 
nonbridge edge-of the current graph and remove or "destroy" it. Implicit in this 
algorithm is the assumption that we have some subalgorithm for locating a nonbridge 
edge. In Section 11.5, described a procedure that will construct any tree with n ver­
tices, equivalently, any spanning tree of the complete graph Kn of order n. This 
procedure can be refined to apply to any graph52 to grow all of its spanning trees. We 
formalize the resulting algorithm now. It need not be assumed that the initial graph 
G is connected. A byproduct of the algorithm is an algorithm to determine whether 
or not a graph is connected. 

Algorithm to grow a spanning tree 

Let G = (V, E) be a graph of order n and let u be any vertex. 

(1) Put U = {u} and F = 0. 

(2) While there exists a vertex x in U and a vertex y not in U such that Q = {x, y} 
is an edge of G, 

(i) Put the vertex y in U. 

(ii) Put the edge Q in F. 

(3) Put T = (U, F). 

In step (2) there will, in general, be many choices for the vertices x and y, and 
thus we have considerable latitude in carrying out the algorithm. Two special and 
important rules for choosing x and yare described after the next theorem. 

Theorem 11.7.1 Let G = (V, E) be a gmph. Then G is connected if and only if tht' 
gmph T = (U, F) constructed by carrying out the preceding algorithm is a spanniny 
tree of G. 

Proof. If T is a spanning tree of G, then surely G is connected. Now assume that. 
G is connected. Initially, T has one vertex and no edges and is therefore connected. 
Each application of (2) adds one new vertex to U and one new edge to F, which joiIl~ 
the new vertex to an old vertex. It then follows inductively that, at each stage of 

52There is no loss in generality in considering only graphs in this section. If we have a general 
graph, we can immediately remove all loops and all but one copy of each edge and apply the result," 
and algorithms of this section to the resulting graph. 
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the algorithm, the current T = (U, F) is connected with IFI = lUI - 1, and hence T 
is a tree. Suppose that, upon termination of the algorithm, we have U =I- V. Since 
G is connected, there must be an edge from some vertex in U to some vertex not 
in U, contradicting the assumption that the algorithm has terminated. Thus, upon 
termination, we have U = V, and T = (U, F) is a spanning tree of G. 0 

It should be clear that each spanning tree of a connected graph can be constructed 
by making the right choices for x and y in carrying out the algorithm for growing a 
spanning tree. We now describe one way to make choices that results in a spanning tree 
with a special property. The resulting algorithm is described next, and it constructs 
what is called a breadth-first spanning tree rooted at a prescribed vertex, the initial 
vertex u in the set U. A connected graph G has, in general, many breadth-first 
spanning trees T rooted at a vertex u. Their common feature is that the distance 
between u and x in G is the same as the distance between u and x in T for each vertex 
x. For convenience, we call a breadth-first spanning tree a BFS-tree. In the algorithm, 
we attach two numbers to each vertex x. One of these is called its breadth-first number, 
denoted bf(x). The breadth-first numbers represent the order in which vertices are 
put into the BFS-tree. The other number represents the distance between the root u 
and x in the BFS-tree l and is denoted by D(x).53 

BF-algorithm to grow a BFS-tree rooted at u 

Let G = (V, E) be a graph of order n and let u be any vertex. 

(1) Put i = 1, U = {u}, D(u) = 0, bf(u) = 1, F = 0, and T = (U,F). 

(2) If there is no edge in G that joins a vertex x in U to a vertex y not in U, then 
stop. Otherwise, determine an edge a = {x,y} with x in U and y not in U such 
that x has the smallest breadth-first number bf(x), and do the following: 

(i) Put bf(y) = i + l. 
(ii) Put D(y) = D(x) + l. 

(iii) Put the vertex y into U. 

(iv) Put the edge a = {x,y} into F. 

(v) Put T = (U, F). 
(vi) Increase i by 1 and go back to (2). 

Theorem 11.7.2 Let G = (V, E) be a graph and let u be any vertex of G. Then 
G is connected if and only if the graph T = (U, F) constructed by carrying out the 
BF-algorithm is a spanning tree of G. If G is connected, then, for each vertex y of G, 
the distance in G between u and y equals D(y)! and this is the same as the distance 
between u and y in T. 

53The number D(x) depends on the choice of root u, but otherwise depends only on the graph G 
H.nd not on the particular BFS-tree rooted at u. The number bf(x) does depend on the BFS-tree. 
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Proof. The BF -algorithm is a special way of carrying out the general algorithm for 
growing a spanning tree. It thus follows from Theorem 11.7.1 that G is connected if 
and only if the terminal graph T = (U, F) is a spanning tree. 

Now assume that G is connected so that at the termination of the algorithm 
T = (U, F) is a spanning tree of G. It should be clear from the algorithm that D(y) 
equals the distance between u and y in the tree T. Trivially, D(u) = 0 is the distance 
between u and itself in G. Suppose that there is some vertex y such that D(y) = I 
is greater than the distance k between u and y in G. We may assume that k is the 
smallest number with this property. Then there is a path 

'Y: u = Xo - Xl - ... - Xk-l - Xk = Y 

in G joining u and y whose length k satisfies 

k < I = D(y). 

The distance between u and the vertex Xk-l of'Y is, at most, k - 1 and hence, by the 
minimality of k, D(Xk-d S k - 1. Since y = Xk is adjacent to Xk-l, it follows from 
the BF-algorithm that we would put D(y) = k unless D(y) had already been assigned 
a smaller number. Hence, D(y) S k < I, a contradiction. Therefore, the function D 
gives the distance .in G (and in T) from u to each vertex. 0 

u u 

Figure 11.32 

Example. Each BFS-tree of a complete graph Kn is a star KI,n-l. A BFS-tn*' 
of the cycle of length 6 on the left in Figure 11.32 is the tree on the right in that 
figure. A BFS-trees of the graph Q3 of vertices and edges of a three-dimensional cub!' 
is shown in Figure 11.33. (Recall from Section 11.4 that the vertices of this graph an' 
the 3-tuples of Os and Is and that two vertices are adjacent if and only if they differ 
in exactly one coordinate.) In each case, the breadth-first numbers are noted next to 
the vertices of the tree. The distances D(x) are readily determined. n 
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A breadth-first spanning tree rooted at u of a connected graph G is a spanning tree 
that is as "broad" as possible; each vertex is as close to the root as G will allow. The 
algorithm for a BFS-tree can be regarded as a systematic way to search (or list) all the 
vertices of G without repetition. According to this algorithm, one visits the vertices 
closest to the root first (breadth takes precedence over depth). We now describe a 
way to carry out the algorithm to grow a tree that produces a spanning tree that is 
as deep as possible. A spanning tree produced by this algorithm is called a depth-first 
spanning tree, abbreviated as DFS-tree, rooted at a vertex u. In this case, depth takes 
precedence over breadth. In the algorithm, we attach a number to each vertex x, 
called its depth-first number and denoted by df(x). The depth-first algorithm is also 
known as backtracking. In backtracking we proceed in the forward direction as long 
as we are able; when it is no longer possible to advance, then we backtrack to the first 
vertex from which we can go forward. 

DF-algorithm to grow a DFS-tree rooted at u 

Let G = (V, E) be a graph of order n and let u be any vertex. 

(1) Put i = 1, U = {u}, df(u) = 1, F = 0, and T = (U, F). 

(2) If there is no edge in G that joins a vertex x in U to a vertex y not in U, then 
stop. Otherwise, determine an edge a = {x, y} with x in U and y not in U such 
that x has the largest depth-first number df(x), and do the following: 

(i) Put df(y) = i + 1. 

(ii) Put the vertex y into U. 

(iii) Put the edge a = {x, y} into F. 

(iv) Put T = (U, F). 

(vi) Increase i by 1 and go back to (2). , 

Theorem 11. 7.3 Let G = (V, E) be a graph and let u be any vertex of G. Then 
G is connected if and only if the graph T = (U, F), constructed by carrying out the 
preceding DF-algorithm, is a spanning tree of G. 
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Proof. The DF-algorithm is a special way of carrying out the general algorithm for 
growing a spanning tree. It thus follows from Theorem 11.7.1 that G is connected if 
and only if the constructed graph T = (U, F) is a spanning tree. 0 

Example. Each DFS-tree of a complete graph Kn is a path. A DFS-tree of a cycle 
of any length is also a path. A DFS-tree of the graph Q3 of vertices and edges of a 
three-dimensional cube is shown in Figure 11.34. In each case, the depth-first numbers 
are noted next to the vertices of the tree. 0 
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Example. If G is a tree, then each BPS-tree and DFS-tree of G is G itself, with its 
vertices ordered in the order they are visited. In this case, we often speak of a breadth­
first search of G and a depth-first search of G. The tree G may represent a data 
structure for a computer file in which information is stored at places corresponding to 
the vertices of G. To find a particular piece of information, we need to "search" each 
vertex of the tree until we find the desired information. Both a breadth-first search 
and a depth-first search provide an algorithm for searching each vertex at most once. 
If we think of a tree as a system of roads connecting various cities, then a depth-first 
search of G can be visualized as a walk along the edges, in which each vertex is visited 
at least once. 54 Starting at the root u, we walk in the forward direction as long as 
possible and go backward only until we locate a vertex from which we can again gu 
forward. Such a walk is illustrated in Figure 11.35, where we have returned to the 
root u (so our walk is a closed walk in which we traverse each edge exactly twice). 

u 

According to Theorem 11.7.2, the number D(x) computed by the breadth-first. 
algorithm starting with a vertex u equals the distance from u to x in a connected 
graph. However, in graphs that model various physical situations, some edges arp 
more "costly" than others. An edge might represent a road connecting two cities, and 
the physical distance between these cities should be taken into account if the graph 
is to provide an accurate model. An edge might also represent a potential new road 
between two cities, and the cost of constructing that road must be considered. Thes(' 

54 But we search each vertex only the first time it is visited. 
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two situations motivate us to consider graphs in which a weight is attached to each 
edge.55 

Figure 11.35 

Let G = (V, E) be a graph in which to each edge a = {x, y} there is associated 
a nonnegative number c(a) = c{x, y}, called its weight. We call G a weighted gmph 
with weight function c. The weight of a walk 

in G is defined to be 

the sum of the weights of the edges of 'Y. The weighted distance dc(x, y) between a pair 
of vertices x and y of G is the smallest weight of all the walks joining x and y. If there 
is no walk joining x and y, then we define dc{x, y) = 00. We also define dc(x, x) = 0 
for each vertex x. Since all weights are nonnegative, if dc(x, y) # 00, then there is a 
path of weight dc(x,y) joining the pair of distinct vertices x and y. Starting with a 
vertex u in a connected graph G, we show how to compute dc(u,x) for each vertex x 
and construct a spanning tree rooted at u such that the weighted distance between 
u and each vertex x equals dc(u, x). We call such a spanning tree a distance tree for 
u. The algorithm presented next is usually called Dijkstm's algorithm56 and can be 
regarded as a weighted generalization of the BF-algorithm . 

. Algorithm for a distance tree for u 

Let G = (V, E) be a weighted graph of order n and let u be any vertex. 

(1) Put U = {u}, D(u) = 0, F = 0, and T = (U,F). 

55The physical significance of the weight is irrelevant for the mathematical problems that we solve. 
However, the fact that weight may have relevant physical significance leads to important applications 
of the mathematical results obtained. 

56E. W. Dijkstra, A Note on Two Problems in Connection with Graphs, Numerische Math., 1 
(1959), 285-292. 
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(2) If there is no edge in G that joins a vertex x in U to a vertex y not in U, then 
stop. Otherwise, determine an edge a = {x, y} with x in U and y not in U such 
that D(x) + c{x,y} is as small as possible, and do the following: 

(i) Put the vertex y into U. 

(ii) Put the edge a = {x, y} into F. 

(iii) Put D(y) = D(x) + c{x,y} and go back to (2). 

Theorem 11.7.4 Let G = (V, E) be a weighted gmph and let u be any vertex ofG. 
Then G is connected if and only if the gmph T = (U, F) obtained by carrying out the 
preceding algorithm is a spanning tree of G. If G is connected, then for each vertex y 
of G, the weighted distance between u and y equals D(y), and this is the same as thf 
weighted distance between u and y in the weighted tree T. 

Proof. The algorithm for a distance tree is a special way of carrying out our general 
algorithm for growing a spanning tree. It thus follows from Theorem 11.7.1 that G iH 
connected if and only if the constructed graph T = (U, F) is a spanning tree; that is, 
if and only if the terminal value of U is V. 

Now, assume that G is connected, so that at the termination of the algorithm, 
U = V, and T = (U, F) is a spanning tree of G. It is clear from the algorithm that 
D(y) equals the distance between u and y in the tree T. Trivially, D(u) = 0 is the 
distance between u and itself in G. Suppose, to the contrary, that there is some vertex 
y such that D(y) is greater than the distance d between u and y in G. We may assume 
that y is the first vertex put in U with this property. There is a path 

, : u = Xo - Xl - ... - Xk = Y 

in G joining u and y whose weight is d < D(y). Let Xj be the last vertex of, whicJl 
is put into U before y. (Since u is the first vertex put into U, the vertex Xj exists.) It 
follows from our choice of y that D(xj) equals the weighted distance from u to Xj ill 
G. The subpath 

,': u = Xo - Xl - ... - Xj - Xj+l 

of , has weight 

Hence, by the algorithm, Xj+1 is put into U before y, contradicting our choice of xJ' 

This contradiction implies that D(y) is the weighted distance between u and y for all 
vertices y. [I 
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Example. Let G be the weighted graph in Figure 11.36, where the numbers next 
to an edge denote its weight. If we carry out the algorithm for a distance tree with 
u = a, we obtain the tree drawn in Figure 11.37, with the vertices and edges selected 
in the following order: 

vertices: a, b, d, c, e, j, 

edges: {a,b}, {b,d}, {a,c}, {d,e}, {c,f}. 

o 

b 

a~' 
c 2 f 

Figure 11.37 

We conclude this section by discussing another practical problem, called the min­
imum connector problem. Its practicality is illustrated in the next example. 

Example. There are n cities AI, A2 , ... , An, and it is desired to connect some of 
them by highways so that each city is accesssible from any other. The cost of con­
structing a direct highway between city Ai and city Aj is estimated to be c{Ai,Aj}. 
Determine which cities. should be directly connected by highways to minimize the total 
construction costs. 

Since we are to minimize the total construction costs, a solution of the problem 
corresponds to a tree57 with vertices AI, A2 , . .• , An, in which there is an edge joining 
cities Ai and Aj if and only if we put a direct highway between Ai and Aj . Indeed, 
If we consider the complete graph Kn with the n vertices AI, A 2 , •• • ,An, whose edges 
are weighted by the construction costs in the problem, then we seek a spanning tree 

67If we did not have a tree, we could eliminate one or more of the highways without destroying the 
accessibility feat eIre and thereby reduce costs. 
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the sum of whose edge weights is as small as possible. In what follows, we give two 
algorithms to solve the "minimum weight spanning tree problem" for any weighted 
connected graph. 0 

Let G = (V, E) be a weighted connected graph with weight function c. We define 
the weight of a subgroplJ,.H of G to be 

c(H) = c(a), 
{a an edge of H} 

the sum of the weights of the edges of H. A spanning tree of G that has the smallest 
weight of all spanning trees of G is a minimum weight spanning tree. If all the edges of 
G have the same weight, then every spanning tree of G is a minimum weight spanninf\ 
tree. Given any connected graph, by appropriately assigning weights to its edges, 
we can make any spanning tree the unique minimum weight spanning tree. We now 
describe an algorithm known as Kruskal's algorithm. 58 This algorithm is also knowli 
as a greedy algorithm, since, at each stage, we choose an edge of smallest weight 
consistent with the fact that, upon termination, the chosen edges are to be the edges 
of a spanning tree. Consistency is simply the idea that we should never choose edg('~ 
which can be used to create a cycle. 

Greedy algorithm for. a . minimum weight !;ipanning tree 

Let G = (V, E) be a weighted connected graph with weight function c. 

(1) Put F = 0. 

(2) While there exists an edge a not in F such that F U {a} does not contain til<' 
edges of a cycle of G, determine such an edge a of minimum weight and put" 
in F. 

(3) Put T = (V, F). 

Theorem 11.7.5 Let G = (V, E) be a weighted connected groph with weight junctioll 
c. Then the preceding greedy algorithm constructs a minimum weight spanning trlT 

T = (V, F) ofG. 

Proof. In the greedy algorithm, we begin with n = /VI vertices and no edges (illi 
tially F = 0), and hence with a spanning graph (V, F) with n connected components 
Choosing an edge a that does not create a cycle means that a joins vertices in diffen'lIi 
components of (V,F), and hence putting a in F decreases the number of conneckd 

58 J. B. Kruskal, Jr., On the Shortest Spanning Subtree of a Graph· and the Traveling SaleRnlllll 
Problem, Proc. Amer. Math. Soc., 7 (1956), 48-50. 
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components by 1. On termination, we have n - 1 edges in F, and hence T = (V, F) is 
a spanning tree. We now show that T is a minimum weight spanning tree. 

Let the n - 1 edges of F be aI, a2, ... ,an-l in the order that they are put in F. 
Let T* = (V, F*) be a minimum weight spanning tree, which has the largest number 
of edges in common with T. Thus, no minimum weight spanning tree has more edges 
in common with F than F* does. If we can show that F* = F, then it follows that T 
is a minimum weight spanning tree. Suppose, to the contrary, that F* l' F. Let ak 
be the first edge of F that is not in F*. Thus, the edges at, ... ,ak-l all belong to F*. 
By Theorem 11.5.8, there is an edge (3 of T* such that the graph T**, obtained from 
T* by inserting ak and deleting (3, is a spanning tree of G. The edge (3 is an edge of 
the cycle that is created by inserting the edge ak into T*; since T is a tree, at least 
one of the edges of the cycle does not belong to T, and we choose such an edge (3. We 
have 

c(T**) = c(T*) - c((3) + c(ak)' (11.6) 

Since T* is a minimum weight spanning tree, we conclude that 

(11. 7) 

Because L = {aI, ... , ak-l, (3} is a subset of the edges of T*, no cycle has all its edges 
contained in L. Hence, in determining the kth edge to be put in F in carrying out the 
greedy algorithm, (3 is a possible choice. It thus follows from (11. 7) that 

and from Theorem 11.7.5 that T** is also a minimum weight spanning tree. Since T** 
has one more edge59 in common with T than T* has, we contradict our choice of T*; 
the proof of the theorem is complete. 0 

Example. Let G be the weighted graph of order 7, shown in Figure 11.38, where 
the numbers next to the edges are their weights. In applying the greedy algorithm to 
determine a minimum weight spanning tree of G, we often have more than one good 
choice for the next edge. One way to carry out the greedy algorithm for the weighted 
graph in Figure 11.38 is to choose, in order, the edges 

. {a,b},{~d},{e,f},{d,g},{e,g},{a,g}. 

The weight of the resulting spanning tree T is 

C(T) = 1 + 1 + 2 + 3 + 4 + 4 = 15. 

Note that the algorithm does not grow the tree T in the sense that we have previously 
used that term. 0 

59The edge CXk. 
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a 

d e 

Figure 11.38 

The best way to carry out the greedy algorithm is to arrange the edges in a sequence 
from smallest to largest weight and then iteratively select the first edge60 that does 
not create a cycle. A disadvantage of the greedy algorithm is that one has to be able 
to recognize when a new edge creates a cycle and thus cannot be chosen. prim61 

modified the greedy algorithm by showing how to grow a minimum weight spanning 
tree, thereby making it unnecessary to deal with cycles. 

Prim's algorithm for a minimum weight spanning tree 

Let G = (V, E) be a weighted connected graph with weight function c and let u be 
any vertex of G. 

(1) Put i = 1, UI = {u}, FI = 0 and TI = (UI,Fr). 

(2) For i = 1,2, ... ,n - 1, do the following: 

(i) Locate an edge ai = {x, y} of smallest weight such that x is in Ui and y is 
not in Ui. 

(ii) Put Ui+1 = Ui U {y}, Fi+1 = Fi U {ai+d and Ti+1 = (Ui+I, Fi+I)' 

(iii) Increase i to i + 1. 

(3) Output Tn"-I = (Un-I, Fn - I ). (Here Un - I = V.) 

Theorem 11.7.6 Let G = (V, E) be a weighted graph with weight function c. Then 
Prim's algorithm constructs a minimum weight spanning tree T = (V, F) of G. 

60This is the greedy feature of the algorithm. 
6IR. C. Prim: Shortest Connection Networks and Some Generalizations, Bell Systems Tech. J., 36 

(1957), 1389-1401. 
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Proof. The proof is similar to the proof of Theorem 11. 7.5. We use the same notation 
as in that proof, and we shall also be brief. At the end of each stage of the algorithm, 
we have grown a tree on a subset of the vertices of G. The theorem asserts that the 
tree T = Tn- l = (V, Fn-l) at termination of the algorithm, is a minimum weight 
spanning tree. Of all the minimum weight spanning trees of G, let T* = (V, F*) be 
one for which the edges GI, ... ,Gk-l are in T* and k is largest. Suppose that k # n, 
that is, that T* # T. Then Gk is not in F* where Gk joins a vertex in Uk to a vertex 
in its complement Uk' Since T* is a spanning tree, there is an edge f3 of T* that joins 
a vertex in Uk to a vertex in Uk such that inserting Gk in T* and deleting f3 gives a 
spanning tree T**. We have c(f3) ~ c( Gk). Since Gk has the smallest weight of all 
edges with one vertex in Uk and the other in Uk, it follows that c(f3) = C(Gk) and T** 
is a minimum weight spanning tree with one more edge in common with T. 0 

Example. We apply Prim's algorithm to the weighted graph G in Figure 11.38, with 
the initial vertex equal to a. One way of carrying out the algorithm results in the 
edges (in the order they are chosen) 

{a,b},{a,f},{f,e},{e,g},{g,d},{d,c}, 

which gives a spanning tree of weight 15. The advantage of Prim's algorithm over the 
greedy algorithm is clear in that, at each stage, we have only to determine an edge of 
smallest weight which joins a vertex that has already been reached to a vertex not yet 
reached. In the algorithm, cycles are automatically avoided in contrast to the greedy 
algorithm in which cycles must be explicitly avoided. 0 

11.8 Exercises 

1. How many nonisomorphic graphs of order 1 are there? of order 2? of order 
3? Explain why the answer to each of the preceding questions is <Xl for general 
graphs. 

2. Determine each of the 11 nonisomorphic graphs of order 4, and give a planar 
representation of each. 

3. Does there exist' a graph of order 5 whose degree sequence equals (4,4,3,2, 2)? 

4. Does there exist a graph of order 5 whose degree sequence equals (4,4,4,2, 2)? 
a multigraph? 

5. Use the pigeonhole principle to prove that f1 graph of order n :::: 2 always has two 
vertices of the same degree. Does the same conclusion hold for multigraphs? 

6. Let (d l , d2 , .. . ,dn ) be a sequence of n nonnegative even integers. Prove that 
there exists a general graph with this sequence as its degree sequence. 
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7. Let (d1 , d2," . ,dn ) be a sequence of n nonnegative integers whose sum d1 + d2 + 
... + dn is even. Prove that there exists a general graph with this sequence as 
its degree sequence. Devise an algorithm to construct such a general graph. 

8. Let G be a graph with degree sequence (d1,d2 , ••. ,dn ). Prove that, for each k 
with 0 < k < n, 

k n 

L di ~ k(k - 1) + L min{k,d;}. 
i=l i=k+1 

9. Draw a connected graph whose degree sequence equals 

(5,4,3,3,3,3,3,2,2). 

10. Prove that any two connected graphs of order n with degree sequence (2,2, ... ,2) 
are isomorphic. 

Figure 11.39 

11. Determine which pairs of the general graphs in Figure 11.39 are isomorphic and, 
if isomorphic, find an isomorphism. 

12. Determine which pairs of the graphs in Figure 11.40 are isomorphic, and for 
those that are isomorphic, find an isomorphism. 

Figure 11.40 

13. Prove that, if two vertices of a general graph are joined by a walk, then they an' 
joined by a path. 
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14. Let x and y be vertices of a general graph, and suppose that there is a closed 
walk containing both x and y. Must there be a closed trail containing both x 
and y? 

15. Let x and y be vertices of a general graph, and suppose that there is a closed 
trail containing both x and y. Must there be a cycle containing both x and y? 

16. Let G be a connected graph of order 6 with degree sequence (2,2,2,2,2,2). 

(a) Determine all the nonisomorphic induced subgraphs of G, 

(b) Determine all the nonisomorphic spanning subgraphs of G. 

(b) Determine all the non isomorphic subgraphs of order 6 of G. 

17. First, prove that any two multigraphs G of order 3 with degree sequence (4,4,4) 
are isomorphic. Then 

(a) Determine all the non isomorphic induced subgraphs of G. 

(b) Determine all the nonisomorphic spanning subgraphs of G. 

(b) Determine all the nonisomorphic subgraphs of order 3 of G. 

18. Let 'Y be a trail joi!].ing vertices x and y in a general graph. Prove that the 
edges of'Y can be partitioned so that one part of the partition determines a path 
joining x and y and the other parts determine cycles. 

19. Let G be a general graph and let G' be the graph obtained from G by deleting all 
loops and all but one copy of each edge with multiplicity greater than 1. Prove 
that G is connected if and only if G' is connected. Also prove that Gis planar 
if and only if G' is planar. 

20. Prove that a graph of order n with at least 

(n - l)(n - 2) 
2 + 1 

edges must be connected. Give an example of a disconnected graph of order n 
with one fewer edge. 

21. Let G be a general graph with exactly two vertices x and y of odd degree. Let 
G* be the general graph obtained by putting a new edge {x,y} joining x and y. 
Prove that G is connected if and only if G* is connected. 

22. (This and the following two exercises prove Theorem 11.1.3.) Let G = (V, E) be 
a general graph. If x and yare in V, define x ~ y to mean that either x = y or 
there is a walk joining x and y. Prove that, for all vertices x, y, and z, we have 

(a) x ~ x. 
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(b) x ~ y if and only if y ~ x. 

(c) if x ~ y and y ~ z, then x ~ z. 

23. (Continuation of Exercise 22.) For each vertex x, let 

C(x) = {z: x ~ z}. 

Prove the following: 

(i) For all vertices x and y, either C(x) = C(y) or else C(x) n C(y) = 0. In 
other words two of the sets C(x) and C(y) cannot intersect unless they are 
equal. 

(ii) If C(x) n C(y) = 0, then there does not exist an edge joining a vertex in 
C(x) to a vertex in C(y). 

24. (Continuation of Exercise 23.) Let VI, V2, ... , Vk be the different sets that occur 
among the C(x)'s. Prove the following: 

(i) VI, V2, . .. , Vk form a partition of the vertex set V of G. 

(ii) The general subgraphs GI = (VI, EI)' G2 = (V2, E2)"'" Gk = (Vk, Ek) of 
G induced by VI, 112, ... , Vk, respectively, are connected. 

The induced subgraphs GI, G2, ... , Gk are the connected components of G. 

25. Prove Theorem 11.1.4. 

26. Determine the adjacency matrices of the first and second general graphs in Figure 
11.39. 

27. Determine the adjacency matrices of the first and second graphs in Figure 11.40. 

28. Let A and B be two n-by-n matrices of numbers whose entries are denoted by 
aij and bij, (1 ~ i,j ~ n), respectively. Define the product A x B to be the 
n-by-n matrix C whose entry C;j in row i and column j is given by 

n 

C;j = L aipbpj , (1 ~ i, j ~ n). 
p=l 

If k is a positive integer, define 

Ak = A x A x ... x A (k A's). 

Now let A denote t1te adjacency matrix of a general graph of order n with vertices 
aI, a2, ... , an. Prove that the entry in row i, column j of Ak equals the number 
of walks of length k in G joining vertices ai and aj. 
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29. Determine if the multigraphs in Figure 11.41 have Eulerian trails (closed or 
open). In case there is an Eulerian trail, use the algorithms prsented in this 
chapter to construct one. 

Figure 11.41 

30. Which complete graphs Kn have closed Eulerian trails? open Eulerian trails? 

31. Prove Theorem 11.2.4. 

32. What is the fewest number of open trails into which the edges of GraphBuster 
can be partitioned? 

33. Show how, removing pencil from paper the fewest number of times, to trace the 
plane graphs in Figures 11.15, 11.16, and 11.17. 

34. Determine all non isomorphic graphs of order at most 6 that have a closed Eule­
rian trail. 

35. Show how, removing pencil from paper the fewest number of times, to trace out 
the graph of the regular dodecahedron shown in Figure 11.18. 

36. Let C be a connected graph. Let I be a closed walk that contains each edge of 
C at least once. Let C* be the multigraph obtained from C by increasing the 
multiplicity of each edge from 1 to the number of times it occurs in T' Prove 
that I is a closed Eulerian trail in C*. Conversely, suppose we increase the 
mUltiplicity of some of the edges of C and obtain a multigraph with m edges, 
each of whose vertices has even degree. Prove that there is a closed walk in C of 
.length m which contains each edge of C at least once. This exercise shows that 
the Chinese postman problem for C is equivalent to determining the smallest 
number of copies of the edges of G that need to be inserted so as to obtain a 
multigraph all of whose vertices have even degree. 

37. Solve the Chinese postman problem for the complete graph K 6 . 

38. Solve the Chinese postman problem for the graph obtained from K6 by removing 
any edge. 
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39. Call a gra,.ph cubic if ea,.ch vertex has degree equal to 3. The complete graph K4 
is the smallest example of a cubic graph. Find an example of a connected, cubic 
graph that does not have a Hamilton path. 

40. * Let G be a graph of order n having at least 

(n - l)(n - 2) 
2 +2 

edges. Prove that G has a Hamilton cycle. Exhibit a graph of order n with one 
fewer edge that does not have a Hamilton cycle. 

41. Let n 2: 3 be an integer. Let Gn be the graph whose vertices are the n! permu­
tations of {I, 2, ... ,n}, wherein two permutations are joined by an edge if and 
only if one can be obtained from the other by the interchange of two numbers 
(an arbitrary transposition). Deduce from the results of Section 4.1 that Gn has 
a Hamilton cycle. 

42. Prove Theorem 11.3.4. 

43. Devise an algorithm analogous to our algorithm for a Hamilton cycle that con­
structs a Hamilton path in graphs satisfying the condition given in Theorem 
11.3.4. 

44. Which complete bipartite graphs K m •n have Hamilton cycles? Which haY!' 
Hamilton paths? 

45. Prove that a multigraph is bipartite if and only if each of its connected compo­
nents is bipartite. 

46. Prove that Km,n is isomorphic to Kn,m' 

47. Prove that a bipartite multigraph with an odd number of vertices does not haY!' 
a Hamilton cycle. 

48. Is Gr.aphBuster a bipartite graph? If so, find a bipartition of its vertices. What 
if we delete the loops? 

49. Let V = {I, 2, ... ,20} be the set of the first 20 positive integers. Consider til<' 
graphs whose vertex set is V and whose edge sets are defined below. For each 
graph, investigate whether the graph (i) is connected (if not connected, determilH' 
the connected components), (ii) is bipartite, (iii) has an Eulerian trail, and (iv) 
has a Hamilton path. 

(a) {a, b} is an edge if and only if a + b is even. 

(b) {a, b} is an edge if and only if a + b is odd. 
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(c) {a, b} is an edge if and only if a x b is even. 

(d) {a,b} is an edge if and only if a x b is odd. 

(e) {a, b} is an edge if and only if a x b is a perfect square. 

(f) {a, b} is an edge if and only if a - b is divisible by 3. 
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50. What is the smallest number of edges that can be removed from K5 to leave a 
bipartite graph? 

51. Find a knight's tour on the boards of the following sizes; 

(a) 5-by-5 

(b) 6-by-6 

(c) 7-by-7 

52. * Prove that there does not exist a knight's tour on a 4-by-4 board. 

53. Prove that a graph is a tree if and only if it does not contain any cycles, but the 
insertion of any new edge always creates exactly one cycle. 

54. Which trees have an Eulerian path? 

55. Which trees have a Hamilton path? 

56. Grow all the non isomorphic trees of order 7. 

57. Let (d l , d2 , •.• , dn ) be a sequence of integers. 

(a) Prove that there is a tree of order n with this degree sequence if and only 
if dl, d2, ... ,dn are positive integers with sum d l + d2 + ... + dn = 2(n - 1). 

(b) Write an algorithm that, starting with a sequence (d l , d2, ... , dn ) of positive 
integers, either constructs a tree with this degree sequence or concludes that 
none is possible. 

58. A forest is a graph each of whose connected components is a tree. In particular, 
a tree is a forest. Prove that a graph is a forest if and only if it does not have 
any cycles. 

59. Prove that the removal of an edge from a tree leaves a forest of two trees. 

60. Let G be a forest of k trees. What is the fewest number of edges that can be 
inserted in G in order to obtain a tree? 

61. Determine a spanning tree for GraphBuster. 

62. Prove that, if a tree has a vertex of degree p, then it has at least p pendent 
vertices. 
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63. Determine a spanning tree for each of the graphs in Figures 11.15 through 11.17. 

64. For each integer n :::: 3 and for each integer k with 2 ::; k ::; n - 1, construct a 
tree of order n with exactly k pendent vertices. 

65. Use the algorithm for a spanning tree in Section 11.5 to construct a spanning 
tree of the graph of the dodecahedron. 

66. How many cycles does a connected graph of order n with n edges have? 

67. Let G be a graph of order n that is not necessarily connected. A forest is defined 
in 'Exercise 58. A spanning forest of G is a forest consisting of a spanning tree 
of each of the connected components of G. Modify the algorithm for a spanning 
tree given in Section 11.5 so that it constructs a spanning forest of C. 

u u u 

® 
v 

v v 

Figure 11.42 

68. Determine whether the Shannon switching games played on the graphs in Figure 
11.42 are positive, negative, or neutral games. 

69. Let G be a connected multigraph. An edge-cut of G is a set F of edges whose 
removal disconnects G. An edge-cut F is minimal, provided that no subset of 
F other than F itself is an edge-cut. Prove that a bridge is always a minimal 
edge-cut, and conclude that the only minimal edge-cuts of a tree are the set~ 
consisting of a single edge. 

70. Let G be a connected multigraph having a vertex of degree k. Prove that G ha~ 
a minimal edge-cut F with IFI ::; k. 

71. Let F be a minimal edge-cut of a connected multigraph G = (V, E). Prove that 
there exists a subset U of V such that F is precisely the set of edges that join a 
vertex in U to a vertex in the complement V of U. 

72. (Continuation of Exercise 71.) Prove that a spanning tree of a connected multi­
graph contains at least one edge of every edge-cut. 
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73. Use the algorithm for growing a spanning tree in Section 11.7 in order to grow a 
spanning tree of GraphBuster. (Note: GraphBuster is a general graph and has 
loops and edges of multiplicity greater than 1. The loops can be ignored and 
only one copy of each edge need be considered.) 

74. Use the algorithm for growing a spanning tree in order to grow a spanning tree 
of the graph of the regular dodecahedron. 

75. Apply the BF-algorithm of Section 11.7 to determine a BFS-tree for the follow­
ing: 

(a) The graph of the regular dodecahedron (any root) 

(b) GraphBuster (any root) 

(c) A graph of order n whose edges are arranged in a cycle (any root) 

(d) A complete graph Kn (any root) 

(e) A complete bipartite graph Km,n (a left-vertex root and a right-vertex root) 

In each case, determine the breadth-first numbers and the distance of each vertex 
from the root chosen. 

76. Apply the DF -algorithm of Section 11.7 to determine a DFS-tree for (a), (b), (c), 
(d), and (e) as in Exercise 75. In each case, determine the depth-first numbers. 

77. Let G be a graph that has a Hamilton path which joins two vertices u and 
v. Is the Hamilton path a DFS-tree rooted at u for G? Could there be other 
DFS-trees? 

78. (Solution of the Chinese postman problem for trees.) Let G be a tree of order n. 
Prove that the length of a shortest closed walk that includes each edge of G at 
least once is 2(n - 1). Show how the depth-first algorithm finds a walk of length 
2(n - 1) that includes each edge exactly twice. 

Figure 11.43 
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79. Use Dijkstra's algorithm in order to construct a distance tree for u for the 
weighted graph in Figure 11.43, with specified vertex u as shown. 

80. Consider the complete graph Kn with labeled vertices 1,2, ... ,n, in which the 
edge joining vertices i and j is weighted by c{i,j} = i + j for all i =f. j. Use 
Dijkstra's algorithm to construct a distance tree rooted at vertex u = 1 for 

(a) K4 

(b) K6 

(c) Ks 

81. Consider the complete graph Kn with labeled vertices 1,2, ... , n, with the weight 
function c{ i, j} = Ii - jl for all i =f. j. Use Dijkstra's algorithm to construct a 
distance tree rooted at vertex u = 1 for 

(a) K4 

(b) K6 

(c) Ks 

82. Consider the complete graph Kn whose edges are weighted as in' Exercise 80. 
Apply the greedy algorithm to determine a minimum weight spanning tree for 

(a) K4 

(b) K6 

(c) Ks 

83. Consider the complete graph Kn whose edges are weighted as in Exercise 8l. 
Apply the greedy algorithm to determine a minimum weight spanning tree for 

(a) K4 

(b) K6 

(c) Ks 

84. Same as Exercise 82, using Prim's .algorithm in place of the greedy algorithm. 

85. Same as Exercise 83, using Prim's algorithm in place of the greedy algorithm. 

86. Let G be a weighted connected graph in which all edge weights are different. 
Prove that there is exactly one spanning tree of minimum weight. 

87. Define a caterpillar to be a tree T that has a path, such that every edge of '/' 
is either an edge of ,or has one of its vertices on ,. 

(a) Verify that all trees with six or fewer vertices are caterpillars. 
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(b) Let T7 be the tree on seven vertices consisting of three paths of length 2 
meeting at a central vertex c. Prove that T7 is the only tree on 7 vertices 
that is not a caterpillar. 

(c) Prove that a tree is a caterpillar if and only if it does not contain T7 as a 
spanning subgraph. 

88. Let dl , d2 , ... ,dn be positive integers. Prove that there is a caterpillar with 
degree sequence (dl ,d2 , .•• ,dn ) if and only if dl + d2 + ... + dn = 2(n - 1). 
Compare with Exercise 57. 

89. A gmcefullabeling of a graph G with vertex set V and with m edges is an injective 
function 9 : V -> {O, 1,2, ... , m} such that the labels Ig(x) - g(y) I corresponding 
to the m edges {x, y} of G are 1,2, ... , m in some order. It has been conjectured 
by Kotzig and Ringel (1964) that every tree has a graceful labeling. Find a 
graceful labeling of the tree T7 in the previous exercise, any path, and the graph 
KI,n. 

90. Verify that cycles of lengths 5 and 6 cannot be gracefully labeled. Then find 
graceful labelings of cycles of lengths 7 and 8. 

91. Let G be a graph with n vertices Xl, X2, . .. ,Xn . Let ri be the largest of the 
distances of Xi to the other vertices of G. Then 

are called. respectively, the diameter and mdius of G. The center of G is the 
sub graph of G induced by the set of those vertices Xi for which ri = r(G), Prove 
the following assertions: 

(a) Determine the radius, diameter, and center of the complete bipartite graph 
Km,n. 

(b) Determine the radius, diameter, and center of a cycle graph en. 
(c) Determine the radius, diameter, and center of a path with n vertices. 

(d) Determine the radius, diameter, and center of the graph Qn corresponding 
to the vertices and edges of an n-dimensional cube. 

92. Prove the following assertions. 

(a) The center of a tree T is either a single vertex or two vertices joined by an 
edge. (Hint: Use induction on the number n of vertices.) 

(b) Let G be a graph, and let G be the complement gmph obtained from G by 
putting an edge between two vertices of G provided there isn't one in G 
and removing all edges of G. Prove that if d(G) 2: 3, then d(G) ~ 3. 





Chapter 12 

More on Graph Theory 

In this second chapter on graph theory, we study some of the fundamental numbers 
that are associated with a graph. The most famous of all these numbers is the chro­
matic number because of its association with the four-color problem. This problem, 
which for over 100 years was an unsolved problem, 1 asks the following: Consider a 
map that is drawn on the plane or on the surface of a sphere in which the countries 
are connected regions. We want to color each region with one color so that neighbor­
ing regions are colored differently. Will four colors always suffice to color any map 
in this way? The short answer is yes. The long answer is that the proof requires2 

im elaborate argument and depends substantially on calculations by computer. The 
four-color problem can be restated in terms of graphs. Choose a vertex-point in the 
interior of each country, and join two vertex-points by an edge-curve whenever the 
two countries share a border.3 In this way, we obtain a plane-graph (and hence a 
planar graph) which is called the dual gmph of the map. Coloring the regions of a 
map so that neighboring regions are colored differently is equivalent to coloring the 
vertices4 of its dual graph in such a way that two vertices which are adjacent are 
colored differently. Thus, the four-color problem can be restated as follows: Every 
planar graph is four-colorable. In this chapter, we shall prove that every planar graph 
is five-colorable, and, more generally, we shall investigate colorings of graphs and other 
graphical parameters of interest. 

I A problem being unsolved for over 100 years is not automatically famous. What made the four­
color problem so famous is that it is easily stated and understood by almost anyone. And it is very 
appealing! 

2 At least the currently known proof does. But a proof that four colors do suffice is beyond an 
attack by amateur means. The elementary approaches have been tried and have failed. For a very 
brief history of the four-color problem, see Section 1.4' . 

. 3Two countries which have only one, or, more generally, only finitely many points in common are 
not considered to have a common border. 

4 More precisely, we think of assigning colors to the vertices. 
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12.1 Chromatic Number 

In this section we consider only graphs, since the presence of either more than one 
edge joining a pair of distinct vertices or loops has no essential effect on the types of 
questions treated here. 

Let G = (V, E) be a graph. A vertex-coloring of G is an assignment of a color to 
each of the vertices of G in such a way that adjacent vertices are assigned different 
colors. If the colors are chosen from a set of k colors, then the vertex-coloring is called 
a k-vertex-coloring, abbreviated k-coloring, whether or not all k colors are used. If 
G has a k-coloring, then G is said to be k-colorable. The smallest k, such that G is 
k-colorable, is called the chromatic number of G, denoted by x( G). The actual nature5 

of the colors used is of no consequence. Thus, sometimes we describe the colors as 
red, blue, green, ... , while at other times we simply use the integers 1, 2, 3, ... to 
designate the colors. Isomorphic graphs have the same chromatic number. 

A null graph is defined to be a graph without anyedges.6 A null graph of order n 
is denoted by Nn . 

Theorem 12.1.1 Let G be a graph of order n 2: 1. Then 

1 ::; X(G) ::; n. 

Moreover, X( G) = n if and only if G is a complete graph, and X( G) = 1 if and only if 
G is a null graph. 

Proof. The inequalities in the theorem are obvious, since any graph with at least 
one vertex requires at least one color, and any assignment of n distinct colors to the 
vertices of G is a vertex-coloring. In any vertex-coloring of Kn, no two vertices can be 
assigned the same color; hence, X(Kn) = n. Suppose that G is not a complete graph. 
Then there are two vertices x and y that are not adjacent. Assigning x and y the same 
color and the remaining n - 2 vertices different colors, we obtain an (n - 1 )-coloring 
of G, and hence X( G) ::; n - 1. Assigning all vertices of Nn the same color is a vertex­
coloring, and hence X(Nn ) = 1. Suppose that G is not a null graph. Then there are 
vertices x and y that are adjacent and thus cannot be assigned the same color in any 
vertex-coloring of G. Hence, in this case X( G) 2: 2. 0 

Corollary 12.1.2 Let G be a graph and let H be a subgraph of G. Then X( G) 2: x(H). 
If G has a subgraph7 equ~l to a complete graph Kp of order p, then 

X(G) 2: p. 

5Should we say color? 
6 A null graph is not necessarily an empty graph, since it may have vertices. The empty graph is a 

graph without any vertices. Thus, a graph G = (V, E) is a null graph if and only if E = 0, while G 
is the empty graph if and only if V = 0 (and hence E = 0). The empty graph is a very special null 
graph, namely, the null graph of order o. Confusing? Not to worry. Just remember that a null graph 
has no edges. 

7This subgraph will necessarily be an induced subgraph. 



12.1. CHROMATIC NUMBER 463 

Proof. It follows from the definition of chromatic number that, if H is any sub graph 
of G, then X(G) 2: X(H). Hence, by Theorem 12.1.1, X(G) 2: X(Kp) = p. 0 

x u ,<121 
z v 

Figure 12.1 

Example. Let G be the graph shown in Figure 12.1. Since G has a subgraph equal 
to K3, the chromatic number of G is at least 3. Coloring the vertices x and v red, 
the vertices u and y blue, and the vertex z green, we obtain a 3-coloring of G. Hence, 
X(G) = 3. 0 

Let G = (V, E) be a graph that is k-colored, using the colors 1,2, ... , k. Let Vi 
denote the subset of vertices that are assigned the color i, (i = 1,2, ... , k). Then 
VI, V2 , ..• , Vk is a partition of V, called a color partition for G. Moreover, the induced 
subgraphs GV1' GV2' ... ,Gvk are null graphs. Conversely, if we can partition the ver­
tices into k parts, with each part inducing a null graph, then the chromatic number 
is at most k. Hence, another way to describe the chromatic number of G is that X(G) 
is the smallest integer k such that the vertices of G can be partitioned into k sets with 
each set inducing a null graph. In the coloring of the graph in Figure 12.1 described 
in the preceding example, the partition is {x,v} (the red vertices), {u,y} (the blue 
vertices), and {z} (the green vertices). Using these ideas, we can now obtain another 
lower bound on the chromatic number of a graph. 

Corollary 12.1.3 Let G = (V, E) be a graph of order n and let q be the largest order 
of an induced subgraph of G equal to a null graph N q . Then 

x(G) 2: r~l· 
Proof. Let X(G) = k and let VI, V2 , •.. , Vk be a color partition for G. Then IViI ::; q 
for each i, and we obtain 

Hence, 

k k 

n = IVI = L IViI ::; L ~ = k x q. 
;=1 ;=1 

n 
x(G)=k2:-. 

q 
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Since X(G) is an integer, the corollary follows. o 

Example. Continuing with the graph in Figure 12.1, an examination of the graph 
reveals that the largest order of an induced null subgraph is q = 2 (that is, of every 
three vertices at least two are adjacent). Thus, by Corollary 12.1.3, we again obtain 

x(G) ~ r~l = 3. 

o 

According to Theorem 12.1.1, the graphs with chromatic number 1 are the null 
graphs. It is then natural to ask for a characterization of graphs with chromatic 
number 2. Graphs with chromatic number 2 have a color partition with two sets. 
This should bring to mind bipartite graphs. 

Theorem 12.1.4 Let G be a graph with at least one edge. Then X(G) = 2 if and only 
if G is bipartite. 

Proof. The chromatic number of a graph with at least one edge is at least 2. If G is 
a bipartite graph, then, coloring the left vertices red and the right vertices blue,8 we 
obtain a 2-coloring of G. Conversely, the color partition arising from a 2-coloring is a 
bipartition for G, establishing the bipartiteness of G. 0 

It follows from Theorems 11.4.1 and 12.1.4 that the chromatic number of a graph 
that is not a null graph equals 2 if and only if each cycle has even length. Graphs 
with chromatic number 3 can have a very complicated structure and do not admit a 
simple characterization. 

Example. A scheduling problem. Many scheduling problems can be formulated as 
problems that ask for the chromatic number (but often will settle for a number not 
much larger than the chromatic number) of a graph. The basic idea is that we asso­
ciate a graph with a scheduling problem whose vertices are the "tasks" to be sched­
uled, putting an edge between two tasks whenever they conflict, and hence cannot be 
scheduled at the same time. A color partition for G furnishes a schedule without any 
conflicts. The chromatic. number of the graph thus equals the smallest number of timp 
slots in a schedule with no conflicts. 

For instance, suppose we want to schedule nine tasks a, b, c, d, e, f, g, h, i, when' 
each task conflicts with the task that immediately follows it in the list and i conflict~ 
with a. The "conflict" graph G in this case is a graph of order 9 whose edges an' 
arranged in a cycle of length g. Of any five vertices of this graph, at least two an' 
adjacent. Hence, the q in Corollary 12.1.3 is at most 4, and it follows that X( G) ~ 3. 

80f course we could have said "coloring the left vertices left and the right vertices right," usillg 
left and right as our two colors. 
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It is easy to find a 3-coloring so that x( G) = 3. Thus, this scheduling problem -requires 
three time slots. 0 

The determination of the chromatic number of a graph is a difficult problem, and 
there is no known good algorithm9 for it. Therefore, it is of importance to have 
estimates for the chromatic number of a graph and some means for finding a vertex­
coloring in which the number of colors used is "not too large." In Corollaries 12.1.2 
and 12.1.3, we have given two lower bounds for the chromatic number. Theorem 12.1.1 
contains an upper bound, namely, n - 1 for a graph of order n, which is not a complete 
graph, but this bound is rather poor. One would hope to be able to do better. Indeed, 
we show that a better bound can be obtained from the degrees of the vertices, and 
there is a simple algorithm for obtaining a vertex-coloring that does not exceed this 
bound. This algorithm is another example of a greedy algorithm,lO which proceeds 
sequentially by "choosing the first available color," ignoring the consequences this may 
have for later choices. We use the positive integers to color the vertices, and thus we 
can speak about one color being smaller than another. 

Greedy algorithm for vertex-coloring 

Let G be a graph in which the vertices have been listed in some order Xl, X2, ... , X n . 

(1) Assign the color 1 to vertex Xl. 

(2) For each i = 2,3, ... , n, let p be the smallest color such that none of the vertices 
Xl, ... , Xi-l which are adjacent to Xi is colored p, and assign the color p to Xi. 

Theorem 12.1.5 Let G be a graph for which the maximum degree of a vertex is tl. 
Then the greedy algorithm produces a (tl+ l)-coloringll of the vertices of G, and hence 

x(G) ~ tl + 1. 

Proof. In words, the greedy algorithm considers each vertex in turn and assigns to 
it the smallest color which has not already been assigned to a vertex to which it is 
adjacent. In particular, two adjacent vertices are never assigned the same color, and 
hence the greedy algorithm does produce a vertex-coloring. There are at most tl 
vertices adjacent to vertex Xi, and hence, at most, tl of the vertices Xl, ... ,Xi-l are 
adjacent to Xi. Therefore, when we consider vertex Xi in step (2) of the algorithm, 

gOne for which the number of steps required grows like a polynomial function of the order of the 
graph. Most experts believe that no good algorithm is possible. 

10 A greedy algorithm for a minimum weight spanning tree is given in Section 11.7. Unlike that 
greedy algorithm, which actually constructed a minimum weight spanning tree, the current algorithm 
gives only an upper bound for the chromatic number. 

"Remember that a (.6. + I)-coloring does not mean that all .6. + 1 colors are actually used. 
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at least one of the colors 1,2, ... , Ll + 1 has not already been assigned to a vertex 
adjacent to Xi, and the algorithm assigns the smallest of these to Xi. It follows that 
the greedy algorithm produces a (Ll + I)-coloring of the vertices of G. 0 

The greedy algorithm just might color the vertices of G in the fewest possible 
number, namely, X(G), of colors. How well or how badly it does depends on the order 
in which the vertices are listed before the algorithm is applied. Let VI, V2, ... , Vx(G) 

be a color partition arising from a vertex coloring using X( G) colors.12 Suppose we list 
the vertices of VI first, followed by the vertices of V2, ... ,followed by the vertices 
of Vx(G) .13 It is easy to see that the greedy algorithm colors the vertices in VI with 
the color 1, the vertices in V2 with one of the colors 1 or 2, ... , the vertices in Vx(G) 

with one of the colors 1,2, ... ,X(G). Thus, with this listing of the vertices, the greedy 
algorithm colors the vertices with the fewest possible number of colors. 

Example. Consider a complete bipartite graph K 1,n. The largest degree of a vertex is 
Ll = n. Thus, by Theorem 12.l.5, the greedy algorithm produces an (n + I)-coloring. 
In fact, it does a lot better. No matter how the vertices are listed, the greedy algorithm 
colors the vertices with only two colors, the minimum possible number of colors. Thus, 
the greedy algorithm sometimes can give a much better coloring than is suggested by 
Theorem 12.l.5. 

(1) x It-------:~ a (2) 

(3) yeE---~-~ b (1) 

(2) zeo'-------'=- C (4) 

Figure 12.2 

Now consider the bipartite graph drawn in Figure 12.2, and list the vertices a,_ 

X, a, b, y, z, c. Then the colors assigned to these vertices by the greedy algorithm an~, 
respectively, 1,2,1,3,2,4 .. Hence, the greedy algorithm produces a 4-coloring, yet tll<' 
chromatic number is 2. I I 

The upper bound for the chromatic number given in Theorem 12.1.5 can be illl­
proved, except for two classes of graphs. These are the complete graphs K n , for which 
Ll = n - 1 and X( G) = n, and the graphs Cn of odd order n whose edges are arrang('! I 

12 0£ course, knowing this implies that we already know x( G). Our point is that, if we were wry 
lucky in the way we listed the vertices of the graph, then the greedy algorithm could produce a colol'illv. 
using the smallest number of colors. 

13 All we want to do is to keep the vertices of the same color together. 
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in a cycle (of odd length), for which t.. 
theorem of Brooks14 is omitted. 

2 and X(G) 3. The proof of the· next 

Theorem 12.1.6 Let G be a connected graph for which the maximum degree of a 
vertex is t... If G is neither a complete graph Kn nor an odd cycle graph en) then 
X(G) :S t... 

A conclusion from our discussion of chromatic number is that coloring the vertices 
of a graph (so that adjacent vertices are colored differently) is hard if we want to 
use the fewest number of colors. We now remove the restriction that the number of 
colors is minimum, but consider a more difficult question: Given a graph G and a 
set {I, 2, ... , k} of k colors, how many k-colorings of G are there? If we know that 
X( G) > k, then the question is easy and the answer is 0.15 

For each nonnegative integer k, the number of k-colorings of the vertices of a graph 
G is denoted by 

pc(k ). 

If X(G) > k, then pc(k) = O. For example, for a complete graph, we have 

PKn(k) = k(k - 1) ... (k - (n - 1)) = [k]n, 

since each vertex must be a different color.16 For a null graph, we have 

since we can arbitrarily assign colors to each of the vertices.17 

Example. We determine pc(k) for the graph G in Figure 12.1. First we color the 
vertices x, y, z. These vertices can be colored in 

k(k - 1)(k - 2) 

ways, since each has to receive a different color. Next, we color u and observe that it 
must receive a color different from that of x and z. There are k - 2 ways to color u. 

14R. L. Brooks, On Coloring the Nodes of a Network, Proc. Cambridge Phzlos. Soc., 37 (1941), 
194-197. 

l5If X(G) > k, but we do not have that information, then the question is much more difficult. This 
is because, in answering it, we are implicity determining whether or not X(G) ::; k: X(G) ::; k if and 
only if the the number of ways to color G with k colors is not O. 

16[kln is the function that was introduced in Section 8.2 and counts the number of n-permutations of 
a set of k distinct objects. In the situation here, the k objects are the k colors and the n-permutations 
are the assignments of a color to each of the n vertices of Kn. Since each pair of vertices is adjacent 
in Kn, all vertices have to be colored differently. 

17We recall from Chapter 2 that k n counts the number of n-permutations of a set of k objects (the 
k colors here) in which unlimited repetition is allowed. Since no vertices of N n are adjacent, we can 
freely repeat colors. 



468 CHAPTER 12. MORE ON GRAPH THEORY 

Finally, v can receive any of the colors other than the (distinct) colors of u and z, and 
hence there are k - 2 ways to color v. Thus, 

pc(k) = k(k - l)(k - 2) x (k - 2) x (k - 2) = k(k - l)(k - 2)3. 0 

It is not hard to count the number of ways to color the vertices of a tree. What is 
surprisiNg is that, for each k, the number of k-colorings of a tree depends only on the 
number of vertices of the tree, and not on which tree is being considered! 

Theorem 12.1.7 Let T be a tree of order n. Then 

Proof. We grow T as described in Section 11.5 and color the vertices as we do. The 
starting vertex can be colored with anyone of the k colors. Each new vertex y we add 
is adjacent to only one of the previous vertices x. Hence, y can be colored with any 
one of the k - 1 colors different from the color of x. Thus, each of the n - 1 vertice~, 
other than the first, -can be colored in k - 1 ways, and the formula follows. 0 

The observant reader will have noticed that, thus far, each of the formulas ob­
tained for the number of ways to color the vertices of. a graph has turned out to be 
a polynomial function of the number k of colors. Indeed, this is no accident and is 
a general phenomenon: pc(k) is always a polynomial function of k. We now turn to 
proving this fact. As a result of this property, pc(k) is called the chromatic polynomial 
of the graph G. The chromatic polynomial of G evaluated at k gives the number of 

k-colorings of G. The chromatic number of G is the smallest nonnegative integer that. 
is not a root of the chromatic polynomial. 

The fact that pc(k) is a polynomial rests on a simple observation. Let x and !J 

be two vertices of G that are adjacent. Let G I be the graph obtained from G by 

removing the edge {x, y} joining x and y. The k-colorings of GI can be partitioned 
into two parts, C(k) and D(k). In the first part, C(k), we put those k-colorings of G 1 

in which x and yare assigned the same color. In the second part, D(k), we put thos(' 
k-colorings in which x and yare assigned different colors. Thus, 

pc,(k) = IC(k)1 + ID(k)l· 

Since x and yare adjacent in G, there is a one-to-one correspondence between tlw 
k-colorings of G I , in which x and yare assigned different colors, and the k-colorings 
of G. Hence, 

pc(k) = ID(k)l· 

Let G2 be the graph obtained from G by identifying the vertices x and y. This mea lis 
that we delete the edge {x, y}, replace x and y by one new vertex, denoted xy, alld 
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join xy to any vertex that is joined either to x or y in G.18 There is a one-to-one 
correspondence between the k-colorings of GI, in which x and yare assigned the same 
color, and the k-colorings of G2. Therefore, 

pC2(k) = IC(k)l· 

Combining the previous three equations, we get 

PCI (k) = pc(k) + PC2 (k), 

from which it follows that 

(12.1) 

In words, the number of k-colorings of G can be obtained by finding the number of 
k-colorings of G I (in which the edge {x, y} has been removed, making it possible for 
x and y to be assigned the same color) and subtracting the number of k-colorings of 
G2 (in which the vertices x and y have been identified so that they must be assigned 
the same color). Why is this a useful observation? 

The order of GI is the same as the order of G, and GI has one fewer edge than G. 
The order of G2 is one less than the order of G, and G2 has at least one fewer edge 
than G. Put another way, GI and G2 are closer (in terms of the number of edges) 
to a null graph than G is. Thus, our observation suggests an algorithm to determine 
the number of k-colorings of G: Continue to remove edges and identify vertices until 
all graphs so obtained are null graphs. By (12.1), the number of k-colorings of G can 
be expressed in terms of the number of k-colorings of each of these null graphs. But 
we know what the number of k-colorings of a null graph is; the number of k-colorings 
of a null graph of order P is kP• Hence, we can obtain the number of k-colorings of 
G by subtracting and adding the number of k-colorings of null graphs.19 In addition, 
since kP is a polynomial in k (a monomial, actually), the number of k-colorings of G, 
being a sum of such monomials or their negatives, is a polynomial in k; that is, the 
chromatic polynomial of G is indeed a polynomial. Before formalizing the previous 
discussions, we consider an example. 

Example. Let G be a cycle graph C5 of order 5 whose edges are arranged in a cycle. 
Choosing any edge of G and applying (12.1), we see that 

IBWe can think of moving x and y together until they coincide. This may create a multiple edge, 
In which case we delete one copy. 

19Nuli graphs may be very uninteresting, but as we have just seen they have an important role to 
play in graph colorings. 
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where Gl is a tree of order 5 whose edges are arranged in a path and G2 is a cycle 
graph C4 of order 4. By Theorem 12.1.7, Pc, (k) = k(k _1)4.20 We do to G2 what we 
did to G and obtain 

where G3 is a cycle graph C3 of order 3. Since G3 is a complete graph K3 with 
pC3(k) = k(k - l)(k - 2), we obtain 

pc(k) = k(k - 1)4 - (k(k - 1)3 - k(k -l)(k - 2)). 

This simplifies to 
pc(k) = k(k - l)(k - 2)(k2 - 2k + 2). 

Note that pc(o) = 0, pc(l) = 0, pc(2) = ° and pc(3) > 0. Hence, X(G) = 3, a fact 
that is easy to establish directly. 0 

Let G be a graph and let Ct = {x, y} be an edge of G. We now denote the graph 
obtained from G by deleting the edge Ct by Geo:. We also denote the graph obtained 
from G by identifying x and y (as previously defined) by Gelo:. We say that Gelo: is 
obtained from G by contracting the edge Ct. Thus, (12.1) can be rewritten as 

(12.2) 

As already implied, repeated use of deletion and contraction gives an algorithm for 
determining pc(k). In the next algorithm, we consider objects (±, H), where H is II 

graph. For the purposes of the algorithm, we call such an object a signed graph, II 

graph with either a plus sign + or minus sign - associated with it. 

Algorithm for computing the chromatic polynomial of a graph 

Let G = (V, E) be a graph. 

(1) PutQ={(+,G)}. 

(2) While there exists a signed graph in Q that is not a null graph, do the following: 

(i) Choose a nonhull signed graph (E, H) in Q and an edge Ct of H. 

(ii) Remove (E, H) from Q and put in the two signed graphs (E, Heo:) alld 
(-E, HelO:)' 

(3) Put pc(k) = 'L. EkP , where the summation exten.ds over all signed graphs (E, 11) 
in Q and p is the order of H. 

20This illustrates an important point in this process, namely, if one obtains a graph whose chromalll 
polynomial is known, then make use of that information. One doesn't necessarily have to reduce all 
graphs to null graphs. 
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In words, we start with G with a + attached to it. Using the deletion/contraction 
process, we reduce G and all resulting graphs to null graphs, keeping track of the 
associated sign as determined by mUltiple applications of (12.2). When there are no 
remaining graphs with an edge, we compute the order p of each null graph so obtained 
and then form the monomial ±kP, which is its chromatic polynomial, adjusted for 
sign. By repeated use of (12.2), adding all these polynomials, we obtain the chromatic 
polynomial of G. In particular, since the sum of monomials is a polynomial, we obtain 
a polynomial. In the deletion/contraction process, exactly one graph is a null graph 
of the same order as G. This graph results by successive deletion of aU edges of G, 
without any contraction, and contributes the monomial kn with a + sign. All other 
graphs have fewer than n vertices and contribute monomials of degree strictly less 
than n. We have thus proved the next theorem. 

Theorem 12.1.8 Let G be a graph of order n :2: 1. Then the number of k-colorings 
of G is a polynomial in k of degree equal to n (with leading coefficient equal to 1) 
and this polynomial-the chromatic polynomial of G-is computed correctly by the 
preceding algorithm. 0 

It is straightforward to see that, if a graph G is disconnected, then its chromatic 
polynomial is the product of the chromatic polynomials of its connected components. 
In particular, the chromatic number is the largest of the chromatic numbers of its 
connected components. In the next theorem, we generalize this observation. The 
resulting formula can sometimes be used to shorten the computation of the chromatic 
polynomial of a graph. 

Let G = (V, E) be a connected graph and let U be a subset of the vertices of G. 
Then U is called an articulation set of G, provided that the subgraph Gv -u induced21 

by the vertices not in U is disconnected. If G is not complete, then G contains two 
nonadjacent vertices a and b, and hence U = V - {a, b} is an articulation set with 
V - U = {a, b}. A complete graph does not have an articulation set. Therefore, a 
connected graph has an articulation set if and only if it is not complete. 

Lemma 12.1.9 Let G be a graph and assume that G contains a subgraph H equal to 
a complete graph K r . Then the chromatic polynomial of G is divisible by the chromatic 
polynomial [kl r of K r · 

Proof. In any k-coloring of G, the vertices of H are all colored differently. Moreover, 
each choice of colors for the vertices of H can be extended to the same number q(k) 
of colorings for the remaining vertices of G. Hence, pc(k) = .[klrq(k). 0 

21Recall that the vertices of this subgraph are those in V - U, and two vertices are adjacent in 
Gv-u if and only if they are adjacent in C. 
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Theorem 12.1.10 Let U be an articulation set of G and suppose that the induced 
subgraph Gu is a complete graph K r . Let the connected components of Gv-u be the 
induced subgraphs Gu1 , ••• , GUt. For i = 1, ... , t, let Hi = GUUUi be the subgraph of 
G induced by U U Ui. Then 

(k) = PH1(k) x··· X PHt(k) 
Pc ([k]r )t-l 

In particular, the chromatic number of G is the largest of the chromatic numbers of 

Hl,···,Ht . 

Proof. The graphs HI, ... , H t all have the vertices of U in common but are otherwise 
pairwise disjoint. Each k-coloring of G can be obtained by first choosing a k-coloring 
of HI (there are PHI (k) such colorings and now all the vertices of U are colored) and 
then completing the colorings of each Hi, (i = 2, ... , t) (each in PH; (k)/[k]r ways, by 
Lemma 12.1.9). [J 

Example. Let G be the graph drawn in Figure 12.3. Let U = {a, b, c}. Applying 
Theorem 12.1.10, we see that 

(q(k))3 
pc(k) = (k(k _ l)(k _ 2))2' 

where q(k) is the chromatic polynomial of a complete graph G' of order 4 with one 
missing edge. It is simple to calculate (in fact, use Theorem 12.1.10 again) that 
q(k) = k(k - l)(k - 2)2. Hence, 

pc(k) = k(k - l)(k - 2)4. 

o 

x 

~ y c z 

Figure 12.3 

12.2 Plane and Planar Graphs 

Let G = (V, E) be a planar general graph and let G' be a planar representation of U. 
Thus, G' is a plane-graph and G' consists of a collection of points in the plane, callpd 
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vertex-points because they correspond to the vertices of G, and a collection of curves, 
called edge-curves because they correspond to the edges of G. Also, an edge-curve 
O! is a simple curve that passes through a vertex-point x if and only if the vertex x 
of G is incident with the edge a of G.22 Only endpoints can be common points of 
edge-curves. 

The plane graph G' divides the plane into a number of regions that are bounded 
by one or more of the edge-curves. 23 Exactly one of these regions extends infinitely 
far. 

Example. The plane-graph shown in Figure 12.4 has 10 vertex-points, 14 edge-curves, 
and 6 regions. Each of the regions is bordered by some of the edge-curves, but we 
must be be very careful how we count the edge-curves. The regions R2, R3 , R5, and 
~ are bordered by one, two, six, and two edge-curves, respectively. The region R4 
is bordered by 10 edge-curves (and not 4 or 7). This is because, as we traverse R4 
by walking around its border, three of the edge-curves are traversed twice (see the 
dashed line in Figure 12.4). The region Rl is bordered24 by 7 edge-curves. In sum, we 
count the number of edge-curves bordering regions in such a way that each edge-curve 
is counted twice, either because it borders two different regions or because it borders 
the same region twice. 0 

Figure 12.4 

Let G' be a plane-graph with n vertex-points, e edge-curves, and r regions. Let 
the number of edge-curves bordering the regions be, respectively, 

h,/2,···,/r' 

22Recall that we give the same label to a vertex and its corresponding vertex-point and the same 
label to an edge and its corresponding edge-curve. 

23Thus, a plane-graph has points, curves, and now regions. 
24 RI might appear to be bordered by none of the edge-curves, since it extends infinitely far in all 

directions. However, a geometrical figure drawn in the plane can also be thought of as drawn on a 
sphere. Loosely speaking, we put a large sphere on top of the figure and then "wrap" the sphere with 
the plane. The infinite region is now some finite region on the sphere surrounding the north pole. 
Note also that a region may have "interior" border curves as, for example, R4 does. 
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Then, using the convention established in the preceding example, we have 

h + h + ... + fr = 2e. (12.3) 

We now derive a relationship among n, e, and r which implies in particular that any 
two of them determine the third. This relationship is known as Euler's formula. 

Theorem 12.2.1 Let G be a plane-graph of order n with e edge-curves and assume 
that G is connected. Then the number r of regions into which G divides the planr 
satisfies 

r = e -n + 2. (12.4) 

Proof. First, assume that G is a tree. Then e = n-l and r = 1 (the only region is the 
infinite region that is bordered twice by each edge-curve). Hence, (12.4) holds in thi~ 
case. Now assume that G is not a tree. Since G is connected, it has a spanning tree T 
with n' = n vertices, e' = n - 1 edges, and r' = 1 regions, where r' = e' - n' + 2. We 
can think of starting with the edge-curves of T and then inserting one new edge-curve 
at a time until we have G. Each time we insert an edge-curve, we divide an existing 
region into two regions. Hence, each time we insert another edge-curve, e' increase~ 
by 1, r' increases by 1, and n' stays the same (n' is always n). Therefore, starting 
with r' = e' - n' + 2 for a spanning tree, this relationship persists as we include thl' 
remaining edge-curves, and the theorem is proved. 0 

Euler's formula has an important consequence for planar graphs (with no loops 
and multiple edges). 

Theorem 12.2.2 Let G be a connected planar graph. Then there is a vertex of G 
whose degree is at most 5. 

Proof. Let G' be a planar representation of G. Since a graph has no loops, no regioll 
of G' is bordered by only one edge-curve. Similarly, since a graph has no multip\I' 
edges, no region is bordered by only two edge-curves (unless G has exactly one edge). 
Thus, in (12.3), each fi satisfies /; 2: 3, and hence we have 

2e 
3r S 2e, or equivalently, "3 2: r. 

Using this inequality in Euler's formula, we get 

2e . "3 2: r = e - n + 2, or, eqUIvalently, e S 3n - 6. (12 . .", ) 

Let d l , d2,"" dn be the degrees of the vertices of G. By Theorem 11.1.1, we have 

dl + d2 + ... + dn = 2e. 
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Hence, the average of the degrees of G satisfies 

dl + d2 + ... + dn 2e 6n - 12 
-=---~----". = - < --- < 6. 

n n - n 

Since the average of the degrees is less than 6, some v~rtex must have degree 5 or less. 
o 

If a graph G has a subgraph that is not planar, then G is not planar. Thus, in 
attempting to describe planar graphs, it is of interest to find nonplanar graphs G, each 
of whose subgraphs, other than G itself, is planar. 

Example. A complete graph Kn is planar if and only if n ~ 4. 

If n ~ 4, then Kn is planar. Now consider K5. As shown in the proof of Theorem 
12.2.2 (see (12.5)), the number n of vertices and the number e of edges of a planar 
graph satisfies e ~ 3n-6. Since K5 has n = 5 vertices and e = 10 edges, this inequality 
is not satisfied and hence K5 is not planar. Since K5 is not planar, Kn is not planar 
for all n 2': 5. 0 

Example. A complete bipartite graph Kp,q is planar if and only if p ~ 2 or q ~ 2. 

It is easy to draw a planar representations of Kp,q if p ~ 2 or q ~ 2. Now consider 
K3,3. A bipartite graph does not have any cycles of length 3; hence, in a planar 
representation of a planar bipartite graph, each region is bordered by at least four 
edge-curves. Arguing as in the proof of Theorem 12.2.2, we obtain r ~ e/2. Applying 
Euler's formula, we get 

e 
2" 2': e - n + 2; equivalently, 2n - 42': e. 

Since K 3,3 has n = 6 vertices and e = 9 edges, this inequality is not satisfied and 
hence K3,3 is not planar. Since K 3,3 is not planar, Kp,q is not planar if both p 2': 3 
and q 2': 3. 0 

Let G = (V, E) be a nonplanar graph and let {x, y} be any edge of G. Let G' 
be obtained from G by choosing a new vertex z not in V and replacing the edge 
{x, y} with the two edges {x, z} and {z, y}. We say that G' is obtained from G by 
subdividing the edge {x,y}. If G is not planar, then clearly G' is also not planar. 25 A 
graph H is called a subdivison of a graph G, provided that H can be obtained from 
G by successively subdividing edges. If H is a subdivision of G, then we can think 
of H as obtained from G by inserting several new vertices (possibly none) on each of 
its edges. For example, the graphs in Figure 12:5 are subdivisions of K 3,3 and K 5 , 

respectively. It follows that each of these graphs is not planar. 

2SIf there were a planar representation of C', then by "erasing" the vertex-point z we obtain a 
~Ianar representation of C. 
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Figure 12.5 

A nonplanar graph cannot contain a subdivision of a K5 or a K 3,3. It is a remark­
able theorem of Kuratowski26 that the converse holds as well. We state this theorem 
without proof. 

Theorem 12.2.3 A graph G is planar if and only if it does not have a subgraph that 
is a subdivision of a K5 or of a K3,3. 

Loosely speaking, Theorem 12.2.3 says that a graph that is not planar has to 
contain a sub graph that either looks like a K5 or looks like a K 3,3. Thus, the two graphH 
K5 and K 3,3 are the only two "obstructions" to planarity. As noted by Wagner27 and 
Harary and Tutte,28 planar graphs can also be characterized by using the notion of 
contraction of an edge in place of subdivision of an edge. A graph H is a contraction 
of a graph G, provided that H can be obtained from G by successively contracting 
edges. 

Theorem 12.2.4 A graph G is planar if and only if it does not contain a subgraph 
that contracts to a K5 or a K 3,3. 

12.3 A Five-Color Theorem 

In this section we show that the chromatic mumber of a planar graph is at most ;). 
This was first proved by P. J. Heawood in 1890 after he discovered an error in a "proof" 
published in 1879 by A. Kempe, in which Kempe claimed that the chromatic numb('!' 
of a planar graph is at most 4. Although Kempe's proof was wrong, it contain!'d 
good ideas, which Heawood used to prove his five-color theorem. As described ill 
the introduction to this Chapter, and also in Section 1.4, a proof that the chromati(' 

26K. Kuratowski, Sur Ie probleme des courbes gauches en topologie, FUnd. Math., 15 (1930),271 
283. 

27K. Wagner, Dber eine Eigenschaft der ebenen Komplexe, Math. Ann., 114 (1937), 570-590. 
28F. Harary and W. T. Tutte, A Dual Form of Kuratowski's Theorem, Canadian Math. Bull., M 

(1965), 17-20. 
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number of every planar graph is at most 4 has now been obtained, and it relies heavily 
on computer checking. 

There is an easy proof, which uses Theorem 12.2.2, of the fact that the chromatic 
number of a planar graph G is at most 6. Indeed, suppose there is a planar graph whose 
chromatic number is 7 or more, and let G be such a graph with the minimum number 
of vertices. By Theorem 12.2.2, G has a vertex x of degree at most 5. Removing x 
(and all incident edges) from G leaves a planar graph G' with one fewer vertex. The 
minimality assumption on G implies that G' has a 6-coloring. Since x is adjacent in G 
to at most five vertices, we can take a 6-coloring of G' and assign a color to x in such 
a way as to produce a 6-coloring of G, a contradiction. It follows that the chromatic 
number of every planar graph is 6 or less. It is harder, but not terribly so, to prove 
that a planar graph has a 5-coloring, but the jump from five colors to four colors is a 
giant one. 

Before proving that five colors suffice to color the vertices of any planar graph, we 
make one observation. In the previous section, we showed that a complete graph K5 
of order 5 is not planar, and hence a planar graph cannot contain five vertices, the 
members of every pair of which are adjacent. It is erroneous to conclude from this that 
every planar graph has a 5-coloring. For instance, with 3 replacing 5, a cycle graph 
C5 of order 5 does not have a K3 as a subgraph, yet its chromatic number is 3 and it 
does not have a 2-coloring. So it does not simply suffice to say that there do not exist 
five vertices such that each must be assigned different colors and hence a 4-coloring is 
possible. 

The next theorem is an important step in the proof of the five-color theorem. It 
applies to nonplariar graphs as well as planar graphs. 

Theorem 12.3.1 Let there be given a k-coloring of the vertices of a graph H = (U, F). 
Let two of the colors be red and blue, and let W be the subset of vertices in U that are 
assigned either the color red or the color blue. Let Hr,b be the subgraph of H induced 
by the vertices in Wand let Cr,b be a connected component of Hr,b. Interchanging the 
colors red and blue assigned to the vertices of Cr,b, we obtain another k-coloring of H. 

Proof. Suppose that after the colors red and blue have been interchanged in Cr,b, 

there are two adjacent vertices which are now colored the same. This color must be 
either red or blue (say, red). If x and yare both vertices of Cr,b, then before we 
switched colors, x and' y were colored blue which is impossible. If neither x nor y is 
a vertex in Cr,b, then their colors weren't switched and so they both started out with 
color red, again impossible. Thus, one of x and y is a vertex in Cr,b and the other 
isn't (say, x is in Cr,b and y is not). Therefore, x started out with the color blue and 
y started out with the color red. Since x and yare adjacent and each is assigned the 
color red or blue, they must be in the same connected component of Hr,b, contradicting 
the fact that x is in the connected component Cr,b of Hr,b and y isn't. 0 

Theorem 12.3.2 The chromatic number of a planar graph is at most 5. 
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Proof. Let G be a planar graph of Dfder n. If n ::::: 5, then surely X(G) ::::: 5. We now 
let n > 5 and prove the theorem by induction on n. We assume that G is drawn in 
the plane as a plane-graph. By Theorem 12.2.2, there is a vertex x whose degree is at 
most 5. Let H be the subgraph of order n - 1 of G induced by the vertices different 
from x. By the induction hypothesis, there is a 5-coloring of H. If the degree of x 
is 4 or less, then we can assign to x one of the colors not equal to the colors of the 
vertices adjacent to x and obtain a 5-coloring of G.29 Now suppose that the degree 
of x is 5. There are 5 vertices adjacent to x. If two of these vertices are assigned 
the same color, then, as before, there is a color we can assign x in order to obtain a 
5-coloring of G. So we now further suppose that each of the vertices YI, Y2, Y3, Y4, Y5 
adjacent to x is assigned a different color. As in Figure 12.6, the vertices Yr,·.· ,Y5 
are labeled consecutively around vertex x; the colors are the numbers 1,2,3,4, and 5 
with Yj colored j, (j = 1,2,3,4,5). 

Ys 

Figure 12.6 

We consider the subgraph H I ,3 of H induced by the vertices of colors 1 and 3. If 
YI and Y3 are in different connected components of H I ,3, then we apply Lemma 12.1.1 
to H and obtain a 5-coloring in which YI and Y3 are colored the same. This frees up 
a color for x, and we obtain a 5-coloring of G. Now assume that YI and Y3 are in tht, 
same connected component of H I ,3. Then there is a path in H joining YI and Y3 sucll 
that the colors of the vertices on the path alternate between 1 and 3. This path, along 
with the edge-curve joining x and YI and the edge-curve joining x and Y3, determirH' 
a closed curve "Y. Of the remaining three vertices Y2, Y4, and Y5 adjacent to x, one uf 
them is inside "Y and two are outside "Y, or the other way around. See Figure 12.7, ill 
which Y2 is inside "Y and Y4 and Y5 are outside. We now consider the subgraph H2,~ 
of H induced by the vertices of colors 2 and 4. But (see Figure 12.7) vertices Y2 and 
Y4 cannot be in the same connected component of H2,4 since Y2 is in the interior of a 
simple closed curve and Y4 is in the exterior of that curve. Switching the colors 2 aUtI 

29This is just like our proof that six colors suffice to color the vertices of a planar graph. But for /I 

5-coloring, we are not yet done, since we now have to deal with the case that x has degree 5. 
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4 of the vertices in the connected component of H2,4 that contains X2, we obtain by 
Lemma 12.1.1 a 5-coloring of H in which none of the vertices adjacent to x is assigned 
color 2. We now assign the color 2 to x and obtain a 5-coloring of G. 0 

Ys 
5 

Y3 

Figure 12.7 

In 1943, Hadwiger30 made a conjecture about the chromatic number of graphs, 
which, except in a few cases, is still unsolved. This is perhaps not too surprising since 
the truth of one instance of this conjecture is equivalent to the existence of a 4-coloring 
of any planar graph. This conjecture asserts: A connected graph G whose chromatic 
number satisfies X(G) 2: p can be contracted to a Kp. Equivalently, if G cannot be 
contracted to a K p , then X( G) < p. The converse of the conjecture is false; that is, 
it is possible for a graph to be contractable to a Kp and yet have chromatic number 
less than p. For instance, a graph of order 4 whose edges are arranged in a cycle has 
chromatic number 2, yet the graph itself can be contracted to a K3 by contraction of 
one edge. 

Theorem 12.3.3 Hadwiger's conjecture holds for p = 5 if and only if every planar 
graph has a 4-coloring. 

Partial Proof. We prove only that if Hadwiger's conjecture holds for p = 5, then 
every planar graph G has a 4-coloring. Let G be a planar graph and suppose that G is 
contractable to a K 5 • A contraction of a planar graph is also planar, and this implies 
that K5 is planar, a statement we know to be false. Hence, G is not contractable to a 
K 5 , and hence the truth of Hadwiger's conjecture for p = 5 implies that X(G) ::; 4. 0 

Hadwiger's conjecture is also known to be true for p ::; 4 and for p = 6. We verify 
Hadwiger's conjecture for p = 2 and 3 in the n,ext theorem and leave its validity for 
p = 4 as a challenging exercise. 

30H. Hadwiger, Uber eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges., 
Zurich, 88 (1943), 133-142. 
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Theorem 12.3.4 Let p :S 3. If G is a connected graph with chromatic number X(G) ~ 
p, then G can be contracted to a Kp. 

Proof. If p = 1, then by contracting each edge, we arrive at a K 1 . If P = 2, then 
G has at least one edge a, and by contracting all edges except for a, we arrive at a 
K2. Now, suppose p = 3 and X(G) ~ 3. Since X(G) ~ 3, G is not bipartite, and by 
Theorem 11.4.1, G has a cycle of odd length. Let "( be an odd cycle of smallest length 
in G. Then the only edges joining vertices of "( are the edges of "(, for otherwise we 
could find an odd cycle of length shorter than "(. By contracting all the edges of G 
except for the edges of "(, we arrive at "(. We may further contract edges to obtain a 
~. 0 

12.4 Independence Number and Clique Number 

Let G = (V, E) be a graph of order n. A set of vertices U of G is called independent,3l 
provided that no two of its vertices are adjacent. Equivalently, U is independent 
provided the subgraph Gu of G induced by the vertices in U is a null graph. Thus, 
the chromatic number X(G) equals the smallest integer k such that the vertices of 
G can be partitioned into k independent sets. Each subset of an independent set is 
also an independent set. Consequently, we seek large independent sets. The largest 
number of vertices in an independent set is called the independence number of the 
graph G and is denoted by a(G). The independence number is the largest number of 
vertices that can be colored the same in a vertex-coloring of G. Corollary 12.1.3 can 
be rephrased as 

For a null graph N n, a complete graph Kn, and a complete bipartite graph Km,n, we 
have 

a(Nn) = n, a(Kn) = 1, and a(Km,n) = max{m,n}. 

The determination of the independence number of a graph is, in general, a difficult 
computational problem. 

Example. Let G be the graph in Figure 12.8. Then {a, e} is an independent set 
that is not a subset of any larger independent set. Also, {b, c, d} is an independent set 
with the same property. Of any four vertices, two are adjacent, and hence we have 
a(G) = 3. 0 

31Sometimes also called stable. 
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Figure 12.8 

Example. A zoo wishes to place various species of animals in the same enclosure. 
Obviously, if one species preys on another, then both should not be put in the same 
enclosure. What is the largest number of species that can be placed in one enclosure? 

We form the zoo graph G whose vertices are the different animal species in the 
zoo, and we put an edge between two species if and only if one of them preys on the 
other. The largest number of species that can be placed in the same enclosure equals 
the independence number a( G) of G. How many enclosures are required in order to 
accommodate all the species? The answer is the chromatic number x( G) of G. -0 

Example. (The problem of the eight queens). Consider an 8-by-8 chessboard and the 
chess piece known as a queen. In chess, a queen can attack any piece that lies in its row 
or column or in one of the two diagonals containing it. If nine queens are placed on 
the board, then necessarily, two lie in the same row and thus can attack one another. 
Is it possible to place eight queens on the board so that no queen can attack another? 

Let G be the queens graph of the chessboard. The vertices of G are the squares 
of the board, with two squares adjacent if and only if a queen placed on one of the 
squares can attack a queen placed on the other. Our question thus asks whether the 
independence number of the queens graph equals 8. In fact, a(G) = 8 and there are 
92 different ways to place eight nonattacking queens on the board. One of these is 
shown in Figure 12.9. '0 

0 
0 

0 
0 

0 
0 

0 
0 

Figure 12.9 

Let G = (V, E) be a graph and let U be an independent set of vertices that is not 
a subset of any larger independent set. Thus, no two vertices in U are adjacent, and 
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each vertex not in U is adjacent to at least one vertex in U. 32 A set of vertices with 
the latter property is called a dominating set. More precisely, a set W of vertices of 
G is a dominating set, provided that each vertex not in W is adjacent to at least one 
vertex in W. Vertices in W mayor may not be adjacent. Clearly, if W is a dominating 
set, then any set of vertices containing W is also a dominating set. The problem ·is 
to find the smallest number of vertices in a dominating set. The smallest number of 
vertices in a dominating set is the domination number of G and is denoted by dom(G). 

a 

Figure 12.10 

Example. Consider a building, perhaps housing an art gallery, consisting of a com­
plicated array of corridors. It is desired to place guards throughout the building so 
that each part of the building is visible, and therefore protected, by at least one guard. 
How many guards must be employed to safeguard the building? 

We construct a graph G whose vertices are the places where two or more corridors 
come together or where one corridor ends and whose edges correspond to the corridors. 
For example, we might have the corridor graph shown in Figure 12.10. The least 
number of guards that can protect the building equals the domination number dom( G) 
of G. For the graph G in Figure 12.10, it is not difficult to check that dom(G) = 2 
and that {a, b} is a dominating set of two vertices. 0 

For a null graph, complete graph, and complete bipartite graph, we have 

dom(Nn) = n, dom(Kn) = 1, and dom(Km,n) = 2 if m,n 2: 2. 

In general, it is very difficult to compute the domination number of a graph. Th(, 
domination number of a disconnected graph is clearly the sum of the domination 
numbers of its connected components. For a connected graph, we have a simpl(, 
inequality. 

Theorem 12.4.1 Let G be a connected graph of order n 2: 2. Then 

dom(G) ~ l ~J . 
32If not, then U could be enlarged and so wouldn't be largest. 
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Proof. Let T be a spanning tree of G. Then surely 

dom(G) ::; dom(T), 

and hence it suffices to prove the inequality for trees of order n 2: 2. We use induction 
on n. If n = 2, then either vertex of T is a dominating set and hence dom(T) = 1 = 
l2/2J. Now suppose that n 2: 3. Let y be a vertex that is adjacent to a pendent vertex 
x of T. Let T* be the graph obtained from T by removing the vertex y and all edges 
incident with y. The connected components of T* are trees, at least one of which is 
a tree of order 1. Let T I , ... , Tk be the trees of order at least 2. Let their orders 
be ni 2: 2, ... , nk 2: 2, respectively. Then nl + ... + nk :s: n - 2. By the induction 
hypothesis, each Ti has a dominating set of size at most l n;/2 J. The union of these 
dominating sets along with y gives a dominating set of T of size at most 

1 + l ~l J + ... + l ~k J :s: 1 + l nl + . ;. + nk J 

:s: 1+ In;2J = l~J· 
o 

A clique in a graph G is a subset U of vertices, each pair of which is adjacent, 
equivalently, the subgraph induced by U is a complete graph. The largest number of 
vertices in a clique is called the clique number of G and is denoted by w(G). For a null 
graph, complete graph, and complete bipartite graph, we have 

The notion of a clique of a graph is "complementary" to that of independence in the 
following sense. Let G = (V, E) be the complementary graph of G. Recall that the 
complementary graph of G has the same set of vertices as G, and two vertices are 
adjacent in G if and only if they are not adjacent in G. It follows from definitions 
that, for a subset U of V, U is an independent set of G if and only if U is a clique of 
G, and U is a clique of G if and only if U is an independent set of G. In particular, 
we have 

a(G) = w(G) and w(G) = a(G). 

The chromatic number and clique number are related by the inequality (d. Theorem 
12.1.2) 

x(G) 2: w(G). (12.6) 

Every bipartite graph G with at least one edge satisfies X(G) = w(G) = 2. A cycle 
graph Cn of odd order n > 3 with n edges arra'nged in a cycle satisfies X( Cn) = 3 > 
2 = w(Cn ). 

Since independence and clique are ·complementary notions, and since a vertex­
coloring is a partition of the vertices of a graph into independent sets, it is natural to 
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consider the notion complementary to that of vertex-coloring. Replacing independent 
set with clique in the definition of vertex-coloring, we obtain the following definitions. 
A clique-partition of a graph G is a partition of its vertices into cliques. The smallest 
number of cliques in a clique-partition of G is the clique-partition number of G, denoted 
by 8(G). We have 

x(G) = 8(G) and 8(G) = X(G). 

The inequality "complementary" to that in (12.6) is 

8(G) ~ a(G). (12.7) 

This holds because two nonadjacent vertices cannot be in the same clique. 
It is natural to investigate graphs for which equality holds in (12.6) (graphs whose 

chromatic number equals their clique number), and graphs for which equality holds 
in (12.7) (graphs whose clique-partition number equals its independence number). 
Graphs for which equality holds in either of these inequalities need not be too special. 
For instance, let H be any graph with chromatic number equal to p (thus its clique 
number satisfies w(H) S pl. Let G be a graph with two connected components, one 
of which is H and the other of which is a Kp. Then we have X(G) = p and w(G) = p, 
and hence equality holds in (12.6), no matter what the structure of H. Some structure 
can be imposed by requiring that (12.6) hold not only for G but for every induced 
subgraph of G. 

A graph G is called x-perfect, provided that X(H) = w(H) for every induced 
subgraph H of G. The graph G is 8-perfect, provided that 8(H) = a(H) for every 
induced subgraph H of G. It was conjectured by Berge33 in 1961 and proved by 
Lov8.sz34 in 1972 that there is only one kind of perfection. We state this theorem 
without proof. 

Theorem 12.4.2 A graph G is x-perfect if and only if it is 8-perfect. Equivalently, 
G is x-perfect if and only if G is x-perfect. 

As a result of this theorem we now refer to perfect graphs, and we show the existenc(' 
of a large class of perfect graphs. 

Let G = (V, E) be a graph. A chord of a cycle of G is an edge that joins two 
nonconsecutive vertices Of the cycle. A chord is thus an edge that joins two vertices 
of the cycle but that is not itself an edge of the cycle. A cycle of length 3 cannot haY!' 
any chords. A graph is chordal, provided that each cycle of length greater than 3 ha.~ 
a chord. A chordal graph has no chordless cycles. An induced subgraph of a chordal 
graph is also a chordal graph. 

33C. Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, W,,' 
Z. Martin-Luther-Univ., Halle- W.ttenberg Math.-Natur, Reihe, (1961), 114-115. 

34L. Lovasz, N9rmaJ Hypergraphs and the Perfect Graph Conjecture, Discrete Math., 2 (1972), 
253-267. 



12.4. INDEPENDENCE NUMBER AND CLIQUE NUMBER 485 

Example. Since induced subgraphs of complete graphs aTe complete graphs, and 
induced subgraphs of bipartite graphs are bipartite graphs, complete graphs and all 
bipartite graphs are perfect. A complete graph Kn is a chordal graph as is every tree.35 

A complete bipartite graph Km,n with m 2: 2 and n 2: 2 is not a chordal graph, since 
such a graph has a chord less cycle of length 4. The graph obtained from a complete 
graph Kn by removing one edge is a chordal graph, since every cycle of Kn of leIlgth 
greater than 3 has at least two chords. 

o 

A special class of chordal graphs arises by considering intervals on a line. A closed 
interval on the real line is denoted by 

[a,bl={x:a~x~b}. 

Let 
(12.8) 

be a family of closed intervals. Let G be the graph whose set of vertices is {I1,12' ... ,In} 
where two intervals Ii and IJ are adjacent if and only if Ii n IJ l' 0. Such a graph 
G is called a graph of intervals, and any graph isomorphic to a graph of intervals is 
cailed an interval graph. Thus, the vertices of an interval graph can be thought of as 
intervals with two vertices adjacent if and only if the intervals have at least one point 
in common. 

Example. A complete graph Kn is an interval graph. We choose the intervals (12.8) 
with 

a1 < a2 < ... < an < bn < ... < b2 < b1· 

If i l' j and i < j, then Ij C Ii, and thus Ii n I j l' 0. Hence, the graph of intervals is 
a complete graph. 

Now let G be the graph of order 4 obtained from K4 by removing one edge. We 
choose the intervals (12.8) (n = 4) with 

Except for the two intervals hand 14 , every pair of intervals has a nonempty inter­
section. 0 

Theorem 12.4.3 Every interval graph is a chordal graph. 

Proof. Let G be an interval graph with intervals h,h, ... ,In as given in (12.8). 
Suppose that k > 3 and that 

35If a graph doesn't have any cycles, it surely cannot have a chordless cycle. 
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is a cycle of length k. We show that at least one of the intervals of the cycle has a 
nonempty intersection with the interval two away from it on the cycle. We assume the 
contrary and obtain a contradiction. Suppose that Im,Ip,Iq,Ir are four consecutive 
intervals on the cycle for which 1m n Iq = (/) and Ip n Ir = 0, so that there is no chord 
joining 1m and Iq and no chord joining Ip and Ir . Then 

If aq < ap and bp < bq, then Ip C Iq, and hence (/) # 1m n Ip C 1m n Iq, a contradiction. 
Therefore, either ap :s: aq or bq :s: bp. If ap :s: aq, then aq :s: ar' If bq :s: bp, then br :s: bq. 
Thus, for three consecutive intervals Ip, Iq, Ir of the cycle, we have one of 

(12.9) 

Now, let p = ]1 and first suppose that ail :s: aj,. Then, iteratively using (12.9), 
we obtain 

and we conclude that all of the intervals have the same left endpoint. If bj, :s: bj1 , then, 
in a similar way, we conclude that all of the intervals have the same right endpoint. 
In either case, all of the intervals of the cycle have a point in common, contradicting 
our assumption that intervals two apart on the cycle have no point in common. This 
contradiction establishes the validity of the theorem. 0 

To conclude this section we show that chordal graphs, and hence interval graphs, 
are perfect. We require another lemma for the proof. Recall that a subset U of th(' 
vertices of a graph G = (V, E) is an articulation set, provided that the subgraph GV-[I 

induced by the vertices not in U is disconnected. The lemma demonstrates that th(' 
chromatic number of a graph equals its clique number if certain smaller induced graph~ 
have this property. 

Lemma 12.4.4 Let G = (V, E) be a connected graph and let U be an articulation 
set of G such that the subgraph G u induced by U is a complete graph. Let the con­
nected components of the induced subgraph Gv-u be G1 = (U1 , Ed, . .. ,Gt = (Ut , E t ). 

Assume that the induced graphs Gu.uu satisfy 

x(Gu•uu ) = w(Gu,uu) (i = 1,2, ... ,t). 

Then 

x(G) = w(G). 

Proof. Let k = w(G). Because each clique of Gu,uu is a clique of G we have 

w(Gu,uu):S: k (i = 1,2,00' ,t). 
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Since vertices in different Ui'S are not adjacent, each clique of G is a clique of GUjUU 
for some j. Hence, for at least one j, 

w(GUj U U) = k. 

We now use the hypotheses and Theorem 12.1.10 to obtain 

x(G) max{x(GU1 UU), ... ,X(GUtuu )} 

max{w(GUlllU) , ... ,w(GUtuu )} 

k = w(G). 

o 

An articulation set U is a minimal articulation set, provided that, for all subsets 
W <:;:: U with W l' U, W is not an articulation set. In the next theorem we show that 
minimal articulation sets in chordal graphs induce a complete subgraph. 

Theorem 12.4.5 Let G = (V, E) be a connected chordal graph and let U be a minimal 
articulation set of G. Then the subgraph Gu induced by U is a complete graph. 

Proof. We assume to the contrary that Gu is not a complete graph and obtain 
a contradiction. Let a and b be vertices in U that are not adjacent. Since U is 
an articulation set, the graph Gv -u has at least two connected components, G1 = 

(U1, E1) and G2 = (U2' E2). If a were not adjacent to any vertex of G1, then it would 
follow that U - {a} is also an articulation set. Since U is a minimal articulation set, we 
conclude that a is adjacent to at least one vertex in Ul. In a similar way we conclude 
that a is adjacent to a vertex in U2 and that b is adjacent to at least one vertex in 
U1 and at .least one vertex in U2 . Since G 1 and G2 are connected, there is a path 1'1 

joining a to b, all of whose vertices different from a and b belong to U 1 , and there is a 
path 1'2 joining b to a, all of whose vertices different from a and b belong to U2 . We 
may choose 1'1 and 1'2 so that they have the shortest possible length. It follows that 
II followed by 1'2, 

I' = 1'1,1'2, 

is a cycle in G of length at least 4. Moreover, since we have chosen 1'1 and 1'2 to have 
the shortest length, the only possible chord of I' is an edge joining a and b. Since 
a and b were chosen to be nonadjacent, we conclude that I' does not have a chord, 
contradicting the hypothesis that G is a chordal graph. 0 

We now prove that chordal graphs are perfect. 

Theorem 12.4.6 Every chordal graph is perfect. 



488 CHAPTER 12. MORE ON GRAPH THEORY 

Proof. Since an induced subgraph of a chordal graph is also a chordal graph, it 
suffices to prove only that for a chordal graph G we have X(G) = w(G). 

Let G be a chordal graph of order n. We prove by induction on n that 

x(G) = w(G). 

Since complete graphs are known to be perfect, we assume that G is not complete. 
Then G has an articulation set and hence a minimal articulation set U. By Theorem 
12.4.5, Gu is a complete graph. Let Gl = (Ul, Ed, .. . , Gt = (Ut. Et ) be the connected 
components of Gv-u. By the induction hypothesis, each of the graphs GUiUU satisfies 

x(GU.UU) = w(Gu.uu) (i = 1,2, ... , t). 

Now, applying Lemma 12.4.4, we conclude that X(G) = w(G). o 

From Theorems 12.4.3 and 12.4.6, we immediately obtain the next corollary. 

Corollary 12.4.7 Every interval graph is a perfect graph. [I 

A considerable amount of effort has been expended in attempts to characteriL:(' 
perfect graphs. These efforts have been largely directed toward resolving the followiuJ!, 
conjecture of Berge:36 

A graph G is perfect if and only if neither G nor its complementary graph 
G has an induced subgraph equal to a cycle of odd length greater than three 
without any chords. 

This conjecture was resolved recently in the affirmative. 37 We leave to the Exercisl's 
the verification that, if either G or its complementar:y graph G has an induced subgraph 
equal to a chordless cycle of odd length greater than 3, then G is not perfect. 

12.5 Matching Number 

For our discussion in this section, we need only consider graphs. 
Let G = (V, E) be a graph. We consider the analogue of the notion of independew'" 

of vertices for edges. Recall that a set U of vertices in V is independent provided that 
no two of the vertices in U are joined by an edge. A set M of edges in E is a matchill!1 

36C. Berge, Farbung von Graphen, deren samtliche bzw. deren ungerade Kreise starr sind, W,,, 
Z. Martin-Luther-Univ., Halle- Wittenberg Math.-Natur, Reihe, (1961), 114-115. 

37M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theon'",. 
Ann. of Math. (2) 164 (2006), 51-229. 
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provided that no two of the edges in M have a vertex in common.38 Since edges 
contain two vertices, if G has n vertices, then a matching M can have at most n/2 
edges. The matching M meets a vertex x provided one of its edges (and thus only one 
of its edges) contains the vertex x. The matching M is called a perfect matching of G 
provided that it meets every vertex of G. If G has a perfect matching, then necessarily 
its number n of vertices is even. A perfect matching is also called a I-factor of G. The 
matching number of a graph G is the largest number of edges in a matching in G and 
is denoted by p( G) . 

Example. As is easily verified, the complete graph Kn has a perfect matching if 
and only if n is even. In fact, if n is even, we can obtain a perfect matching by 
iteratively choosing an edge that does not have a common vertex with any of the 
edges previously chosen. In general, we have p(Kn) = In/2J. A cycle Cn ofn vertices 
also has a perfect matching if and only if n is even; in fact, it has exactly two perfect 
matchings when n is even. We also have p(Cn ) = In/2J. A path Pn of n vertices also 
satisfies p(Pn) = In/2J. The complete bipartite graph Km,n has a perfect matching if 
and only if m = n; this is because a perfect matching must pair up the left vertices 
with the right vertices. In general, we have p(Km,n) = min{m,n}. 0 

We first consider matchings in bipartite graphs. In fact, we already have done so 
in a disguised form in Chapter 9. Let G = (V, E) be a bipartite graph with bipartition 
X, Y. Thus each edge of G has one of its vertices in X and one in Y. Let's list the 
vertices of X and Y as 

X: XI,X2, ... ,Xn and Y: YI,Y2,··· ,Ym. 

The graph G is a subgraph of the complete bipartite graph Km,n with bipartition X, Y. 
With the bipartite graph we associate a family AG = (AI, A2, ... ,An) of subsets of Y 
as follows: 

Ai = {Yj: {Xi,Yj} is an edge ofG}, (i = 1,2, ... ,n). 

Thus Ai consists of all the vertices of Y to which Xi is joined by an edge. This 
construction is clearly reversible in that given a family A of subsets of Y we can 
construct a bipartite graph G such that A = AG' So, speaking informally, a family of 
Bets and a bipartite graph are different ways of representing the same mathematical 
idea. 

38Why does this constitute "independence" of edges? Take the graph G = (V, E) and form a new 
lI'aph L(G) = (E, S), with the edges of G as the new vertices, whose new edges are pairs of edges of 
G that have a vertex in commOn. Then a set of vertices of L( G) (that is, edges of G), is independent 
provided no two are joined by an edge in L(G) (that is, do not have a common vertex in G and so 
form a matching in G). The graph L(G) is called the line gmph of G. A good way to picture the line 
Iraph of G is to take a picture of G and insert a new verteoc on each edge and join two new vertices 
If the edges on which they lie have a common vertex (then erase all the original vertices and edges, 
or use a different color to distinguish between old and new so that you don't forget which graph you 
~tarted with). Try it with your favorite graph G; for instance, what is the line graph of K3? of K\,3? 
ur K4? 
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Suppose that (el' e2, ... ,en) is a system of distinct representatives (SDR) of the 
family Ac. Then ei is an element of Ai for each i, and the elements el,e2, ... ,en an' 
distinct. This implies that 

is a set of n edges of G, and no two of the edges of M have a vertex in common. Thu~ 
M is a matching of n edges of G. Conversely, from a matching of n edges of G, w(' 
obtain an SDR of Ac. Trte same type of reasoning gives the following result. 

Theorem 12.5.1 Let G = (V, E) be a bipartite graph with bipartition X, Y with a8 
sociated family Ac of subsets of Y. Let t be a positive integer. Then from a subfamily 

(Ail' Ai».'" Ai,) of t sets of Ac with an SDR (eil' ei»'" ,ei,), (12.10) 

we obtain a matching 

{XiI' eiJ, {Xi2, ei2}"'" {Xi" ei,} of G of t edges. (12.11) 

Conversely, from a matching (12.11) ofG oft edges, we get a subfamily (12.10) of A(; 

of t sets with (ei" ei2' ... , ei,) as SDR. 
Thus the largest number of sets in a subfamily of Aa with an SDR equals till' 

matching number p( G) of G. I I 

According to Corollary 9.2.3, the largest number of sets in a subfamily of Ac with 
an SDR is equal to 

min{IAil U Ai2 U··· U Ai.1 + n - k} (12.1'2) 

where the minimum is taken over all choices of k = 1,2, ... , n and all choices of k 
indices iI, i2,." , ik with 1 ~ i l < i2 < ... < ik' Thus this gives us an expression (IL" 
a minimum) for the matching number of a bipartite graph G. We now rework thi" 
expression to one which refers to the graph G in a more compact form. 

A subset W of the set V of vertices of a graph is a cover of the edges of (,', 
abbreviated to a cover of.G, provided every edge has at least one of its vertices in W 
A cover of a complete graph Kn can omit at most one vertex since every two vertin'" 
are joined by an edge. Two natural covers of a bipartite graph G with bipartitioll 
X, Yare X and Y. The smallest number of vertices in a cover of G is denoted h,Y 
c(G). 

Lemma 12.5.2 Let G = (V, E) be a graph. Then a subset W of the set V of vert-il'r' 
is a cover if and only if the complementary set of vertices V \ W is an independ('ul 
set. 
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Proof. First assume that W is a cover. Then every edge has at least one of its vertices 
in W, and so no edge has both of its vertices in V \ W. Thus V \ W is an independent 
set. Conversely, assume U is an independent set of vertices of V. Then no edge has 
both of its vertices in U and so must have at least one of its vertices in V \ u. 0 

The following theorem is known as the Konig-Egervary theorem.39 

Theorem 12.5.3 Let G = (V, E) be a bipartite graph. Then 

p(G) = c(G), (12.13) 

that is, the largest number of edges in a matching equals the smallest number of vertices 
in a cover. 

Proof. Let X, Y be a bipartition of G, and let Ac be the associated family of subsets 
of Y. First let M be a matching with IMI = p(G). Since no two edges in M have a 
vertex in common, just to cover the edges in M requires IMI vertices. Hence we need 
at least this many vertices to cover all the edges of G, and so c(G) 2: IMI = p(G). 

We now.show that c(G) :S p(G). By Theorem 12.5.1 and equation (12.12), 

p(G) = min{IA;, U Ai2 U··· U Ai. I + n - k}. (12.14) 

Choose an I from 1,2, ... , n, and indices iI, i2,'" , il with 1 :S i l < i2 < ... < il :S n 
giving the minimum value in (12.14): 

p(G) = IAil U Ai, U··· U Ail I + n -I. 

Let {jl, j2, . .. , jn-l} = {I, 2, ... , n} \ {iI, i2, . .. , ill, the set of indices different from 
ii, i2, ... , il· Let X' = {Xl" Xi>,' .. , Xjn_l} be the subset of vertices of X corresponding 
to the indices {jl, j2, ... , jn-l}, and let Y' = Y \ (Ail U Ai2 U ... U Ail) be the subset of 
those vertices of Y which are not in any of the sets Ai" Ai2 , ... , Ail' Then W = X' U Y' 
Is a cover of G. This is because there cannot exist an edge from any Xi, to any vertex 
In Y \ yl, for if there were we would contradict the definition of Y'. Hence X' U Y' is 
a. cover of size 

IX'I + IY'I = n -I + IAi, U Ai2 U··· U Ail)1 = p(G). 

Since we have a cover W of G with IWI = p(G), we conclude that c(G) :S p(G). 
Putting together the two inequalities c(G) :S p(G) and p(G) :S c(G), we conclude that 
p(G) = c(G). 0 

Example. Consider the complete graph Kn with n vertices. Then c(Kn) = n - 1, 
Rlnee every pair of vertices is joined by an edge. But p(Kn) = In/2J, as already 

39D. Konig: Graphen und Matrizen, Mat. Lapok, 38 (1931), 116-119; E. Egervary: On Combina­
torial Properties of Matrices (Hungarian with German summary), Mat. Lapok, 38 (1931), 16-28. 
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remarked. So if n 2': 3, then c(G) > p(G); indeed the difference between c(Kn) and 
p(Kn) is L(n - 1)/2J, which grows without bound as n grows larger. Thus Theorem 
12.5.3 does not hold for aU graphs. On the other hand, the nonbipartite graph G 
with six vertices obtained from K3 by attaching three new edges, one from each of thl' 
vertices of K3 to three new vertices, satisfies p(G) = 3 (the three new edges form a 
matching) and c(G) = 3 (the three original vertices form a cover). 0 

As the preceding example shows, a graph G mayor may not satisfy p(G) = c(G). 
There is, however, a formula for p(G) in the same spirit as Theorem 12.5.3 in th(' 
sense that p(G) (the largest number of edges in a matching) equals the smallest valll(' 
of another expression (for bipartite graphs it is the smallest number of vertices in a 
cover). We now describe without proof a theorem which, for any graph G, expreSSCH 
p( G) as the smallest value of a certain expression. We first need some new notions. 

Let G = (V, E) be a graph. Let U be a subset of the vertices and let Gv\U ~ 
(V \ u, F) be the subgraph induced on the vertices of G not in U. Thus Gv\U iH 
obtained from G be removing all the vertices in U and every edge with at least one of 
its vertices in U. Even though the graph G may be connected, the graph Gv\U may not 
be, and so it will have a number of connected components. Some of these connect(;.! 
components may have an odd number of vertices and some may have an even numb,·!' 
of vertices. It turns out that we need to consider the connected components of GV\ll 
with an odd number of vertices. We call a connected component with an odd numb!,1 
of vertices an odd component. Let oc( Gv\U) be the number of odd components of 
Gv\U. The following theorem characterizes graphs with a perfect matching.4o 

Theorem 12.5.4 Let G = (V, E) be a graph. Then G has a perfect matching if awl 
only if 

oc( Gv\U) s lUI for every U ~ V, 

that is, removing a set of vertices does not create more odd components than the numb,·! 
of vertices removed. 

Note that by taking U = 0 in (12.15) we get that oc(G) SO, that is, G has no odd 
components, which means that every connected component of G has an even numb!,1 
of vertices, and so G itself has an even number of vertices. 

We only verify here that condition (12.15) is a necessary condition for G to hav,· 
a perfect matching. NoW' assume that U i= 0, and let the odd components of GV\l1 

be GUI' Gu., ... ,Gu.. Since IUil is odd, in a perfect matching M of G, there mllMt 
be at least one edge from some vertex in Ui to some vertex Zi in U. This is true fOI 

each i = 1,2, ... ,k and, since M is' a perfect matching, the vertices Zl, Z2, ... ,Zk ILI'I' 

distinct. Hence lUI 2': k = oc(Gv\U)· 

40This theorem was first proved by W. T. Tutte in 1947; The Factorization of Linear Graph •. 
J. London Math. Soc., 22 (1947), 107~111; other more elementary proofs are now available ill till' 
mathematical literature, for example, D. B. West: Introduction to Graph Theory, 2nd edition, Prenll," 
Hall. 2001. 136~ 138. 
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In analogy to Theorem 12.5.3, there is a formula for the matching number p(G) of 
a graph, called the Berge-Thtte formula. 

Theorem 12.5.5 Let G(V, E) be a graph with n vertices. Then 

p(G) = min{n - (oc(Gv\U) -lUI)}, 

where the minimum is taken over all U ~ V. 

It is not too difficult to derive Theorem 12.5.5 from Theorem 12.5.4. First we 
show that p(G) 'S n - (oc(Gv\U) - lUI) for each subset U of the vertices. Then 
we show that the upper bound is attained by introducing a complete graph Kd with 
d = max{oc(Gv\U) - lUI} new vertices and joining each of the new vertices to all 
vertices of G. 

12.6 Connectivity 

Graphs are either connected or disconnected. But it is evident that some connected 
graphs are "more connected" than others. 

Example. We could measure how connected a graph is by measuring how difficult 
it is to disconnect the graph. But how shall we measure the difficulty required to 
disconnect a graph? There are two natural ways for doing this. Consider, for instance, 
a tree of order n 2: 3 that forms a path. If we take a vertex other than one of the 
two end vertices of the path and remove it (and, of course, the two incident edges), 
the result is a disconnected graph. Indeed, a path is not special among trees in this 
regard. If we take any tree and remove a vertex other than a pendent vertex, the 
result is a disconnected graph. Thus, a tree is not very connected. It is necessary 
to remove only one vertex in order to disconnect it. If, instead of removing vertices 
(and their incident edges), we remove only edges (and none ·of the vertices), a tree 
still comes out as "almost disconnected": Removing any edge leaves a disconnected 
graph. In contrast, a complete graph Kn of order n can never be disconnected by 
removing vertices because removing vertices always leaves us with a smaller complete 
graph. If, instead of removing vertices, we remove edges, we can disconnect Kn: If we 
remove all of the n - 1 edges incident with a particular vertex, then we are left with a 
disconnected graph.41 A simple calculation reveals that Kn cannot be disconnected by 
removing fewer than n - 1 edges. Thus, by either manner of reckoning,42 a complete 
graph Kn is very connected and a tree is not very connected. The main purpose of 
this section is to define formally these two notions' of connectivity and to discuss some 
of their implications. 0 

"Indeed, a Kn-l and a vertex separate from it. 
42 And, as we would expect, for any reasonable way to measure how connected a graph is. 
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In order to simplify our exposition, we assume throughout this section that all 
graphs have order n 2: 2. Thus we don't deal with the trivial graph with only one 
vertex. 

Let G = (V, E) be a graph of order n. If G is a complete graph K n , then we define 
its vertex-connectivity to be 

I',(Kn) = n - 1. 

Otherwise, we define the vertex-connectivity of G to be 

I',(G) = min{IUI : Gv\U is disconnected }, 

the smallest number of vertices whose removal leaves a disconnected graph. Equiva­
lently, the connectivity of a noncomplete graph equals the smallest size of an articula­
tion set (as defined in Section 12.1). A non complete graph has a pair of nonadjacent 
vertices a and b. Removing all vertices different from a and b leaves a disconnected 
graph, and hence I',(G) ::::: n - 2 if G is a noncomplete graph of order n. The COIl­

nectivity of a disconnected graph is clearly O. Thus, we have the next elementary 
result. 

Theorem !l.2.6.1 Let G be a graph of order n. Then 

0::::: I',(G) ::::: n - 1, 

with equality on the left if and only if G is disconnected and with equality on the righl 
if and only if G is a complete graph. I I 

The edge-connectivity of a graph G is defined to be the minimum number of edg('~ 
whose removal disconnects G and is denoted by '>'(G). The edge-connectivity of iI 

disconnected graph G satisfies .>.( G) = O. A connected graph G has edge-connectivity 
equal to 1 if and only if it has a bridge. The edge-connectivity of a complete graph 
Kn satisfies .>.(Kn) = n - 1. If we remove all the edges of a graph that are incidellt 
with a specified vertex x, then we obviously obtain a disconnected graph. Th\l~, 

the edge-connectivity of a graph G satisfies '>'(G) ::::: 8(G), where 8(G) denotes tl!l' 
smallest degree of a vertex of G. The basic relation between vertex-connectivity awl 
edge-connectivity is contained in the next theorem.43 

Theorem 12.6.2 For each graph G, we have 

I',(G) ::::: '>'(G) ::::: 8(G). 

43This theorem was first proved by H. Whitney, Congruent Graphs and the Connectivity of Graph" 
American 1. Math., 54 (1932), 150~168. The proof given here is from R. A. Brualdi and J. Csima, A 
note on Vertex- and Edge-Connectivity, Bulletin of the Institute of Combinatorics and Its Applicatiul/", 
2 (1991), 67~70. 
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Proof. We have verified the second inequality in the preceding paragraph. We now 
verify the first inequality. Let G have order n. If G is a complete graph K n , then 
K.(G) = '>'(G) = n - 1. We henceforth assume that G is not complete. If G is 
disconnected, the inequality holds since K.( G) = .>.( G) = O. So we assume that G is 
connected. Let F be a set of '>'(G) edges whose removal leaves a disconnected graph H. 
Then H has two connected components,44 with vertex sets VI and V2 , respectively, 
where IVII + 1V21 = n. If F consists of all possible edges joining vertices in VI to 
vertices in V2 , then we must have IFI 2: n - 1; hence, '>'(G) 2: n - 1, implying that 
'>'(G) = n - 1 and, contrary to assumption, that G is complete. Thus, there exist 
vertices a in VI and b in V2 such that a and b are not adjacent in G. For each edge a 
in F, we choose one vertex as follows: If a is a vertex of a, we choose the other vertex 
of a (the one in V2); otherwise, we choose the vertex of a that is in VI' The resulting 
set U of vertices satisfies lUI <::: IFI. Moreover, removing the vertices U from G results 
in a disconnected graph, since there can be no path from a to b. Thus, 

K.(G) <::: lUI <::: IFI = '>'(G), 

completing the proof of the theorem. o 

Example. Suppose that, in a communication system, there are n stations,45 some 
of which are linked by a direct communication line. We assume that the system is 
connected in the sense that each station can communicate with every other station 
through intermediary communication links. Thus, we have a natural connected graph 
G of order n in which the vertices correspond to the stations and the edges to the 
direct links. Now, links may fail and stations may get shut down, and this affects 
communication. The vertex-connectivity and edge-connectivity of G are intimately 
related to the reliability of the system. Indeed, as many as K.(G) - 1 of the stations 
may be shut down and the others will still be able to communicate among themselves. 
As many as .>.( G) - 1 of the links may fail and all of the stations will still be able to 
communicate with each other. 0 

Let G be a graph. Then G is connected if and only if its vertex-connectivity 
satisfies K.(G) 2: 1. If k is an integer and K.(G) 2: k, then G is called k-connected. 
Thus, the I-connected graphs are the connected graphs. Notice that, if a graph is 
k-connected, then it is also (k - I)-connected. The vertex-connectivity of a graph 
equals the largest integer k such that the graph is k-connected. In the remainder of 
this section we investigate the structure of 2-connected graphs and show, in particular, 
that the edges (but not the vertices in general) of a graph are naturally partitioned 
into its "2-connected parts.,,46 We define an articulation vertex of a graph G to be a 

"If there were more than two components, we could di~connect G by removing fewer edges. 
450r, we might have n chips in a computer. 
46Since I-connected means "connected," we know that the vertices of a graph, and hence the edges, 

are naturally partitioned into its I-connected parts, that is, its connected components. When we 
consider the 2-connected parts, we get only a natural partition of the edges. 
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vertex a whose removal disconnects G, that is, a vertex such that {a} is an articulation 
set. 

Theorem 12.6.3 Let G be a graph of order n ~ 3. Then the following three assertions 
are equivalent: 

(1) G is 2-connected. 

(2) G is connected and does not have an articulation vertex. 

(3) For each triple of vertices a, b, c, there is a path joining a and b that does nol 
contain c. 

Proof. If K(G) ~ 2, then G is connected and does not have an articulation vertex. 
Conversely, since n ~ 3, if G is connected and without articulation vertices, thell 
K( G) ~ 2. Thus, assertions (1) and (2) are equivalent. 

Now assume that (2) holds. Let a, b, c be a triple of vertices. Since G has nil 
articulation vertices, removing c does not disconnect G. Hence, there is a path joining 
a and b that does not contain c, and assertion (3) holds. Conversely, assume that (3) 
holds. Then G is surely connected. Suppose that c is an articulation vertex of G. 
Removing c disconnects G; choosing a and b in different connected components of tht' 
resulting graph, we contradict (3). Hence, G has no articulation vertex and (2) hold~. 
Therefore, (2) and (3) are also equivalent. rl 

The reason for the assumption n ~ 3 in Theorem 12.6.3 is that a complete graph 
K2 is connected and does not have an articulation vertex; that is, satisfies (2) but do(~s 
not satisfy (1), since we have K(K2) = l. 

Let G = (V, E) be a connected graph of order n ~ 2. A block of G is a maximal 
induced subgraph of G that is connected and has no articulation vertex. More precisely, 
let U be a subset of the vertices of G. Then the induced subgraph Gu is a block of 
G, provided that Gu is connected and has no articulation vertex, and for all subsets 
W of the vertices of G with U <;;; W and U =f. W, either the induced subgraph Gw 
is not connected or it has an articulation vertex. It follows from Theorem 12.6.3 thaI 
the blocks of G are either the complete graph K2 or are 2-connected. 

Example. Let G be the graph in Figure 12.11. Then the blocks are the induc(·'! 
subgraphs Gu with U equal to 

{a,b},{b,c,d,e},{c,f,g,h},{h,i},{i,j},{i,k}. 

Four of the blocks are K2 's, and two of the blocks are 2-connected. Notice that, wild" 
some of the blocks may have a vertex in common, each edge of G belongs to exactly 
one block. I I 
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Figure 12.11 

Theorem 12.6.4 Let C = (V, E) be a connected graph of order n 2: 2, and let 

CUI = (Ul,E1),CU2 = (U2,E2), ... ,CUr = (Ur,Er) 

be the blocks of C. Then El, E2, ... ,Er is a partition of the set E of edges of C,47 
and each pair of blocks has at most one vertex in common. 

Proof. Each edge of C belongs to some block, since a block can be a K2 . A block 
that is a K2 cannot have an edge in common with any other block, and hence has at 
most one vertex in common with any other block. Thus, we need consider only blocks 
Cu, and Cu, (i f= j) of order at least 3 and hence blocks that are 2-connected. If we 
show that these blocks can have at most one vertex in common, then it will follow 
that an edge cannot be in two different blocks. 

Suppose that Ui n Uj contains at least two vertices. Then, since Ui and Uj have a 
nonempty intersection, the induced graph Cu,uu, is connected. Let x be any vertex 
in Ui U Uj . Since CUi and Cu, are 2-connected, CUi-{x} and CUj-{x} are connected. 
Moreover, since Ui and Uj have two vertices in common, CU,UUj-{x} is connected. 
It follows that the induced graph Cu,uu, is 2-connected. This gives us a larger 2-
connected induced subgraph and contradicts the assumption that CUi and CUj are 
blocks (and hence maximal 2-connected induced subgraphs). Therefore, two distinct 
blocks can have at most one common vertex. 0 

We conclude this section with another characterization of graphs that are 2-
connected. 

Theorem 12.6.5 Let C = (V, E) be a graph of order n 2: 3. Then C is 2-connected 
if and only if, for each pair a, b of distinct vertices, there is a cycle containing both a 
and b. 

Proof. If each pair of distinct vertices of C is on a cycle, then surely C is connected 
and has no articulation vertex. Hence, by Theorem 12.6.3, C is 2-connected. 

Now assume that C is 2-connected. Let a and b be distinct vertices of C. Let U 
be the set of all vertices x different from a for which there exists a cycle containing 

47Thus, each edge of G belongs to exactly one block. 



498 CHAPTER 12. MORE ON GRAPH THEORY 

both a and x. We first show that U i- 0; that is, there is at least one cycle containing 
a. Let {a,y} be any edge containing a. By Theorem 12.6.1, )'(G) 2: K(G) 2: 2, and 
hence the deletion of the edge {a, y} does not disconnect G. Consequently, there is a 
path joining a and y that does not use the edge {a, y}, and thus a cycle containing 
both a and y. Therefore, U i- 0. 

Suppose, contrary to what we wish to prove, that b is not in U. Let z be a vertex 
in U whose distance p to b is as small as possible, and let 'Y be a path from z to Ii 
of length p. Since z is in U, there is a cycle '1'1 containing both a and z. The cycle 
'Y1 contains two paths, 'Y~ and 'Y~, joining a to z. Since G is 2-connected, it follow~ 
from Theorem 12.6.2 that there is a path 'Y2 joining a and b that does not contain thc 
vertex z. Let u be the first vertex of'Y that is also a vertex of 'Y2. 48 Let v be the last 
vertex of 'Y2 which is also a vertex of 'Y1. 49 The vertex v belongs either to 'Y~ or to 'Y;', 
let us say to 'Y~. Then, following a to v along 'Yi, v to u along 'Y2, u to z along 'Y, and 
z back to a along 'Y~, we construct a cycle containing both a and u. Thus, u is in U. 
But since u is closer to b than z, we contradict our choice of z. We conclude that b i~ 
in U, and hence there is a cycle containing both a and b. CJ 

An alternative formulation of the characterization of 2-connected graphs in Theo­
rem 12.6.5 is given in the next corollary. 

Corollary 12.6.6 Let G be a graph with at least three vertices. Then G is 2-connectet/ 
if and only if, for each pair a, b of distinct vertices, there are two paths joining a and 
b whose only common vertices are a and b. 

The corollary is a special case of a theorem of Menger50 that characterizes k­
connected graphs for any k. We state this theorem without proof; it is the "undirectpd 
version" of Menger's theorem for digraphs proved in Section 13.2. 

Theorem 12.6.7 Let k be a positive integer and let G be a graph of order n 2: k + 1. 

Then G is k-connected if and only if, for each pair a, b of distinct vertices, there an' 
k paths joining a and b such that each pair of paths has only the vertices a and b i71 
common. 

If k = 1, then the theorem asserts that a graph is I-connected (Le., is connected) 
if and only if each pair of vertices is joined by a path. 

12.7 Exercises 

l. Prove that isomorphic graphs have the same chromatic number and the salllC" 
chromatic polynomial. 

48Such a vertex exists, since b is a vertex of" which is also a vertex of ,2. 
49Such a vertex exists, since a is a vertex of ,2, which is also a vertex of ,1. 
50K. Menger, Zur allgemeinen Kurventheorie, Fund. Math., 10 (1927), 95-115. 
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2. Prove that the chromatic number of a disconnected graph is the largest of the 
chromatic numbers of its connected components. 

3. Prove that the chromatic polynomial of a disconnected graph equals the product 
of the chromatic polynomials of its connected components. 

4. Prove that the chromatic number of a cycle graph en of odd length equals 3. 

5. Determine the chromatic numbers of the following graphs: 

6. Prove that a graph with chromatic number equal to k has at least (~) edges. 

7. Prove that the greedy algorithm always produces a coloring of the vertices of 
Km,n in two colors (m,n:::: 1). 

8. Let G be a graph of order n :::: 1 with chromatic polynomial pc(k). 

(a) Prove that the constant term of pc(k) equals O. 

(b) Prove that the coefficient of k in pc(k) is nonzero if and only if G is con­
nected. 

(c) Prove that the coefficient of kn - 1 in pc(k) equals -m, where m is the 
number of edges of G. 

9. Let G be a graph of order n whose chromatic polynomial is pc(k) = k(k - l)n-l 
(i.e., the chromatic polynomial of G is the same as that of a tree of order n). 
Prove that G is a tree. 

10. What is the chromatic number of the graph obtained from Kn by removing one 
edge? 

11. Prove that the chromatic polynomial of the graph obtained from Kn by removing 
an edge equals 

12. What is the chromatic number of the graph obtained from Kn by removing two 
edges with a common vertex? 
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13. What is the chromatic number of the graph obtained from Kn by removing two 
edges without a common vertex? 

14. Prove that the chromatic polynomial of a cycle graph Cn equals 

(k -It + (-It(k -1). 

15. Prove that the chromatic number of a graph that has exactly one cycle of odd 
length is 3. 

16. Prove that the polynomial k4 - 4k3 + 3k2 is not the chromatic polynomial of any 
graph. 

17. Use Theorem 12.1.10 to determine the chromatic number of the following grapli: 

18. Use the algorithm for computing the chromatic polynomial of a graph to d!' 
termine the chromatic polynomial of the graph Q3 of vertices and edges of :I 

three-dimensional cube. 

19. Find a planar graph that has two different planar representations such that, for 
some integer J, one has a region bounded by J edge-curves and the other has III) 
such region. 

20. Give an example of a planar graph with chromatic number 4 that does not 
contain a K4 as an induced subgraph. 

21. A plane is divided into regions by a finite number of straight lines. Prove th;lt 
the regions can be colored with two colors in such a way that regions which shar" 
a boundary are colored differently. 

22. Repeat Exercise 21, with circles replacing straight lines. 

23. Let G be a connected planar graph of order n having e = 3n - 6 edges. Prow 
that, in any planar representation of G, each region is bounded by exactly :1 
edge-curves. 

24. Prove that a connected graph can always be contracted to a single vertex. 

25. Verify that a contraction of a planar graph is planar. 
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26. Let G be a planar graph of order n in which every vertex has the same degree 
k. Prove that k ::; 5. 

27. Let G be a planar graph of order n ;?: 2. Prove that G has at least two vertices 
whose degrees are at most 5. 

28. A graph is called color-critical provided each subgraph obtained by removing a 
vertex has a smaller chromatic number. Let G = (V, E) be a color-critical graph. 
Prove the following: 

(a) X(Gv-{x}) = X(G) - 1 for every vertex x. 

(b) G is connected. 

( c) Each vertex of G has degree at least equal to X (G) - 1. 

(d) G does not have an articulation set U such that Gu is a complete graph. 

(e) Every graph H has an induced subgraph G such that X(G) = X(H) and G 
is color -cri tical. 

'29. Let p ;?: 3 be an integer. Prove that a graph, each of whose vertices has degree 
at least p - 1, contains a cycle of length greater than or equal to p. Then use 
Exercise 28 to show that a graph with chromatic number equal to p contains a 
cycle of length at least p. 

30. * Let G be a graph without any articulation vertices such that each vertex has 
degree at least 3. Prove that G contains a subgraph that can be contracted to a 
K 4 . (Hint: Begin with a cycle of largest length p. By Exercise 29, we have p ;?: 4. 
Now use Exercise 28 to obtain a proof of Hadwiger's conjecture for p = 4.) 

31. Let G be a connected graph. Let T be a spanning tree of G. Prove that T 
contains a spanning subgraph T' such that, for each vertex v, the degree of v in 
G and the degree of v in T' are equal modulo 2. 

32. Find a solution to the problem of the 8 queens that is different from that given 
in Figure 12.9. 

33. Prove that the independence number of a tree of order n is at least I n/21. 

34. Prove that the complement of a disconnected graph is connected. 

35. Let H be a spanning subgraph of a graph G. Prove that dom(G) ::; dom(H). 

36. For each integer n ;?: 2, determine a tree 0'£ order n whose domination number 
equals In/2J. 

37. Determine the domination number of the graph Q3 of vertices and edges of a 
three-dimensional cube. 
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38. Determine the domination number of a cycle graph Cn-

39. For n = 5 and 6, show that the domination number of the queens graph of all 
n-by-n chessboard is at most 3 by finding three squares on which to place queens 
so that every other square is attacked by at least one of the queens. 

40. Show that the domination number of the queens graph of a 7-by-7 chessboard i~ 
at most 4. 

41. * Show that the domination number of the queens graph of an 8-by-8 chessboard 
.is at most 5. 

42. Prove that an induced subgraph of an interval graph is an interval graph. 

43. Prove that an induced subgraph of a chordal graph is chordal. 

44. Prove that the only connected bipartite graphs that are chordal are trees. 

45. Prove that all bipartite graphs are perfect. 

46. Let G be a graph such that either G or its complement G has an induced sub 
graph equal to a chord less cycle of odd length greater than 3. Prove that G b 
not perfect. 

47. Let k be a positive integer, and let G be a bipartite graph in which every verkx 
has degree k. 

(a) Prove that G has a perfect matching. 

(b) Prove that the edges of G can be partitioned into k perfect matchings. 

48. Consider the graph Qn of vertices and edges of the 'n-dimensional cube. Usillv. 
induction, 

(a) Prove that Qn has a perfect matching for each n ~ 1. 

(b) Prove that Qn has at least 22n- 2 perfect matchings. 

49. Prove that if a tree has a perfect matching, then it has exactly one perfp," 
matching. 

50. Use Theorem 12.5.4 to prove the following theorem of Petersen (1891): A graph 
with every vertex of degree 3 and edge-connectivity at least 2 has a perf,"" 
matching. 

51. The Petersen graph P is the graph whose vertices are the ten 2-subsets "I 
{I, 2, 3, 4, 5} in which two vertices are joined by an edge if and only if tllt"il 
2-subsetss are disjoint. 
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(a) Draw a picture of the Petersen graph. (It can be drawn as a pentagon 
with a disjoint pentagram inside it-so 10 vertices and 10 edges-where 
there are an additional five edges joining each vertex of the pentagon to the 
corresponding vertex of the pentagram.) 

(b) Verify that for each pair of vertices of P that are not joined by an edge, 
there is exactly one vertex joined by an edge to both. 

(c) Verify that the smallest length of a cycle of P is 5. 

52. Prove that the edge-connectivity of Kn equals n - 1. 

53. Give an example of a graph G different from a complete graph for which K;( G) = 

.\(G). 

54. Give an example of a graph G for which K;(G) < .\(G). 

55. Give an example of a graph G for which K;(G) < .\(G) < 6(G). 

56. Determine the edge-connectivity of the complete bipartite graphs Km,n' 

57. Let G be a graph of order n with vertex degrees d1 , d2 , •.• ,dn . Assume that the 
degrees have been arranged so that d1 :s: d2 :s: ... :s: dn . Prove that, if dk :::: k 
for all k :s: n - dn - 1, then G is a connected graph. 

58. Let G be a graph of order n in which every vertex has degree equal to d. 

(a) How large must d be in order to guarantee that G is connected? 

(b) How large must d be in order to guarantee that G is 2-connected? 

59. Determine the blocks of the graph given in Figure 12.12. 

Figure 12.12 

60. Prove that the blocks of a tree are all K2 'so . 

61. Let G be a connected graph. Prove that an edge of G is a bridge if and only if 
it is the edge of a block equal to a K 2 . 
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62. Let G be a graph. Prove that G is 2-connected if and only if, for each vertex x 
and each edge a, there is a cycle that contains both the vertex x and the edg(' 
a. 

63. Let G be a graph each of whose vertices has positive degree. Prove that G is 2-
connected if and only if, for each pair of edges aI, a2, there is a cycle containing 
both al and a2. 

64. Prove that a connected graph of order n 2: 2 has at least two vertices that ar(' 
not articulation vertices. (Hint: Take the two end vertices of a longest path. 



Chapter 13 

Digraphs and Networks 

In this chapter we briefly discuss directed graphs (abbreviated as digraphs). As pointed 
out in the opening paragraphs of Chapter 11, digraphs are similar to graphs, the dif­
ference being that in digraphs, the edges have directions and are called arcs. Thus, 
digraphs model nonsymmetric relations, in the same sense that graphs model symmet­
ric relations. Many of the results we prove are directed analogues of results already 
proved for graphs. 

A network is a digraph with two distinguished vertices sand t, in which each arc 
has a nonnegative weight, called its capacity. If we think of each arc as a conduit over 
which flows some substance and think of the capacity of an arc as the amount that 
can flow through the conduit per unit time (say), one important problem is that of 
finding the maximum possible flow from the "source" s to the "target" t, subject to 
the given capacities. The answer to this problem, along with an efficient algorithm 
for constructing a maximum flow, is given by the so-called max-flow min-cut theorem. 
We then use the max-flow min-cut theorem to give another proof of the basic result, 
Theorem 12.5.3, about matchings in bipartite graphs. 

13.1 Digraphs 

A digraph D = (V, A) has a set V of elements called vertices and a set A of ordered 
pairs of not necessarily distinct vertices called arcs. Each arc is of the form 

a = (a,b), (13.1 ) 

where a and b are vertices. We think of the arc a as leaving a and entering b, that is, 
pointed (or directed) from a to b. 
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b~----------~------~~e 

Figure 13.1 

In contrast to graphs, (a,b) is not the same as (b,a). We shall use terminology 
which is similar to that used for graphs, but there are distinctions that apply to 
digraphs which don't apply to graphs. Thus, the arc a in (13.1) has initial verte1 
[Cal = a and terminal vertex T(a) == b. A digraph may contain both of the a~cs (a, b) 
and (b, a) as well as loops of the form (a, a). A loop (a, a) enters and exits the samr 
vertex a. We may generalize a digraph to a general digraph in which multiple arcs an' 
allowed. 1 We draw general digraphs as we draw graphs, but for digraphs we put all 
arrow on each edge in order to indicate its direction. 

Example. A general digraph is shown in Figure 13.1. It is not a digraph, sinc(' 
some of the arcs have multiplicities greater than 1. [J 

A vertex x of a general digraph D = (V, A) has two degrees. The outdegree of x i~ 

the number of arcs a of which x is the initial vertex: 

The in degree of x is the number of arcs a of which x is the terminal vertex: 

l{aIT(a) = x}l· 

A loop (x, x) contributes 1 to both the indegree and outdegree of the vertex x. A pro()1 
similar to the one given for Theorem 11.1.1 establishes the next elementary result. 

Theorem 13.1.1 In a general digraph the sum of the indegrees of the vertices equal., 
the sum of the outdegrees, and each is equal to the number of arcs. I I 

IThe number of arcs, including multiplicities, however, should always be finite. 
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Example. In the general digraph of Figure 13.1, the indegrees of the vertices a, b, c, d, e 
are 

4,3,2,2,1; 

the outdegrees are 

3,0,3,2,4. 

In each case the sum is 12, the number of arcs. o 

With any general graph G = (V, E), we can obtain a general digraph D = (V, A) 
by giving each edge {a, b} of E an orientation, that is, by replacing {a, b} with either 
(a, b) or (b, a).2 Such a digraph D is called an orientation of G. A general graph has 
many different orientations. Conversely, given a general digraph D = (V, A), we can 
remove the directions of its arcs, thereby obtaining a general graph G = (V, E). Such 
a graph is called the underlying general graph of G. A general digraph has exactly one 
underlying general graph. 

Example. The underlying general graph of the general digraph in Figure 13.1 is 
shown in Figure 13.2. 0 

An orientation of a complete graph Kn with n vertices is called a tournament. It 
is a digraph such that each distinct pair of vertices is joined by exactly one arc. This 
arc may have either of the two possible directions. A tourl,lament can be regarded as 
the record of who beat whom in a round-robin tournament in which each player plays 
every other player exactly once and there are no ties. The nicest kinds of tournaments3 

are those in which it is possible to order the players in a list 

so that each player beats all those further down on the list. Such tournaments are 
called transitive tournaments. The reason is that if Pi beats Pj and Pj beats Pk, then 
also Pi beats Pk. In a transitive tournament there is a consistent ranking of the players. 

2Uthe multiplicity of {a,b} is greater than 1, then som~ copies of {a,b} can be replaced by (a,b), 
and others can be replaced by (b, a). 

3From the point of view of ranking the players at the end. 
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btf----------='"3Ite 

Figure 13.2 

We modify our definitions of walk, path, and cycle in a general graph in order to 
obtain analogous concepts for general digraphs. Let D = (V, A) be a general digraph. 
A sequence of m arcs of the form 

(13.2) 

is called a directed walk of length m from vertex Xo to vertex x m . The initial vertex 
of the walk (13.2) is Xo and the terminal vertex is x m . The directed walk is closed if 
Xo = Xm and open otherwise. We also denote the walk (13.2) by 

A directed walk with distinct arcs is a directed trail; a directed trail with distinct 
vertices (except possibly the initial and terminal vertices) is a path4 ; a closed path is 
a directed cycle. 

Example. Consider the general digraph of order 5 in Figure 13.1. Then 

(1) d -> e -> c -> d -> e is a directed walk, 

(2) c -> d -> e -> c -> b is a directed trail, 

(3) c -> d -> e -> a -> b is a path, and 

(4) each of c -> d -> e -> c, C -> d -> c and a -> a is a directed cycle. o 

4In contrast to walks and cycles, we use path instead of directed path. 
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A general digraph is connected, provided that its underlying general graph is con­
nected. A general digraph is strongly connected, provided that, for each pair of distinct 
vertices a and b, there is a directed walk5 from a to b and a directed walk from b to a. 
Thinking of a general digraph as a network of one-way streets connecting the various 
parts of a city, we see that strong connectivity means that we can get from any part 
of the city to any other part, traveling along streets only in their given direction. 

Example. The general digraph in Figure 13.1 is connected, but it is not strongly 
connected. The easiest way to see that it is not strongly connected is to observe that 
vertex b has outdegree equal to O. Thus, it is not possible to leave b. 0 

A directed trail in a general digraph D is called Eulerian, provided that it contains 
every arc of D. A Hamilton path is a path that contains every vertex. A directed 
Hamilton cycle is a directed cycle that contains every vertex. 

The next two theorems are the directed analogues of Theorems 11.2.2 and 11.2.3. 
Since their proofs are similar, we omit them. 

Theorem 13.1.2 Let D be a connected digmph. Then D has a closed Eulerian di­
rected tmil if and only if the indegree of each vertex equals the outdegree. 

Theorem 13.1.3 Let D be a connected digmph and let x and y be distinct vertices of 
D. Then there is a directed Eulerian tmil from x to y if and only if 

(i) the outdegree of x exceeds its in degree by 1; 

(ii) the indegree of y exceeds its outdegree by 1; 

(iii) for each vertex z '" x,y, the indegree of z equals its outdegree. 

There is also a directed analogue of Theorem 11.3.2 due to Ghouila-Houri6 giving a 
sufficient condition for the existence of a directed Hamilton cycle, but it is much more 
difficult to prove. We shall be content simply to state the theorem. In the theorem, 
D is a digraph (and not a general digraph) without 100ps.7 

Theorem 13.1.4 Let D be a strongly connected digmph without any loops. If, for 
each vertex x, we have 

, (outdegree of x) + (indegree of x) ~ n, 

then D has <l directed Hamilton cycle. 

5 And thus a path. 
6 A. Ghouila-Houri, Une coadition suffisante d'existence d'un circuit hamiltonien, C.R. Acad. Sci., 

251 (1960), 494. 
7More than one arc from one vertex to another is of no help in locating a Hamilton directed cycle, 

nor is a loop of any help. 
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We now show that a tournament always has a Hamilton path. This implies that 
it is always possible to rank the players in the order 

(13.3) 

so that PI beats P2, P2 beats P3, ... , Pn-l beats Pn. This does not imply that we have 
a consistent ranking of the players, since we are not asserting that each player beats 
all players further down on the list. Indeed, a tournament may even have a directed 
Hamilton cycle, thereby implying that for Bach player there is a ranking (13.3) in 
which he or she is ranked first! 

Theorem 13.1.5 Every tournament has a Hamilton path. 

Proof. Let D be a tournament of order n. Let 

(13.4) 

be a longest path in D. We show that a longest path (13.4) is a Hamilton path by 
showing that, if p < n, then we can find a longer path. Suppose that P < n so that 
the set U of vertices not on the path (13.4) is nonempty. Let u be any vertex in U. If 
there is an. arc from u to Xl or an arc from x p. to u, then we can find a longer path. 
Thus, we can now assume that the arc between Xl and u has u as its terminal vertex. 
Similarly, we can now assume that the arc between xp and u has u as its initial vertex. 
So as we consider the arcs bewteen u and the vertices Xl, X2, ... , xp in sequence, there 
must be consecutive vertices Xk and Xk+l on the path "( such that the arc between Xk 

and u has u as its terminal vertex, and the arc between Xk+l and u has u as its initial 
vertex. But then 

Xl -> ... -> Xk -> U -> Xk+l -> ... -> xp 

is' a longer path than "(. We leave it as an exercise to use this proof to determine an 
algorithm for a Hamilton path in a tournament. 0 

We conclude this brief introduction to digraphs by proving two theorems of some 
practical importance. The first of these is a theorem of Robbins8 which characterizes 
those general graphs that have a strongly connected orientation. Thus, this theorem 
will tell the traffic engineer of a city with no one-way streets whether it is possibl(' 
(and how) to make all st~eets into one-way streets in such a way that one can get from 
any part of the city to any other part.9 

Theorem 13.1.6 Let G = (V, E) be a connected graph. Then G has a strongly con­
nected orientation if and only if G does not have any bridges. 

SR. E. Robbins A Theorem on Graphs, with an Application to a Problem in Traffic Control, Ame ... 
Math.' Monthly, 46 (1939), 281-283. 

9The consequences to the traffic engineer if he or she fails to achieve this property are obvious. 
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Proof. First, assume that G has a bridge Q. The removal of Q from G results in a 
disconnected graph with two connected components Gl = (Vl,El) and G2 = (V2,E2). 
If we orient Q from G l to G2, then there is no directed walk from a vertex of G2 to a 
vertex of G l . If we orient Q from G2 to Gl , there is no directed walk from a vertex in 
Gl to a vertex in G2 . Hence, G does not have a strongly connected orientation. 

Now assume that G does not have any bridges. By Lemma 11.5.3, each edge of G 
is contained in some cycle. The next algorithm determines a strong orientation of G. 

Algorithm for a strongly connected orientation of a 
bridgeless connected graph 

Let G = (V, E) be a connected graph without bridges. 

(1) Put U = 0. 

(2) Locate a cycle 'Y of G. 

(i) Orient the edges of'Y so that it becomes a directed cycle. 

(ii) Add the vertices of'Y to U. 

(3) While U of- V, do the following: 

(i) Locate an edge Q = {x, y} joining a vertex x in U to a vertex y not in U. 

(ii) Locate a cycle 'Y containing the edge Q. 

(iii) Orient the edge Q from x to y and continue to orient the edges of'Y as if to 
form a directed cycle until arriving at a vertex z in U. 

(iv) Add to U all the vertices of'Y from x to z. 

(4) Orient in either direction every edge that has not yet received an orientation. 

We note that a cycle containing the edge Q = {x,y} in (3)(ii) can be located by 
finding a path (for instance, a shortest path) joining x and y in the graph obtained 
by deleting the edge Q. It should be clear that the digraph obtained by applying the 
preceding algorithm is a strongly connected orientation of G, provided that step (3) 
terminates-that is, provided that the set U does achieve the value V. But if U of- V, 
then since G is connected, there must be an edge Q joining a vertex in U to a vertex 
y not in U. Since each edge of G is contained in a cycle, the vertex y is, in fact, put 
in U. From this, it follows that the terminal value of U is V. 0 

Example. A trading problem.lO There are n traders tl, t2,"" tn who enter a market, 
each with an indivisible itemll to offer in trade. We assume for simplicity that a trader 

IOThis example and its subsequent analysis is partly based on the article "On Cores and Indivis­
ibility" by L. Shapely and H. Scarf, in Studies in Optimization (MAA Studies in Mathematics, vol. 
10), 1974, Mathematical Association of America, Washington, D.C., 104-123. 

II For instance. a car or a house. 
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never has any use for more than one of the items, but except for this assumption, the 
items are freely transferable from one trader to another. Each trader ranks the n 
items brought to the market (including his own) according to his preference for them. 
There are no ties, and thus each trader ranks the items from 1 to n. The effect of the 
market activity is to redistribute (or permute) the ownership of the items among the 
n traders. Such a permutation is called an allocation. We regard an allocation as a 
one-to-one function 

p: {tl, t2, ... , tn} -> {tl, t2,"" tn}, 

where P(ti) = tj means that trader ti receives the item of trader tj in the allocation. 
An allocation p is called a core allocation, provided that it has the following property: 
There does not exist a subset S of fewer than n traders such that, by trading among 
themselves, each receives an item that he or she ranks more highly than in the allo­
cation p.12 For example, suppose that n = 5 and the preferences of the traders are as 
given by the following table: 

tl t2 t3 t4 t5 
tl 4 3 1 2 5 
t2 4 3 1 2 5 

(13.5) 
t3 4 3 5 1 2 
t4 1 4 3 5 2 
t5 4 5 2 1 3 

The first row of this table gives tl's ranking of the .items. Thus, t1 values the item of 
t3 most highly, then the items of t4, t2, tl, t5 in this order. The interpretation of the 
other rows of the table is similar. One possible allocation p is 

This allocation is not a core allocation since 

defines an allocation for the two traders tl, t4 in which each gets an item he or she 
values more highly than he gets in p. A core allocation in this case is p*: 

Does every trading problem have a core allocation? In the remainder of this section 
we answer this question.13 0 

12Put another way, there does not exist a subset S of fewer than n traders and an allocation p' for 
them such that, for each trader ti in S, t, ranks the item of p' (ti) higher than that of pet,). 

13In the affirmative. 



13.1. DIGRAPHS 513 

A digraph furnishes a convenient mathematical model for a trading problem. We 
consider a digraph D = (V, A) in which the vertices are the n traders. We put an 
arc from each vertex to every other, including the vertex itself.14 Each vertex has 
indegree equal to nand out degree equal to n. The digraph D is a complete digraph of 
order n. For each vertex ti, we label (or weight) the arcs leaving ti with 1,2, ... ,n in 
accordance with the preferences of ti. An allocation corresponds to a partition of the 
vertices into directed cycles. This is a consequence of the next lemma, which implies 
that a one-to-one function from a set to itself can be thought of as a digraph that 
consists of one or more directed cycles with no vertices in common. 

Lemma 13.1. 7 Let D be a digraph in which each vertex has outdegree at least l. 
Then there is a directed cycle in D. 

Proof. An algorithm that constructs a directed cycle in D is now given: 

Algorithm for a directed cycle 

Let u be any vertex. 

(1) Put i = 1 and Xl = u. 

(2} If Xi is the same as one of the previously chosen vertices Xj, (j < i), then go to 
(4). Else, go to (3). 

(3) Do the following: 

(i) Choose an arc (Xi,Xi+1) leaving vertex Xi. 

(ii) Increase i by l. 

(iii) Go to (2). 

(4) Output the directed cycle 

Xj --> Xj+l --> ... --> Xi-l --> Xi = Xj' 

Since each vertex is the initial vertex of at least one arc and since we stop as soon 
as we obtain a repeated vertex, the algorithm does output a directed cycle as shown. 
o 

Corollary 13.1.8 Let" X be a set of n elements and let f : X --> X be a one-to-one 
function. Let Df = (X, Af) be the digraph whose set of arcs is 

Af = {(x, f(x» : X in X}. 

Then the arcs of Df can be partitioned into dir,ected cycles with each vertex belonging 
to exactly one directed cycle. . 

14Thereby creating a loop at each vertex. 
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Proof. Since the function f is one-to-one, it is a consequence of the pigeonhole 
principle that f is also onto. It now follows from the definition of the set Aj of 
arcs that each vertex of Dj has its indegree and outdegree equal to 1. By Lemma 
13.1.7, Dj has a directed cycle "(. Either each vertex is a vertex of ,,(, in which case 
our partition contains only ,,(, or, removing "( (its vertices and arcs), we are left with 
a digraph, each of whose vertices also has indegree and outdegree equal to 1. We 
continue to remove directed cycles until we exhaust all of the vertices, and this gives 
us the desired partition. 0 

Figure 13.3 

t, 

.D, 
Figure 13.4 

o 
o 

Example. The digraphs Dp and Dp' corresponding to the allocations p and p* defined 
in the example "A trading problem" give the directed cycle partitions shown in Figures 
13.3 and 13.4, respectively. 0 

The problem of the existence of core allocations can be regarded as a directed 
version of the stable marriage problem described in Section 9.3. We now use the 
digraph model to answer our question about the existence of core allocations. 

Theorem 13.1.9 Every trading problem has a core allocation. 

Proof. The proof shows how successive use of the algorithm for directed cycles, given 
in the proof of Lemma 13.1. 7, results in a core allocation. 

Let the set of traders be V = {tl' t2, ... ,tn}. Consider the preference digrapb 
DI = (V, A I), where there is an arc (ti' tj) from ti to tj if and only if ti prefers the item 
of tj over all other items. Each vertex has outdegree 1; hence, by Lemma 13.1.7, ther(, 
is a directed cycle "(I in DI. Let VI be the set of vertices of "(I. Let D2 = (V - VI, A2) 
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be the preference digraphI5 with vertex set V - VI in which there is an arc from ti 

to tj if and only if ti prefers the item of tj over all the other items of the traders 
in V - VI. Each vertex of the digraph D2 has outdegree 1 and again, by Lemma 
13.1.7, we can find a directed cycle 1'2. We let V2 be the set of vertices of 1'2, and we 
consider the preference digraph D3 = (V - (VI U V2), A3). Continuing in this way, 
we obtain k :::: 1 directed cycles r = bl, 1'2, ... , I'd with vertex sets vI, V2, ... , Vk, 
respectively, where VI, V2, ... , Vk is a partition of V, the set of traders. The set r 
of cycles determines an allocation p: Each trader tp is a vertex of exactly one of the 
directed cycles in r, and this directed cycle has an arc from tp to some tq. Defining 
p(tp ) = tq, we obtain an allocation. 

We now show that the allocation p is a core allocation. Let U be any subset of 
fewer than n traders. Let j be the smallest integer such that Un vj '" 0. Then 

and U is a subset of the vertices of the digraph Dj. Let ts be any trader in Un vj. 
Then, in the allocation p, ts gets the item he or she ranks the highest among all the 
items of traders in V - (VI u· .. U Vj-I) and hence among all the traders in S. Thus, 
by trading among the members of U, ts cannot obtain an item he or she ranks higher 
than the item he or she was assigned in p. Therefore, p is a core allocation. 0 

t,--Oo-----... rs 
4 

Figure 13.5 

Example. Consider the trading problem determined by the table in (13.5). The 
preference digraph DI, pictured in Figure 13.5, has exactly one directed cycle, namely, 

The preference digraph D2, pictured in Figure 13.6, consists of the two disjoint directed 
cycles 

15Note well that the vertex set of D2 is only a subset of the traders. 
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We can pick either of these directed cycles, and then the other is the preference digraph 
D3.16 A core allocation for our problem is given by 

o 

00 
15 

Figure 13.6 

13.2 Networks 

A network is a digraph (V, A) in which two vertices~the source s and the target t~are 
distinguished, where s '" t, and in which each arc a "has a nonnegative weight c(a), 
called its capacity. We denote a network by N = (V, A, s, t, c). 

The basic problem to be treated for networks is that of moving a substance from 
the source to the target, within the constraints provided by the arcs of the digraph 
and their capacities. Formally, a flow in the network N is defined to be a function I 
that assigns a real number lea) to each arc a, subject to the following constraints: 

(1) 0 S lea) S c(a). (The flDw through an arc is nonnegative and does not exceed 
its capacity.) 

(2) L:t(a)=x I(a) = L:r(a)=x lea) for each vertex x '" s, t. (For each vertex x other 
than the source and the target, the flow into x equals the flow out of x.) 

In order to demonstrate that the net flow out of the source, 

E lea) - L I(a), 
£(a)=8 r(a)=s 

equals the net flow into the target, 

E lea) - L I{a) 
r(a)=t t(a)=t 

I6In general, when one of the preference digraphs consists of pairwise disjoint, directed cycles, then 
the core allocation p constructed in the proof of Theorem 13.1.9 is determined. 



13.2. NETWORKS 517 

(where the common value is the amount moved from the source to .the target), we 
prove the next result. For each set of vertices U, we let 

U= {a: ~(a) is in U,r(a) is not in U} 

and 
U= {a: ~(a) is not in U,r(a) is in U}. 

Lemma 13.2.1 Let f be a flow in the network N = (V, A, s, t, c) and let U be a set 
of vertices containing the source s but not the target t. Then 

L f(a) - L f(a) = L f(a) - L f(a). 

aEU aEU L(a)=s T(a)=s 

Proof. We evaluate the sum 

~ C~, 1(0) - '(~, I(a)) (13.6) 

in two different ways. On the one hand, it follows from the definition of a flow that 
all terms in the outer sum are zero except for that one corresponding to the vertex s. 
Hence, the value is 

E f(a) - L f(a). (13.7) 
L(a)=s T(a)=s 

On the other hand, we can rewrite the expression (13.6) as 

L L f(a)- L L f(a), 
xEU L(a)=x xEUT(a)=x 

or, equivalently, 

L f(a) - L f(a). (13.8) 
,.(",)EU 

Each arc a with both its initial and terminal vertex in U makes a net contribution of 
f(a) - f(a) = 0 to the sum (13.8); hence, the sum (13.8) equals 

L f(a) - L f(a). 

aEU aEU ' 

Thus, the equation in the statement of the lemma holds. o 
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In Lemma 13.2.1, take U = V - {t}. Then U is the set of all arcs whose terminal 
<-

vertex is t, and U is the set of all arcs whose initial vertex is t. Hence, 

E f(a) - E f(a) = E f(a) - E f(a). (13.9) 
L(a)=8 T(a)=8 T(a)=t L(a)=t 

The common value of the two expressions in (13.9) is called the value of the flow f 
and is denoted by val(f). 

Given a network N = (V, A, s, t, c), a flow in N is a maximum flow, provided that 
it has the largest value among all flows in N. The value of a maximum flow (the 
maximum value of a flow) equals the minimum value of another quantity associated 
with a network. We shall prove this important fact only in the case that the capacity 
function is integer-valued,17 and in doing so, we obtain an algorithm for constructing 
a maximum flow. 

A cut in a network N = (V, A, s, t, c) is a set C of arcs such that each path from 
the source s to the target t contains at least one arc in C. 18 The capacity cap(C) of a 
cut C is the sum of the capacities of the arcs in C. A cut is a minimum cut, provided 
that it has the smallest capacity among all cuts in N. 

A cut is a minimal cut, provided that each set obtained from C by the deletion of 
one of its arcs is not a cut. 19 (This means that, for each arc a in C, there is a pat.h 
from s to t that contains a, but no other arc of C.) 

We first show that any minimal cut is a cut of the form U for some set of vertices 
U containing s but not containing t. This implies that the smallest capacity of a clli 

~ 

is achieved by a cut of this form U. 

Lemma 13.2.2 Let N = (V, A, s, t, c) be a network with C a minimal cut. Let (I 
be the set of all vertices x for which there exists a path from the source s to x thai 

~ ~ 

contains no arc in C. Then U is a cut and C = U. 

Proof. Note that s is in U, since the trivial path consisting only of the vertex ., 

contains no arc in C. Since C is a cut, the target t is not contained in U. Hence, {} 

is a cut. Each arc (x,y) in U is in C, for otherwise there exists a path from s to II 

containing no arc in U, and y would be in U. Thus, U~ C. 
Now let a = (a, b) be any arc in C. Since C is a minimal cut, there is a path, 

from s to t that contains a, but no other arc of C. This implies that the initial vertex 

17It then follows that it is also true for capacity functions, all of whose values are rational numb~,.,. 
by choosing a common denominator for all the rational values. In case the values of the capaCii y 

function are not all rational, we must resort to a limiting process. 
1880 we cannot get from the s to t without going over one of the arcs in C. 
1980 a minimum cut is defined arithmetically, while a minimal cut is defined set theoretically. If 1111 

the arc capacities are positive, then a minimum cut is also a minimal cut. 
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a of a is in U. If there were a path " from s to b that contained no arc 'in C, then " 
followed by the part of, from b to t would give a path from s to t containing no arc 

in C. It follows that the terminal vertex b of a is not in U. 

conclude that C <;;; U. Therefore C =U. 
~ 

Thus, a is in U, and we 

o 

We now prove the very important max-flow 'min-cut theorem. 

Theorem 13.2.3 Let N = (V, A, s, t, c) be a network. Then the maximum value of a 
flow in N equals the minimum capacity of a cut in N. In other words, the value of a 
maximum flow equals the capacity of a minimum cut. If the capacities of all the arcs 
are integers, then there is a maximum flow all of whose values are integers as well. 

Proof. We prove the theorem only under the assumption that the capacity values are 
all integers. The full theorem can then be established by means of a limiting argument. 

The first part of the proof does not use the integrality of the capacity function. 
We first show that, for each flow f and each cut C, 

val(f) ::; cap(C). (13.10) 

By Lemma 13.2.2 it suffices to prove this inequality for cuts of the form U, where U 
is a set of vertices with s in U and t not in U. By Lemma 13.2.1 and the fact that 
flow values are nonnegative, we have 

val (f) = L f(a) - L f(a) 

aEU aEU 

::; L f(a) 

aEU 

::; Lc(a) 

aEU 

cap U. 

The remainder of the proof is devoted to showing that there is a flow j with only 
integer values and a cut (; such that valU) = cap((;). Since (13.10) holds, such a flow 
j is a maximum flow, and the cut (; is a minimum cut. 

We start with an arbitrary integer-valued flow f on N. The zero flow, in which all 
flow values equal zero, will suffice, although, in general, it is possible to find an integer­
valued flow by trial and error which has a reasonable value for the problems at hand. 
We then describe an algorithm that results in one of the following two possibilities: 
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Breakthrough: An integer-valued flow II has been found with val(fl) = val(f)+ 
1. In this case, we repeat the algorithm with I = !,. 

Nonbreakthrough: Breakthrough has not occurred. In this case, we exhibit 
a cut whose capacity equals the value of the flow I. The cut is our desired 
minimum cut 6, and the flow I is our desired maximum flow j. 

Basic flow algorithm 

Begin with any integer-valued flow I on the network N = (V, A, s, t, c). 

(0) Set U = is}. 

(1) While there exists an arc Q = (x,y) with either 

(a) x in U, y not in U, and I(Q) < c(Q), or 

(b) x not in U, y in U, and I(Q) > 0, 

put y in U (in case of (a)) or put x in U (in case of (b)). 

(2) Output U. 

Thus, in the algorithm, we seek either (a) an arc in iJ (flowing away lrom sand 
toward t) whose flow value is less than capacity (and update U by putting its terminal 

vertex in U) or (b) an arc in if (flowing toward s and away lrom t) with a positive 
flow value (and update U by putting its initial vertex in U). The algorithm terminates 
when no such arcs remain, and we then output the current set U. 

We consider two cases according to whether or not the target t is in U. As we shall 
see, these cases correspond to breakthrough and nonbreakthrough. 

Case 1: The target t is in U. 

It follows from the algorithm that, for some integer m, there is a sequence of 
distinct vertices 

Xo = S,Xl,X2,··· ,Xm-l,Xm = t 

such that, for each j = 0, 1,2, ... , m - 1, either 

(a) Qj = (Xj, Xj+1) is an arc of the network with I(Qj) < c(Qj), 

or 

(b) Qj = (Xj+l,Xj) is an arc of the network with I(Qj) > o. 
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We now define an integer-valued function f' on the set A of arcs by 

{ 
f(a) + 1 

f'(a) = j(a) - 1 
f(a) 

if a is one of the arcs aj in (a); 
if a is one of the arcs aj in (b); 
otherwise. 
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It follows from the definition of fl and the assumption that all capacities and flow 
values of j are integers that 0 ::; f' (a) ::; c( a). The fact that f' is a flow can be 
checked by showing that, for each vertex Xj with j = 1,2, ... , m - 1, the total flow 
into Xj equals the total flow out of Xj (e.g., if (Xj-l,Xj) and (Xj+I,Xj) are both arcs, 
then the flow into Xi has a net change of + 1 - 1 = 0). The value val(fl) of the flow f' 
is val(f) + 1, since either (8, Xl) = (xo, xI) is an are, in which case the flow out of 8 is 
increased by 1, or (Xl, S) = (Xl, xo) is an are, in which case the flow into s is decreased 
by 1; in either case, there is a net increase of 1 in the flow out of s. 

Case 2: The target t is not in U. 
~ 

In this case, U is a cut, and it follows from the algorithm that 

(a) f(a) = c(a) for each arc a in ij and 

(b) j(a) = 0 for each arc a in U. 
Hence, 

val(f) L f(a) - L f(a) 

cxEU cxEU 

Lc(a) 

cxEU 

cap U. 

Hence, j = f is a maximum flow and C ='ij is a minimum cut, o 

We conclude this section by deducing from the max-flow min-cut theorem two 
important combinatoriaJ results, including Theorem 12.5,3 from Chapter 12, 

Example. Let D = (V, A) be a digraph that models a communication network. The 
vertices represent junctions (relay points) in the network, and the arcs represent direct 
(one-way) lines of communication, Consider two junctions corresponding to vertices s 
and t in V, By putting together direct lines, we calil hope to establish a communication 
path from s to t, Because communication lines may fail, for communication from s to t 
to be possible even in the presence of some failure, it is important to have redundancy 
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in the digraph-that is, arcs whose failure does not prevent communication from s to 
t. Define an st-separating set to be a set S of arcs of D such that every path from s to 
t uses at least one arc in S. If the arcs of an st-separating set all fail, communicatioll 
from s to t is impossible. Menger's theorem, stated next, characterizes the minimum 
number of arcs in an st-separating set. 0 

Theorem 13.2.4 Let sand t be distinct vertices of a digraph D = (V, A). Then 
the maximum number of pairwise arc-disjoint paths from s to t equals the minimum 
number of arcs in an st-separating set. 

Proof. Let N = (V, A; s, t, c) be the network in which the capacity of each arc is 1. 
A cut in N is an st-separating set in D (and vice versa), and the capacity of a cut 
equals the number of its arcs. 

Consider an integer-valued flow f in N, and let val(f) = p. Since all the capacity 
values equal 1, f takes on only the values 0 and 1: For each arc a, f either "chooses" 
a (if f(a) = 1) or not (if f(a) = 0). We prove by induction on p that there exist l' 
pairwise arc-disjoint paths from s to t made up of arcs chosen by f. If p = 0, this is 
trivial. Assume p 2 1. There exists a path, from s to t; otherwise, if U is the set of 

vertices that can be reached from s by a path, then U= 0 is a cut in N with capacity 
equal to zero, contradicting p 2 1. Let I' be the integer flow of value p - 1 obtained 
from f by reducing by 1 the value of the flow on the arcs of ,. By induction, then' 
exist p - 1 pairwise arc-disjoint arcs from s to t made up of arcs chosen by 1'. TheHI' 
p - 1 paths, together with" are p pairwise arc-disjoint paths made up of arcs chosell 
by f. 

Conversely, if there are p pairwise arc-disjoint paths from s to t, then there is III I 

integer flow in N with value p. The theorem now follows from Theorem 13.2.3. II 

We recall some facts from Chapters 11 and 12. A bipartite graph G is a graph 
whose vertices can be partitioned into two sets X and Y so that each edge joins II 

vertex in X and a vertex in Y. The pair X, Y is a bipartition of G. A matching ill 
G is a set of pairwise vertex-disjoint edges; a cover of G is a set C of vertices sUl'h 
that each edge of G has at least one of its vertices in C. The maximum number ot 
edges in a matching in G is denoted by p( G), and the minimum number of vertices ill 
a cover is denoted by c(G). We show how to deduce Theorem 12.5.3 of Chapter I~ 

from Theorem 13.2.4 of Menger. 

Theorem 13.2.5 Let G be a bipartite graph. Then p(G) = c(G). 

Proof. Let X, Y be a bipartition of G. We first construct a digraph D = (X U Ii II 

{s, t}, A), where sand t are distinct elements not in Xu Y. The arcs of Dare thoH" 
obtained as follows: 
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1. (s,x) for each x in X (arcs from the source s to each vertex in X; 

2. (x, y) for each edge {x, y} of G (thus, all arcs of N are directed from X to Y); 

3. (y, t) for each y in Y (arcs from each vert,ex in Y to th etarget t). 

Let 1'1, ... ,I'p be a set of pairwise arc-disjoint paths of D from s to t. Each path 
I'i is of the form s --> Xi --> Yi --> t for some Xi in X and Yi in Y, and the edges 
{Xl, Yl}, ... , {xp, Yp} form a matching in G of size p. Conversely, from a matching in 
G of size p, we can construct in the natural way p pairwise arc-disjoint paths in D. 
Hence, p( G) equals the maximum number of pairwise arc-disjoint paths from s to t in 
D. 

Now let 0 = X' U Y' be a cover of G, where X' <;;; X and Y' <;;; Y. Since each path 
of D from s to t uses an arc of the form (x, y), where {x, y} is an edge of G, it follows 
that 

8 = {(s, x')lx' in X'} u {(y', t)ly' in Y'} (13.11) 

is an st-separating set in D with 101 = 181. Conversely, if 8 is an st-separating set in 
D of the form (13.11), then the set 0 defined by 0 = X' U Y' is a cover of G. Now 
let T be any st-separating set in D. Then the set T obtained from T by replacing 
each arc in T of the form (x,y) (x in X and y in Y) with the arc (s,x) is also an 
st-separating set. Moreover, T has the form (13.11) for some X' <;;; X and Y' <;;; Y, 
ITI ~ ITI (because, for instance, there may be several arcs in T of the form (x, .), and 
X' U Y' is a cover of G. It now follows that c( G) equals the the smallest number of 
arcs in an st-separating set in D. Therefore, the equality p( G) = c( G) follows from 
Theorem 13.2.4. 0 

In the next section, we describe a specialization of the basic flow algorithm for 
finding a matching in a bipartite graph with the maximum number of edges. 

13.3 Matchings in Bipartite Graphs Revisited· 

Let G be a bipartite graph with bipartition X, Y with matching number p(G). Each 
matching M satisfies IMI ~ p(G). A matching M with IMI = p(G) is called a max­
matching. If we know p(G), we can determine whether any matching M is a max­
matching by counting the number IMI of edges in M and checking whether IMI = p( G). 

Example. Consider the bipartite graph G in Figure 13.7. The edges {xl,yd and 
{X2, yd are a matching of size 2 and hence, since clearly p( G) cannot be more than 
2, we have p(G) = 2. The edge {xl,yd determines a matching M with one edge. 
Moreover, there is no matching M' with M <;;; M' and IM'I = 2. Thus, we cannot 
conclude that a matching is a max-matching if we know it is impossible to enlarge the 
matching by including more edges. 0 
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Figure 13.7 

We now discuss how to recognize whether a matching is a max-matching without. 
first knowing the value of p(G). Once we have a max-matching M, then p(G) is 
determined by p(G) = IMI. 

Let M be a matching in the bipartite graph G. Let M be the complement of M 
in G, that is, the set of edges of G that do not belong to M. Let u and v be vertices, 
where one of u and v is in X and one is in Y. A path 'Y joining u and v is an alternating 
path with respect to the matching M (for brevity, an M-alternating path) provided that 
the following properties hold: 

(1) The first, third, fifth, ... edges of'Y do not belong to the matching M (and thus 
belong to M). 

(2) The second, fourth, sixth, ... edges of'Y belong to the matching M. 

(3) Neither u nor v meets an edge of the matching M. 

Notice that the length of the M-alternating path 'Y is an odd number 2k + 1 with 
k ;?: 0, and that k + 1 of the edges of'Y are edges of M while k of the edges of'Y an' 
edges of M. We introduce further notation as follows: 

M'Y denotes those edges of "f that belong ·to M, and M'Y denotes those 

edges of 'Y that do not belong to M. 

We thus have IM'Y1 = IM'YI + l. 
Example. Consider the bipartite graph G pictured in Figure 13.8. The set 

is a matching of three edges. The path 

is an M-alternating path. We have 
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If we remove the edges of M-y from M and replace them with the edges of M-y, we 
obtain a matching 

of four edges. o 

Figure 13.8 

As illustrated in the previous example, if M is a matching and there is an M­
alternating path 'Y, then 

is a matching with one more edge than M, and hence M is not a max-matching. We 
now show that the converse holds as well; that is, the only way a matching M can fail 
to be a max-matching is for there to exist an M-alternating path. 

Theorem 13.3.1 Let M be a matching in the bipartite graph G. Then M is a max­
matching if and only if there does not exist an M -alternating path. 

Proof. An M-alternating path would give rise to a matching with more edges than 
M. Thus if M is a max-matching, there cannot exist an M-alternating path. 

To establish the converse, we now assume that M is not a max-matching and prove 
that there exists an M-alternating path. Let M' be a matching satisfying 

IM'I>IMI· 

We consider the bipartite graph G* with the same bipartition as G whose edges are 
the edges in (M \ M') U (M' \ M). Thus the edges of G* are those edges which are in 
either M or M' but not in both. Since IM'I > IMI, we have 

IM'\MI > IM\M'I· (13.12) 



526 CHAPTER 13. DIGRAPHS AND NETWORKS 

The bipartite graph G* has the property that the degree of each of its vertices is at 
most equal to 2 (each vertex meets at most one edge of M \ M' and at most one edge 
of M' \ M). This implies that the set of edges of G* can be partitioned into paths and 
cycles. In each of the paths and cycles of this partition, the edges alternate between 
M \ M' and M' \ M. A path in the partition has the property that both its first and 
last vertices meet only one edge of G*. These paths and cycles are of four types: 

Type 1. A path whose first and last edges are both in M' \ M (see Figure 13.9 where 
in this and the other figures the bold lines denote the edges of M). These paths have 
odd length and contain one more edge of M' than they do of M. Included among the 
Type 1 paths are paths with only one edge where this edge is an edge of M' \ M. 

Figure 13.9. Type 1 path 

Type 2. A path whose first and last edges are both in M \ M' (see Figure 13.10). 
These paths also have odd length, but they contain one more edge of M than they do 
of M'. 

Figure 13.10. Type 2 path 

Type 3. A path whose first edge is in M \ M' and whose last edge is in M' \ AI 
(or vice versa) (see Figure 13.11). These paths have even length and contain as mallY 
edges of M as they do of M'. 
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Figure 13.11 Type 3 path 

Type 4. A cycle (see Figure 13.12). These cycles have even length and contain as 
many edges of M as they do of M'. 

Figure 13.12 Type 4 cycle 

There are more edges of M \ M' than of M' \ M in a path of Type 2, and the same 
number of edges of M \ M' as of M \ M' in a path of Type 3 and in a cycle of Type 
4. In a path of Type 1, there are more edges of M' \ M than of M \ M'. Since, by 
(13.12), M' \ M has more edges than M \ M', there must exist at least one path of 
Type 1. A path of Type 1 is by definition an M-alternating path. Thus, if a matching 
M is not a max-matching, there is an M-alternating path. 0 

Theorem 13.3.1 characterizes max-matchings among all the matchings in a bipar­
tite graph. Its strength lies in the fact that, given a matching M, in order to determine 
whether M is a max-matching, we need only search for an M-alternating path /'. If we 
find such a path /" then, by removing from M those edges of/, that belong to M and 
replacing them with the edges of/, that do not belong to M, we obtain a matching 
M' that has more edges than M. If we cannot find an M-alternating path /" then, by 
Theorem 13.3.1, M is a max-matching. 

The weakness of Theorem 13.3.1 lies in the preceding assertion. After searching for 
an M-alternating path and not finding one, we need to know that we didn't find one 
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because there wasn't any to be found, not because we didn't look hard enough. We 
cannot expect to examine all possible paths in order to determine whether among them 
there is an M-alternating path. Such a task would require, in general, too much time 
and effort. What we seek is some way of easily certifying that a matching is a max­
matching. In other words, we seek an easily verifiable certification that a matching is 
a max-matching. In fact, the covering number c( G) gives such a certification. We call 
a cover S a min-cover provided that lSI = c(G). 

Suppose that, in whatever way, we have found a matching M in a bipartite graph G 
which we think might be a max-matching. If we can find a cover S such that IMI = lSI, 
then M is a max-matching and S is a min-cover. This fact is a consequence of 

c(G) ~ lSI = IMI ~ p(G) ~ c(G), (13.13) 

implying that IMI = p(G) (that is, M is a max-matching), and lSI = c(G) (that is, S 
is a min-cover). Thus S acts as a certification that there is no matching with a larger 
number of edges than M. 

Figure 13.13 

Example. Consider the bipartite graph in Figure 13.13. We see that 

is a matching of three edges. The set S = {Xl, X3, Y2} is a cover of three vertices. 
Hence, 

3 = IMI ~ p(G) = c(G) ~ lSI = 3. 

We have equality throughout, and hence M is a max-matching, S is a min-cover, and 
p(G) = c(G) = 3. 1.I 

We now describe our basic flow algorithm as it applies to the problem of determin­
ing a max-matching in a bipartite graph. Starting from any known matching M, th(' 
algorithm is a systematic search for an M-alternating path. Either (1) the algorithlll 
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produces an M-alternating path, and we use the proof of Theorem 13.3.1 to obtain a 
matching with one more edge than M, or (2) the algorithm fails to produce an M­
alternating path but, as we shall see, produces a cover S with IMI 0:= lSI, and we thus 
conclude that M is a max-matching and S is a certification for M (thus the algorithm 
didn't produce an l\;f-alternating path because no such alternating path existed). 

Matching algorithm 

Let G be a bipartite graph with bipartition X, Y where X = {Xl, X2, . .. ,xm } and 
Y = {YI, Y2, ... , Yn}. Let M be any matching in G. 

(0) Begin by labeling with (*) all vertices in X that do not meet any edge in M and 
call all such vertices unscanned. Go to (1). 

(1) If in the previous step, no new label has been given to a vertex of X, then stop.20 
(This means that every vertex in X meets an edge of M. Thus IXI :::; M. Since 
IMI cannot exceed IXI, this would mean that M is already a max-matching.) 
Otherwise go to (2). 

(2) While there exists a labeled, but unscanned, vertex of X, select such a vertex, 
say, Xi, and label with the label (Xi) all vertices in Y joined to Xi by an edge 
not belonging to M and not previously labeled. The vertex Xi is now scanned. If 
there are no labeled but unscanned vertices, go to (3). 

(3) If, in step (2), no new label has been given to a vertex of Y, then stop. Otherwise 
go to (4). 

(4) While there exists a labeled, but un scanned vertex, of Y, select such a vertex, 
say, Yj, and label with the label (Yj) any vertex of X joined to Yj by an edge 
belonging to M and not previously labeled. The vertex Yj is now scanned. If 
there are no labeled but unscanned vertices, go to (1). 

Since each vertex receives at most one label, and since each vertex is scanned, at 
most, once, the matching algorithm halts after a finite number of steps. There are two 
possibilities to consider: 

Breakthrough: There is a labeled vertex of Y that does not meet an 
edge of M. 

Nonbreakthrough: The algorithm has come to a halt, and breakthrough 
has not occurred; that is, each vertex of Y that is labeled also meets some 
edge of M. 

20 Initially, this can happen only if no vertex gets the label (*). 
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In the case of breakthrough, the matching algorithm has succeeded in finding an 
M-alternating path,. One end vertex of'Y is the vertex v of Y, which is labeled but 
does not meet any edge of M. The other end vertex of'Y is a vertex u of X with label 
(*) (and which therefore does not meet any edge of M). The M-alternating path 'Y 
can be constructed by starting at v and working backward through the labels until a 
vertex u with label (*) is found. In this case, we can use 'Y to obtain (as in the proof 
of Theorem 13.3.1) a matching with one more edge than M. 

If nonbreakthrough occurs, we shall show that it is because M is a max-matching; 
that is, according to Theorem 13.3.1, because there isn't aQY M-alternating path. 
Thus, breakthrough occurs exactly when M is not a max-matching, and when break­
through occurs, we have a way of obtaining an M-alternating path and hence a match­
ing with one more edge than M. 

Theorem 13.3.2 Assume that nonbreakthrough has occured in the matching algo­
rithm. Let xun consist of all the unlabeled vertices of X, let ylab consist of all thl' 
labeled vertices of y, and let S = xun U ylab. Then both of the following hold: 

(i) S is a min-cover of the bipartite graph G; 

(ii) 1M! = lSI and M is a max-matching. 

Proof. We first show that S is a cover by assuming that there is an edge e = {x, y}, 
neither of whose vertices belongs to S, and obtaining a contradiction. 

Thus, assume that x is in X \ x un and y is in Y \ ylab and e = {x, y} is an edge. 
Since x is not in X un , x is labeled; since y is not in ylab, y is unlabeled. Either, 
belongs to M or it does not. If e does not belong to M, then, in applying step (2) of 
the algorithm, y would receive the label (x), a contradiction. We now assume that, 
belongs to M. Since x meets the edge e of M, it follows from step (0) that the label of 
x is not (*). Since x is labeled, it follows from the algorithm that x has label (y). (S('(' 
step (4).) By the algorithm again, vertex y can give label (y) to a vertex of X only if 
y is already labeled. Since y is not labeled, we have a contradiction again. Since both 
possibilities lead to a contradiction, we conclude that S is a cover. . 

We complete the proof of the theorem by showing that IMI = lSI. As we haY<' 
already demonstrated, this equality also implies that S is a min-cover and M is it 

max-matching. We establish a one-to-one correspondence between the vertices in .". 
and the edges in M, thereby proving IMI = lSI. Let y be a vertex in ylab so that .1/ 

is labeled. Since Breakthrough has not occurred, y meets an edge of M, and hen!"" 
exactly one edge of M, say, the edge {x, y} of M. By step (4) of the algorithm, x gpl, 
the label (y) and hence x is not in x un . Thus, each vertex of ylab meets an edge of AI 
whose other vertex belongs to X - x un . Now consider a vertex x' in x un . Since x'i, 
not labeled, it follows from step (0) that x' meets an edge of M (otherwise x' would 
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have the label (*)), and hence exactly one edge of M, say {x',y'} of M. The vertex 
y' cannot be in ylab since we previously showed that the unique edge of M meeting a 
vertex in ylab has its other vertex in X - x un . Thus, we have shown that, for each 
vertex of x un U ylab, there is a unique edge of M containing it and all these edges are 
distinct. Hence, 

lSI = Ixun u y1abl ::; 1M!, 

and we conclude that lSI = IMI. o 

We remark that the proof of Theorem 13.3.2 essentially contains another proof of 
the relation p( G) = c( G). 

The matching algorithm can be applied to obtain a max-matching in a bipartite 
graph as follows: We first choose a matching in a greedy fashion-we pick any edge el, 

then any edge e2 that does not meet £1, then any edge e3 that does not meet el or e2, 
and continue like this until we run out of choices.2l We call the resulting matching Ml 

and apply the matching algorithm to it. If nonbreakthrough occurs, then, by Theorem 
13.3.2, Ml is a max-matching. If breakthrough occurs, then we obtain a matching M2 
with more edges than MI. We now apply the matching algorithm to M2. In this way, 
we obtain a sequence of matchings Ml, M2, M 3, ... , each with more edges than the 
preceding one. After a finite number of applications of the matching algorithm, we 
obtain a matching Mk for which the matching algorithm results in nonbreakthrough, 
and hence lvlk is a max-matching. 

Example. We determine a max-matching in th~ bipartite graph G in Figure 13.14. 
We choose the edges {X2' yd, {X3, Y3}, and {X4' Y4} and obtain a matching Ml of size 
3. The edges of Ml are in boldface in Figure 13.13. We now apply the matching 
algorithm to Ml, and the results as shown in Figure 13.13 are as follows: 

(1) Step (0): The vertices Xl,X5, and X6, which do not meet an edge of Ml, are 
labeled (*). 

(2) Step (2): We scan Xl, x5 and X6, in turn, and label Y3 with (xI) and Y4 with 
(X5)' Since all vertices joined to X6 already have a label, no vertex of Y gets 
labeled (X6). 

(3) Step (4): We scan the vertices Y3 and Y4, labeled in (ii), and label X3 with (Y3) 
and X4 with (Y4). 

(4) Step (2): We scan the vertices X3 and X4, labeled in (iii), and label Y2 with (X3)' 

210r perhaps we stop because there are no more obvious choices. 



532 CHAPTER 13. DIGRAPHS AND NETWORKS 

(5) Step (4): We scan the vertex Y2, labeled in (iv), and label X2 with (Y2). 

(6) Step (2): We scan the vertex X2, labeled in (v), and label Yl, Y5 and Y6 with (X2). 

(7) Step (4): We scan the vertices Yl,Y5, and Y6, labeled in (6), and find that no 
new labels are possible. 

(')x, y,(X2) 

(Y2)X2 Y2(x3) 

(Y3)x3 Y3(X,) 

(Y4)X4 Y4(XS) 

(')xs YS(X2) 

(')xa Ya(X2) 

Figure 13.14 

The first phase of the algorithm has now come to an end, and since we have labeled 
a vertex of Y that does not meet an edge of Ml (in fact, the three vertices Yl, Y5, and 
Y6 have this property), we have achieved breakthrough.22 If we trace backward from 
Yl, using the labels as a guide, we find the M1-alternating path 

We have 

and 

Then 

M2 (Ml - M~) u (M~) 
{{X4,Y4},{Yl,X2},{Y2,X3},{Y3,Xl}} 

is a matching of four edges. 

22 The algorithm can be halted as soon as breakthrough is achieved. 
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Figure 13.15 

We now apply the matching algorithm to M2. The resulting labeling of the vertices 
is shown in Figure 13.15. In this case, Breakthrough has not occurred. By Theorem 
13.3.2, M2 is a max-matching of size 4, and the set 

of size 4, consisting of the unlabeled vertices of X and the labeled vertices of Y, is a 
min-cover. 0 

13.4 Exercises 

1. Prove Theorem 13.1.2. 

2. Prove Theorem 13.1.3. 

3. Prove that an orientation of Kn is a transitive tournament if and only if it does 
not have any directed cycles of length 3. 

4. Give an example of a digraph that does not have a closed Eulerian directed trail 
but whose underlying general graph has a closed Eulerian trail. 

5. Prove that a digraph has no directed cycles if and only if its vertices can be 
labeled from 1 up to n so that the terminal vertex of each arc has a larger label 
than the initial vertex. 

6. Prove that a digraph is strongly connected if and only if there is a closed, directed 
walk that contains each vertex at least once. 
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7. Let T be any tournament. Prove that it is possible to change the direction of at 
most one arc in order to obtain a tournament with a directed Hamilton cycle. 

8. Use the proof of Theorem 13.1.5 in order to write an algorithm for determinin)l; 
a Hamilton path in a tournament. 

9. Prove that a tournament is strongly connected if and only if it has a directed 
Hamil ton cycle. 

10. Prove that every tournament contains a vertex u such that, for every other vertex 
x, there is a path from u to x of length at most 2. 

11. Prove that every graph has the property that it is possible to orient each of itH 
edges so that, for each vertex x, the indegree and outdegree of x differ by at 
most 1. 

12. * Devise an algorithm for constructing a directed Hamilton cycle in a strongly 
connected tournament. 

13. Apply the algorithm in Section 13.1 and determine a strongly connected orien­
tation of the graphs in Figures 11.15 to 11.18. 

14. Prove the following generalization of Theorem 13.1.6: Let G be a connected 
graph. Then, after replacing each bridge {a,b} by the two arcs (a,b) and (b,a), 
one in each direction, it is possible to give the remaining edges of G an orientation 
so that the resulting digraph is strongly connected. 

15. Modify the algorithm for constructing a strongly connected orientation of II 

bridgeless connected graph in order to accommodate the situation described 
in Exercise 14. 

16. Consider a trader problem in which trader tl ranks his item number 1. Prow 
that, in every core allocation, tl gets to keep his own item. 

17. Construct an example of a trading problem, with n traders, with the property 
that, in each core allocation, exactly one trader gets the item he ranks first. 

18. Show that, for the trading problem in which the preferences are given by th!' 
table 

1 3 
2 1 
3 2 

there are exactly two core allocations. Which of these results from applying til,· 
constructive proof of Theorem 13.1.9? 
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19. Suppose that, in a trading problem, some trader ranks his own item number k. 
Prove that, in each core allocation, that player obtains an item he ranks no lower 
than k. (Thus, a player never leaves with an item that he values less than the 
item he brought to trade.) 

20. Prove that, in the core allocation obtained by applying the constructive proof 
of Theorem 13.1.9, at least one player gets an item he ranks number 1. Show 
by example that there may be core allocations in which no player gets his first 
choice. 

21. Prove that, in a trading problem, there is a core allocation in which every trader 
gets the item he ranks number 1 if and only if the digraph D1 constructed in 
the proof of Theorem 13.1.9 consists of directed cycles, no two of which have a 
vertex in common. 

22. Construct a core allocation for the trading problem in which the preferences are 
given by the following table: 

t1 t2 t3 t4 ts t6 t7 

t1 2 3 1 4 7 5 6 
t2 1 6 4 3 2 7 5 
t3 2 7 3 5 1 4 6 
t4 3 4 2 7 1 6 5 
ts 1 3 4 2 5 7 6 
t6 2 4 5 3 7 6 
t7 7 3 4 2 1 6 5 

23. Explicitly write the algorithm for a core allocation that is implicit in the proof 
of Theorem 13.1.9. 

24. Determine a maximum flow and a minimum cut in each of the networks N = 
(V,A,s,t,c) in Figure 13.16. (The numbers near arcs are their capacities.) 

25. Determine the maximum number of pairwise arc-disjoint paths from s to t in the 
digraphs of the networks in Exercise 24. Verify that the number is maximum 
by exhibiting an ·st-separating set with the same number of arcs (d. Theorem 
13.2.4). 

26. Consider the network in Figure 13.17, where there are three sources S1, S2, and 
S3 for a certain commodity and three targets t1, t2, and t3. Each source has a 
certain supply of the commodity, and each target has a certain demand for the 
commodity. These supplies and demands 'are the numbers in brackets next to 
the sources and sinks. The supplies are to flow from the sources to the targets, 
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subject to the flow capacities on each arc. Determine whether all the demands 
can be met simultaneously with the available supplies. (One possible way to 
approach this problem is to introduce an auxiliary source S and an auxiliarly 
target t, arcs from s to each Si with capacity equal to Si'S supply, and arcs from 
each tj to t with capacity equal to tj's demand, and then find a maximum flow 
from S to t in the augmented network and check whether all demands are met.) 

5 

4 

s ... --~-< 

3 2 2 2 
2 

3 

Figure 13.16 
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'[4] Sl 
3 5 

t1 [5] 

3 3 

[8] S2 t1 [7] 

3 3 

[4] S3 
5 6 

t1 [4] 

Figure 13.17 

27. In Exercise 26, change the supplies at 81,82, and 83 to a, b, and c, respectively, 
and determine again whether all the demands can be met simultaneously with 
the available supplies. 

28. * Formulate and prove a theorem that gives necessary and sufficient conditions 
so that a network with multiple sources and sinks has a flow that simultaneously 
meets all prescribed demands with available supplies. 

Figure 13.18 

29. Use the matching algorithm to determine the largest number of edges in a match­
ing M of the bipartite graphs in Figure 13.18. In each case, find a cover S with 

ISI=IMI· 



538 CHAPTER 13. DIGRAPHS AND NETWORKS 

30. Consider an m-by-n board, with squares alternately colored black and white, 
where some of the squares have been forbidden. In Chapter 9, we associated 
with each nonforbidden (free) white square the set of nonforbidden (free) black 
squares with which it shares an edge. This family of sets was called the domino 
family of the board. We can also associate with the board a bipartite graph 
G (the domino bipartite graph of the board) with bipartition X, Y, where X 
is the set of free white squares and Y is the set of free black squares. There 
is an edge joining a free white square to a free black square if and only if the 
two squares share an edge. A matching M of G corresponds to the placement 
of IMI nonoverlapping dominoes on the board. Use the matching algorithm to 
determine the largest number of nonoverlapping dominoes that can be placed 
on the board shown here (that is, p( G)) and certify why you have the largest 
number by finding c(G). 

x 
x x x x 

x x x 
x x 

x x x 
x x 

x x 
x x 

31. Consider the set A of the 2n binary sequences of length n. This exercise con­
cerns the existence of a circular arrangement 'Yn of 2n Os and 1s, so that the 2n 

sequences of n consecutive bits of 'Y give all of A; that is, are all distinct. Such 
a circular arrangement is called a de Bruijn cycle. For example, if n = 2, the 
circular arrangement 0,0,1, 1.(regarding the first 0 as following the last 1) gives 
0,0; 0,1; 1,1; and 1, O. For n = 3, 0,0,0,1,0,1,1,1 (regarded cyclically) is a de 
Bruijn cycle. Define a digraph r n whOSE) vertices are the 2n - 1 binary sequences 
of length n - 1. Given two'such binary sequences x and y, we put an arc e from 
x to y, provided that the last n - 2 bits of x agree with the first n - 2 bits of y, 
and then we label the arc e with the first bit of x. 

(a) Prove that eve'rY'vertex of r n has indegree and outdegree equal to 2. Thus, 
r n has a total of 2 . 2n - 1 = 2n arcs. 

(b) Prove that r n is strongly connected, and hence r n has a closed Eulerian 
directed trail (of length 2n). 

(c) Let b1 ,b2, ... ,b2n be the labels of the arcs (considered as a circular ar­
rangement) as we traverse an Eulerian directed trail of r n' Prove that 
b1 , b2, ... , b2n is a de Bruijn cycle. 
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(d) Prove that, given any two vertices x and y of the digraph r n, there is a 
path from x to y of length at most n - 1. 





Chapter 14 

P61ya Counting 

Suppose you wish to color the four corners of a regular tetrahedron, and you have 
just two colors, red and blue. How many different colorings are there? One answer 
to this question is 24 = 16, since a tetrahedron has four corners, and each corner can 
be colored with either of the two colors. But should we regard all of the 16 colorings 
to be different? If the tetrahedron is fixed in space, then each corner is distinguished 
from the others by its position, and it matters which color each corner gets. Thus, in 
this case, all 16 colorings are different. Now suppose that we are allowed to "move 
the tetrahedron around." Then, because it is so symmetrical, it matters not which 
corners are colored red and which are colored blue. The only way two colorings can 
be distinguished from one another is by the number of corners of each color. Hence, 
there is one coloring with all red corners, one with three red corners, one with two red 
corners, one with one red corner, and one with no red corners, giving a total of five 
different colorings. 

Now suppose we color the four corners of a square with the colors red and blue. 
Again, we have 16 different colorings, provided the square is regarded as fixed in 
position. How many different colorings are there if we allow the square to move 
around? The square is also a highly symmetrical figure, although it does not possess 
the "complete symmetry" of the tetrahedron. As shown in Figure 14.1, there is one 
coloring with all red corners, one with three red corners, two with two red corners (the 
red corners can either be consecutive or separated by a blue corner), one with one red 
corner, and one with ~o red corners, giving a total of six different colorings. 

For both the tetrahedron and square, if allowed to move around freely, the 24 = 16 
ways to color its corners are partitioned into parts in such a way that two colorings 
in the same part are regarded as the same (th'e colorings are equivalent), and two 
colorings in different parts are regarded as different (the colorings are nonequivalent). 
The number of nonequivalent colorings is thus the number of different parts. The pur­
pose of this chapter is to develop and illustrate a technique for counting nonequivalent 
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colorings in the presence of symmetries. 

ROR ROB ROR 
R R R R B B 
BOB ROB ROB 
B B B B B R 

Figure 14.1 

14.1 Permutation and Symmetry Groups 

Let X be a finite set. Without loss of generality, we take X to be the set {I, 2, ... , n}, 
consisting of the first n positive integers. Each permutation iI, i2,'" , in of X can be 
viewed as a one-to-one function from X to itself defined by 

I:X->X 

where 

1(1) = iI, 1(2) = i2 ,.·· , I(n) = in· 

By the pigeonhole principle, each one-to-one function I: X -> X is onto. I To empha­
size the view that a permutation can also be viewed as a function, we also denote this 
permutation by the 2-by-n array 

In (14.1), the value ik of the function at the integer k is written below k. 

Example. The 3! = 6 permutations of {I, 2, 3}, regarded as functions, are 

( ~ 2 ~ ), ( ~ 2 ~ ), ( ~ 2 ~ ), 2 3 1 

( ~ 2 ~ ), ( 1 2 ~ ), ( ~ 2 ~ ). 3 3 1 2 

lThus, one-to-one functions from X to X are one-to-one correspondences. 

(14.1 ) 

0 
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We denote the set of all n! permutations of {1, 2, ... ,n} by Sn: Thus, S3 consists 
of the six permutations listed in the previous example. Since permutations are now 
functions, they can be combined, using composition; that is, following one by another. 
If 

( 12 ... n) 1= .. . 
Zl Z2 ..• Zn 

and 

9 = (~ 2 
J1 h 

... ~) 

... In 

are two permutations of {1, 2, ... ,n}, then their composition, in the order I followed 
by g, is the permutation 

where 

90I=(~ 2 
J1 j2 

(g 0 I)(k) = g(f(k)) = ji k • 

Composition of functions defines a binary operation on Sn: II 1 and 9 are in Sn, 
then 9 0 I is also in Sn. 

Example. Let I and 9 be the permutations in S4 defined by 

1=(1234) 
324 1 

( 1234) 
g= 2 4 3 1 . 

Then 
(g 0 1)(1) = 3, (g 0 1)(2) = 4, (g 0 1)(3) = 1, (g 01)(4) = 2. 

Thus, 

9OI=(~ 2 3 ~ ). 4 1 

We also have 

log=(~ 2 3 ~ ). 1 4 

o 

The binary operation 0 of composition of permutations in Sn satisfies the associa­
tive law 2 

(f 0 g) 0 h = 10 (g 0 h), 

2Composition of functions is always associative. 
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but as the previous example shows, it does not satisfy the commutative law. In general, 

jog # 9 0 j, 

although equality may hold in some instances. We use the usual power notation to 
denote compositions of a permutation with itself: 

j1 = I, r = 10/, 13 = I 0 I 0 I, . .. , Ik = 10 I 0 ···0 j (k /,s). 

The identity permutation is the permutation ~ of {I, 2, ... , n} that takes each in­
teger to itself: 

~(k) = k for all k = 1,2, ... ,n; 

equivalently, 

~=(1 2 ... n). 
1 :2 ... n 

Obviously, 
~o/=/o~=1 

for all permutations I in 8n . Each permutation in 8n , since it is a one-to-one function, 
has an inverse 1- 1 that is also a permutation in 8n : 

r1(k) = s, provided that I(s) = k. 

The 2-by-n array for 1- 1 can be gotten from the 2-by-n array for I by interchanging 
rows 1 and 2 and then rearranging columns so that the integers 1,2, ... , n occur in the 
natural order in the first row. For each permutation I we define 1° = L The inverse 
of the identity permutation is itself: ~-1 = L 

Example. Consider the permutation in 86 given by 

1=(123456) 
563124· 

Then, interchanging rows 1 and 2, we get 

Rearranging columns, we get 

( 563124) 
1 2 3 4 5 6 . 

1 2 345 
4 5 3 6 1 

fl 
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The definition of inverse implies that, for all f in Sn, we have 

A group of permutations of X, (in abbreviated form, a permutation group), is 
defined to be a nonempty subset G of permutations in Sn satisfying the following 
three properties: 

(1) closure under composition: For all permutations f and gin G, fog is also in G. 

(2) identity: The identity permutation ~ of Sn belongs to G. 

(3) closure under inverses: For each permutation f in G the inverse f- 1 is also in 
G. 

The set Sn of all permutations of X = {I, 2, ... ,n} is a permutation group, called 
the symmetric group of order n. At the other extreme, the set G = {~} consisting only 
of the identity permutation is a permutation group. 

Every permutation group satisfies the cancellation law 

fog = f 0 h implies that 9 = h. 

This is because we may apply f- 1 to both sides of this equation and, using the 
associative law, obtain 

r 1 o(fog) 

(I-I 0 f) 0 9 

~og 

9 

8 

7 

rIO (f 0 h) 
(1-1 0 f) 0 h 

~ 0 h 

h. 

2 

Figure 14.2 

Example. Let n be a positive integer, and let Pn denote the permutation of {I, 2, ... ,n 
defined by 

( 123 ... n-I n) 
Pn= 234 ... n 1 . 
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Thus, Pn(i) = i + 1 for i = 1,2, ... ,n - 1, and Pn(n) = 1. Think of the integers from 1 
to n as evenly spaced around a circle or on the corners of a regular n-gon, as shown, 
for n = 8, in Figure 14.2. Then Pn sends each integer to the integer that follows it in 
the clockwise direction. Indeed, we may consider Pn as the rotation of the circle by 
an angle of 360/n degrees. The permutation P; is then the rotation by 2 x (360/n) 
degrees, and, more generally, for each nonnegative integer k, p~ is the rotation by 
k x (360/n) degrees. This implies that 

k ( 1 
Pn = k + 1 

2 
k+2 

n-k n-k+l 
n 1 

... n) 

... k . 

In particular, if r equals k mod n, then p~ = p~. Thus, there are only n distinct 
powers of Pn, namely, 

Also, 
-1 n-1 Pn = Pn , 

and, more generally, 

(p~)-l = p~-k for k = 0, 1, ... ,n-1. 

We thus conclude that 

is a permutation group.3 It is an example of a cyclic group of order n. As you may 
realize, this is the group that was implicitly used for calculating the number of ways 
to arrange n distinct objects in a circle. More about this later. 0 

Let n be a geometrical figure. A symmetry of n is a (geometric) motion or con­
gruence that brings the figure n onto itself. The geometric figures that we consider, 
like a square, a tetrahedron, and a cube, are composed of corners (or vertices) and 
edges, and in the case of three-dimensional figures, of faces (or sides). As a result, 
each symmetry acts as a permutation on the corners, on the edges, and, in the case of 
three dimensional figures, on the faces. A symmetry of n followed by another (that 
is, the composition of two symmetries) is again a symmetry. Similarly, the inverse of 
a symmetry is also a symmetry. Finally, the motion that leaves everything fixed4 is n 

symmetry, the identity symmetry. Hence, we conclude that the symmetries of n act. 
as a permutation group Gc on its corners, a permutation group GE on its edges, and, 

3In more formal language, the permutation group Cn is isomorphic to the additive group of th(' 
integers mod n as discussed in Section 10.1. 

'So nothing actually moves in this motion! 
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in the case where 0 is three-dimensional, a permutation group GF on its faces. 5 As a 
result, a set of permutations that results by considering all the symmetries of a figure 
is automatically a permutation group. Thus, we have a corner-symmetry group, an 
edge-symmetry group, a face-symmetry group, and so on. 

Example. Consider a square 0 with its corners labeled 1, 2, 3, and 4 and its edges 
labeled a, b, c, and d, as in Figure 14.3. There are eight symmetries of 0 and they 
are of two types. There are the four rotations about the center of the square through 
the angles of 0, 90, 180, and 270 degrees. These four symmetries constitute the planar 
symmetries of 0, the symmetries where the motion takes place in the plane containing 
O. The planar symmetries by themselves form a group. The other symmetries are 
the four reflections about the lines joining opposite corners and the lines joining the 
midpoints of opposite sides. For these symmetries the motion takes place in space 
since to "flip" the square we need to go outside the plane containing it. 

~o: 
4 c 3 

Figure 14.3 

The rotations acting on the corners give the four permutations 

p~ = L = ( 1 
1 

p~ = ( 
1 
3 

2 3 
2 3 

2 3 
4 

4 
4 

4 
2 

2 3 
1 2 

5There is an abstract concept of a group, which is defined to be a nonempty set with a binary 
operation, which satisfies the associative law and also (1) 'closure under composition, (2) identity, and 
(3) closure under inverses. Permutation groups are groups since the associative law is automatic for 
composition of functions. The symmetries of a figure n form a group under this definition, but, as 
indicated, these symmetries can act as a permutation group of its corners, a permutation group of its 
edges, and so on. 
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The reflections acting on the corners give the four permutations6 

2 3 
4 3 ~ ) 

Thus, the corner-symmetry group of a square is 

Gc = {p~ = L, P4, p~, p~, 71, 72, 73, 74}. 

We check that 
73 = P4 071, 72 = p~ 0 71, and 74 = p~ 071. 

Hence, we can also write 

Gc = {p~ = L, P4, p~, p~, 71, P4 0 71, p~ 0 71, p~ 071}. 

Consider the edges of 0 to be labeled a, b, c, and d, as in Figure 14.3. The edge­
symmetry group G E is obtained by letting the symmetries of 0 act on the edges. For 
example, the reflection about the line joining the corners 2 and 4 gives the following 
permutation of the edges: 

(~~~~). 
The other permutation of the edges in Gc can be obtained in a similar way. 0 

In a similar way we can obtain the symmetry group of a regular n-gon for any n ? 3. 
Besides the n rotations p~ = L, p, ... ,p~-I, we have n reflections 71,72, ... ,7n . If n b 
even, then there are n/2 reflections about opposite corners and n/2 reflections about 
the lines joining the midpoints of opposite sides. If n is odd, then the reflections are 
the n reflections about the lines joining a corner to the side opposite it. The resulting 
group 

of 2n permutations of {I, 2, ... ,n} is an instance of a dihedral group of order 2n. III 
the next example we compute D5. 

Example. The dihedral. group of order 10. Consider the regular 'pentagon with its 
vertices labeled 1,2,3,4, and 5, as in Figure 14.4. Its (corner) symmetry group Dr, 
contains five rotations and five reflections. The five rotations are 

0 __ (12345) 
P5 - L - 1 2 3 4 5 

1_(12345) 
P5 - 2 3 4 5 1 

61"1 comes from the reflection about the line joining vertices 1 and 3, 72 comes from the reflectioll 
about the line joining vertices 2 and 4, 73 comes from the reflection about the line joining the midpoint" 
of the lines a and c, and 74 comes from the reflection about the line joining the midpoints of the liIll'" 
band d. 
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( 12345) pg = 3 4 5 1 2 

Figure 14.4 
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Let 7i denote the reflection about the line joining corner i to the side opposite it 
(i = 1,2,3,4,5). Then we have 

71 = ( ~ 2 3 4 ~ ) 72 = ( ~ 2 3 4 ~ ) 5 4 3 2 1 5 

73 = ( ! 2 3 4 ~ ) 74 = ( ~ 2 3 4 ~ ) 4 3 2 1 5 4 

75 = ( ! 2 3 4 ~ ). 3 2 

0 

Suppose we have a group G of permutations of a set X, where X is again taken to 
be the set {I, 2, ... , n} of the first n positive integers. A coloring of X is an assignment 
of a color to each element of X. Let C be a collection of colorings of X. Usually we 
have a number of colors, say red and blue, and C consists of all colorings of X with 
these colors. But this need not be the case. The set C can be any collection of colorings 
of X as long as G takes a coloring in C to another coloring in C in the manner to be 
described now. 

Let c be a coloring of X and let the colors of 1,2, ... , n be c(1), c(2), ... , c(n), 
respectively. Let 

( 1 2 ... n) f= .. . 
II l2 ...• In 

be a permutation in G. Then f * c is defined to be the coloring in which ik has the 
color c(k), that is, 

(f *c)(ik) = c(k), (k = 1,2, ... ,n). (14.2) 
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In words, since I moves k to ik , the color of k, namely c(k), moves to I(k) = ik and 
becomes the color of ik. Using the inverse of I, we can write (14.2) as 

(f * c)(l) = c(r 1(l)), (l = 1,2, ... ,n). 

The set C of colorings is required to have the property: 

For all I in G and all c in C, I * c is also in C. 

This implies that I moves each coloring in C to another (possibly the same) coloring 
in C; 1* c denotes the coloring in C into which c is sent by f. Note that, if C is the 
set of all colorings of X for a given set of colors or if C is the set of all colorings of X 
with a specified number of elements of X of each color, then C automatically has the 
required property. 

The basic relationship that holds between the two operations 0 (composition of 
permutations in G) and * (action of permutations in G on colorings in C) is 

(14.3) 

The left side of equation (14.3) is the coloring in which the color of k moves to (go f) (k). 
The right side is the coloring in which the color of k moves to I(k) and then moves to 
g(f(k)). Since (g 0 f)(k) = g(f(k)) by the definition of composition, we have verified 
(14.3). 

Example. We continue with the earlier example in which 11 is the square in Figure 
14.3 and Gc is the corner-symmetry group of 11. Let C be the set of all colorings of 
the corners 1,2,3,4 of 11 in which the colors are either red or blue. The permutation 
group Gc contains eight permutations, and there are 16 colorings in C. Let us denote 
a coloring by writing the colors of the corners in the order 1,2,3,4, using R to denote 
red and B to denote blue. For instance, 

(R,B,B,R) . (14.4) 

is the coloring in which corner 1 is red, corner 2 is blue, corner 3 is blue, and corner 
4 is red. The permutation P4 sends this coloring into the coloring 

(R,R,B,B), 

in which corners 1 and 2 ·are red and corners 3 and 4 are blue. In the following table, 
we list the effect of each permutation in Gc on the coloring (14.4). 

Notice that the permutation 74 doesn't change the coloring (14.4); that is, 74 

fixes the coloring (14.4). Of course, the identity ~ also doesn't change it. In fact, each 
coloring on the list appears exactly twice. Let us say that two colorings are equivalent, 
provided that there is a permutation in Gc which sends one to the other. Thus, the 
coloring (R, B, B, R) is equivalent to each of 

(R,B,B,R), (R,R,B,B), (B,R,R,B), and (B,B,R,R). 
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Permutation in Gc Effect on the Coloring (R, B, B, R) 

P~ = ~ (R,B,B,R) 

P4 (R,R,B,B) 

P~ (B,R,R,B) 

P~ (B,B,R,R) 

71 (R,R,B,B) 

72 (B,B,R,R) 

73 (B,R,R,B) 

74 (R,B,B,R) 

Since a permutation cannot change the number of corners of each of the colors, a 
necessary-but not, in general sufficient-condition for two colorings to be equivalent 
is that they contain the same number of R's and the same number of B's. 7 The coloring 
(R, B, R, B) also has two R's and two B's but is not equivalent to (R, B, B, R). Indeed, 
as can now be checked, (R, B, R, B) is equivalent only to (R, B, R, B) and (B, R, B, R), 
and each of these colorings arises four times as we examine the effect of all the permu­
tations in Gc on it. In particular, we can now conclude that there are two nonequiva­
lent colorings among all the colorings with two red and two blue corners. The coloring 
(R, R, R, R) is clearly equivalent only to itself, as is the coloring (B, B, B, B). Consider 
the coloring (R, B, B, B) with one red and three blue corners. This coloring is equiv­
alent, by a rotation, to each of the colorings (R, B, B, B), (B, R, B, B), (B, B, R, B), 
and (B, B, B, R), and hence all colorings with one red are equivalent. Similarly, all 
colorings with three red (and therefore one blue) are equivalent by a rotation. Con­
sequently, there are 2 + 1 + 1 + 1 + 1 = 6 nonequivalent ways to color the corners of 
a square with two colors, under the action of the corner-symmetry group Gc of the 
square. If we don't allow the full symmetry group of the square, but only the group of 
symmetries consisting of the four rotations Po = ~, P4, p~, and p~, then the number 
of nonequivalent colorings is still 6. This is because if two colorings are equivalent by 
a symmetry of the square, then they are equivalent by a rotation. 0 

We now give the general definition of equivalent colorings. Let G be a group of 
permutations acting on a set X, as usual taken to be the set {I, 2, ... ,n} of the first n 
positive integers. Let C be a collection of colorings of X, such that for all f in G and 

7 Of course, if two colorings have the same number of R's, they must have the same number of B's. 
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all c in C, the coloring 1* c of X is also in C. Thus G acts on C in the sense that it 
takes colorings in C to colorings in C. Let Cl and C2 be two colorings in C. We define 

a relation called equivalence, denoted by ;;:, (or, more briefly, by "') on C as follows: Cl 

is equivalent (under the action 01 G) to C2, provided that there is a permutation I in 
G such that 

Two colorings are nonequivalent, provided that they are not equivalent. We have the 
following: 

(1) reflexive property: c '" c for each coloring c (because L * c = c). 

(2) symmetry property: If Cl '" C2, then C2 '" Cl 

(if I * Cl = C2 for some I in G, then 1-1 * C2 = Cl). 

(3) tmnsitive property: If Cj ~ C2 and C2 ~ C3, then Cl ~ C3) 

(if f * Cl = C2 and 9 * C2 = C3, then (g 0 f) * Cl = C3)' 

It thus follows that", is an equivalence relation on C in the sense defined in Section 
4.5, which justifies our use of the term equivalence. 

Notice how the three basic properties of a permutation group-namely, identity, 
closure under inverses, and closure under composition-.are used in the verification 
of (1)-(3). By Theorem 4.5.3 of Chapter 4, equivalence partitions the colorings of C 
into parts, with two colorings being in the same part if and only. if they are equivalent 
colorings. In the next section we derive a general formula for the number of parts-that 
is, for the number of nonequivalent colorings-of C under the action of the permutation 
group G. 

14.2 Burnside's Theorem 

In this section we derive and apply a formula of Burnside8 for counting the number of 
nonequivalent colorings of a set X under the action of a group of permutations of X. 

Let G be a group of permutations of X and let C be a set of colorings of X such 
that G acts on C. Recall that this means that 

8That's what it is commonly called because of its appearance in the book by W. Burnside, Theory 
of Groups of Finite Order, 2nd edition, Cambridge University Press, London, 1911 (reprinted by 
Dover, New York, 1955), p. 191. As discovered in the paper by P. M. Neumann, A Lemma That 
Is Not Burnside's, Math. Sci., 4 (1979), 133-141, it appeared earlier in works of Cauchy (1845) and 
Fro benius (1887). 
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is in C for all I in G and all c in C, and each I in G permutes the colorings in C. It is 
possible, that for an appropriate choice of I and of c, we have 

1* c = c. (14.5) 

For example, in Figure 14.3, if we color corners 1 and 3 of the square red and the corners 
2 and 4 blue, then reflecting about the line through 1 and 3 or the line through 2 and 
4, or rotating by 180 degrees, does not alter the coloring; each of these motions fixes 
the color of each corner and hence fixes the coloring. If, in (14.5), we allow either I 
to vary over all permutations in G or c to vary over all colorings in C, then we get 

G(c) = U : I in G, I *C == c}, 

the set of all permutations in G that fix the coloring c, and 

C(I) = {c : c in C, I *C = c}, 

the set of all colorings in C that are fixed by I. The set G( c) of all permutations that 
fix the coloring c is called the stabilizefJ of c. The stabilizer of any coloring also forms 
a group of permutations. 

Theorem 14.2.1 For each coloring c, the stabilizer G( c) 01 c is a permutation group. 
Moreover, lor any permutations I and 9 in G, 9 * c = 1* c il and only il I- l og is in 
G(c). 

Proof. If I and 9 both fix c, then I followed by 9 fixes c; that is, (g 0 f)(c) = c. 
Thus, G( c) is closed under composition. Clearly, the identity ~ fixes c since it fixes 
every coloring. Also, if I fixes c, then so does 1-1, and hence G(c) is closed under 
inverses. All of the defining properties of a permutation group are satisfied; therefore, 
G(c) is a permutation group. 

Suppose that 1* c = 9 * c. By the basic relationship (14.3), we get 

(I-log) * C = r 1 * (g * c) = r 1 * (I * c) = (1-1 0 f) * c = ~ * c = c. 

It follows that I- l og fixes c, and hence I- l og is in G(c). Conversely, suppose that 
1-109 is in G(c). Then a similar calculation shows that I * c = 9 * c. 0 

As a corollary of Theorem 14.2.1, starting from a given coloring c, we can determine 
the number of different colorings we can get under the action of G. 

Corollary 14.2.2 Let c be a coloring in C. The number 

IU *C : I in G}I 
9 A synonym for fixed is stable. 
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of different colorings that are equivalent to c equals the number 

obtained by dividing the number of permutations in G by the number of permutations 
in the stabilizer of c. 

Proof. Let f be a permutation in G. By Theorem 14.2.1, the permutations 9 that 
satisfy 

are precisely the permutations in 

U 0 h: h in G(c)}. (14.6) 

By the cancellation law, f 0 h = f 0 h' implies h = h'. Hence, the number of permuta­
tions in the set (14.6) equals the number IG(c)1 of permutations h in G(c). Thus, for 
each permutation f, there are exactly I G (c) I permutations that have the same effect 
on c as f. Since there are IGI permutations overall, the number 

IU * c : f in G}I 

of colorings equivalent to c equals, by the division principle, 

proving the corollary. o 

The next theorem of Burnside gives a formula for counting the number of nonequiv­
alent colorings. 

Theorem 14.2.3 Let G be a group of permutations of X and let C be a set of colorings 
of X such that f * c is in C for all f in G and all c in C. Then the number N (G, C) 
of nonequivalent colorings in C is given by 

1 
N(G,C) = lGT L IC(f)I· 

fEG 

(14.7) 

In words, the number of nonequivalent colorings in C equals the average of the number 
of colorings fixed by the permutations in G. 

Proof. With the information we now have, the proof is a simple application of a 
technique we have experienced many times, namely, counting in two different ways 
and then equating counts. What do we count? We count the number of pairs (f, c) 
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such that f fixes C; that is, such that f * c = c. One way to count is to consider 
each f in G and compute the number of colorings that f fixes, and then add up all 
quantities. Counting in this way, we get 

L ICU)I, 
fEG 

since CU) is the set of colorings that are fixed by f. 
Another way to count is to consider each c in C and compute the number of 

permutations f such that f * c = c, and then add up all the quantities. For each 
coloring c, the set of all f such that f * c = c is what we have called the stabilizer 
G( c) of c. Thus, each c contributes 

IG(c)1 

to the sum. Counting in this way, we get 

L·IG(c)l· 
cEe 

Putting these two counts together, we get 

L ICU)I = L IG(c)l· (14.8) 
fEG cEe 

Now, by Corollary 14.2.2, 

IG( )1 - IGI 
c - (the number of colorings equivalent to c) 

(14.9) 

Hence we get 

1 
L IG(c)1 = IGI L (the number of colorings equivalent to c)' 
cEe cEe 

(14.10) 

The second summation in (14.10) can be simplified if we group the colorings byequiv­
alence class. Two colorings in the equivalence class of c contribute the same amount 

1 

(the number of colorings equivalent to c) 

to this sum. Thus the total contribution of every equivalence class is 1. Consequently, 
(14.10) equals 

N(G,C) x IGI, (14.11) 
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since the number of equivalence classes is the number N( G, C) of nonequivalent color­
ings. Substituting into equation (14.8), we get 

L ICU)I = N(G,C) x IGlj 
fEG 

solving for N(G,C), we obtain (14.7). o 

In the remainder of this section we illustrate Burnside's theorem with sevetal ex­
amples. 

Example. Counting circular permutations. How many ways are there to arrange n 
distinct objects in a circle? 

As already hinted at in Section 14.1, the answer is the number of ways to color 
the corners of a regular n-gon II with n different colors that are nonequivalent with 
respect to the group of rotations of II. Let C consist of all n! ways to color the n 
corners of II in which each of the n colors occurs once. Then the cyclic group 

Cn = {p~ = ~,Pn,' .. ,p~-l} 

acts10 on C, and the number of circular permutations equals the number of nonequiv­
alent colorings in C. The identity permutation ~ in Cn fixes all n! of the colorings in 
C. Every other permutation in C does not fix any coloring in C, since, in the colorings 
of C, every corner has a different color. l1 Hence, using (14.7) of Theorem 14.2.3, we 
see that the number of nonequivalent colorings is 

1 
N(Cn,C) = -en! + 0 + ... + 0) = (n - 1)1. 

n 

o 

Example. Counting necklaces. How many ways are there to arrange n ;::: 3 differently 
colored beads in a necklace? 

We have almost the same situation as described in the previous example, except 
since necklaces can be flipped over, the group G of permutations now has to be taken 
to be the entire vertex-symmetry group of a regular n-gon. Thus, in this case, G is the 
dihedral group Dn of order 2n. The only permutation that can fix a coloring is the 
identity and it fixes all n! colorings. Hence, the number of nonequivalent colorings-· 
that is, the number of different necklaces-is, by (14.7), 

1 (n - 1)' 
N(Dn,C) = 2n(n! +0+ ... +0) = -2-" o 

'ORecall that Pn is the rotation by 360/n degrees. 
II In fact, no permutation different from the identity can fix any coloring if all colors are different .. 

This is because, for a permutation different from the identity, at least one color has to move, and 
hence the coloring is changed. 
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Example. How many nonequivalent ways are there to color the corners of a regular 
5-gon with the colors red and blue? 

The group of symmetries of a regular 5-gon is the dihedral group 

where, as in Section 14.1, 7j is the reflection about the line joining corner j with 
the midpoint of the opposite side (j = 1,2,3,4,5). Let C be the set of all 25 = 32 
colorings of the corners of a regular 5-gon. We compute the number of colorings left 
fixed by each permutation in D5 and then apply Theorem 14.2.3. The identity ~ fixes 
all colorings. Each of the other four rotations fixes only two colorings, namely, the 
colorings in which all corners are red and all corners are blue. Thus, 

IC( i) I {32 if i = 0, 
P5 = 2 ifi=I,2,3,4. 

Now consider any of the reflections 7j, say, 71. For a coloring to be fixed by 71, corners 
2 and 5 must have the same color and corners 3 and 4 must have the same color. 
Hence, the colorings fixed by 71 are obtained by picking a color for corner 1 (two 
choices), picking a color for corners 2 and 5 (two choices), and picking a color for 
corners 3 and 4 (again two choices). Therefore, the number of colorings fixed by 71 

equals 2 x 2 x 2 = 8. A similar calculation holds for each reflection, and we have 

IC{Tj)1 = 8 for each j = 1,2,3,4,5. 

Therefore, by (14.7), the number of nonequivalent colorings is 

1 
N(D5,C) = 10 (32 + 2 + 2 + 2 + 2 + 8 + 8 + 8 + 8 + 8) = 8. 

o 
Example. How many nonequivalent ways are there to color the corners of a regular 
5-gon now with the three colors red, blue, and green? 

The set C of colorings of the corners of a regular 5-gon numbers 35 = 243. The 
identity fixes all 243 colorings. The other rotations fix three colorings. The reflections 
fix 3 x 3 x 3 = 27 colorings. Thus, the number of nonequivalent colorings is 

1 
N(D5, C) = 10 (243 + 3 + 3 + 3 + 3 + 27 + 27 + 27 + 27 + 27) = 39. 

Generalizing the preceding calculations using p colors, we get 

o 
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Example. Let S = {oo . r, 00 . b,oo . g, 00 . y} be a multiset of four distinct objects 
r, b, g, y, each with an infinite repetition number. How many n-permutations of S are 
there if we do not distinguish between a permutation read from left to right and a 
permutation read from right to left? Thus, for instance, r, g, g, g, b, y, Y is regarded as 
equivalent to y, y, b, g, g, g, r. 

The answer is the number of nonequivalent ways to color the integers from 1 to 
n with the four colors red, blue, green, and yellow under the action of the group of 
permutations 

G = {~,T}, 
where ... n-1 n) 

... 2 1 . 

Here, ~ is, as usual, the identity permutation. The permutation T is obtained by listing 
the integers from 1 to n in reverse order. Note that G does form a group, since TOT = ~ 
and hence T- 1 = T.12 Let C be the set of all 4 n ways to color the integers from 1 to 
n with the given four colors. Then ~ fixes all colorings in C. The number of colorings 
fixed by T depends on whether n is even or odd. First, suppose that n is even. Then 
a coloring is fixed by T if and only if 1 and n have the same color, 2 and n - 1 have 
the same color, ... , and n/2 and (n/2) + 1 have the same color. Hence, T fixes 4n/ 2 

colorings in C. Now suppose that n is odd. Then a coloring is fixed by T if (l,nd only 
if 1 and n have the same color, 2 and n - 1 have the same color, '" , and (n - 1)/2 
and (n + 3) /2 have the same color, there being no restriction on the color of (n + 1) /2. 
Thus, the number of colorings fixed by T is 4(n-1)/2 x 4 = 4(n+1)/2. Using the floor 
function, we can combine both cases and obtain 

Ln+1J 
IC(T)I = 4 --r . 

Applying Burnside's formula (14.7), we find that the number of nonequivalent colorings 
is 

4n + 4L (nt1) J 
N(G,C) = 2 

If instead of four colors, we have p colors, the number of nonequivalent colorings is 

[I 

In the next section, we develop a little more theory that will enable us to solw 
more easily more difficult counting problems using Theorem 14.2.3. 

12Think of a line segment consisting of n equally spaced points that are labeled 1,2, ... , n. Then 1 

is a rotation of this line segment by 180 degrees. Equivalently, T is a reflection of this line segrn,,"' 
about its perpendicular bisector. 
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14.3 P6lya's Counting Formula 

The counting formula discussed in this section was developed (and extensively applied) 
by P6lya in an important, long, and very influential paper.13 Around 1960 it was 
recognized that 10 years before P6lya's famous paper was published, Redfield published 
a paper14 in which he anticipated the basic technique of pelya. 

As we have seen in the previous section, success in using Burnside's theorem for 
counting the number of nonequivalent colorings in the presence of a permutation group 
G acting on a set C of colorings is dependent on being able to compute the number 
ICU)I of colorings in C fixed by a permutation I in G. This computation can be 
facilitated by consideration of the cyclic structure of a permutation. 

Let I be a permutation of X = {I, 2, ... , n}. Let Df = (X, Af) be the digraph 
whose set of vertices is X and whose set of arcs is 

Af = {(i, l(i)) : i in X}. 

The digraph has n vertices and n arcs. Moreover, the indegree and outdegree of each 
vertex equal!. A!3 shown in Corollary 11.8.8, the set Af of arcs can be partitioned into 
directed cycles, with each vertex belonging to exactly one directed cycle. The reason 
is simply that, starting at any vertex j, we proceed along the unique arc leaving j 
and arrive at another vertex k; we now repeat with k and continue until we arrive 
back at vertex i, thereby creating a directed cycle. We must eventually arrive at our 
starting vertex i since each vertex has indegree and outdegree equal to 1. We remove 
the vertices and arcs of the directed cycle so obtained and continue until we' exhaust 
all the vertices and arcs of D f, thereby partitioning both the vertices and arcs of D f 
into directed cycles. 

Example. Let 

1=(12345678) 
6 8 5 4 1 327 

be a permutation of {I, 2, ... ,8}. Then, applying the foregoing procedure, we obtain 
the following partition of Df into directed cycles: 

1 ~ 6 ~ 3 ~ 5 ~ 1, 2 ~ 8 ~ 7 ~ 2, 4 ~ 4. 

Let us write 

[1635] 

13G. P6lya, Kombinatorische Anzahlbestimmungen' fiir Gruppen, Graphen und chemische 
Verbindungen, Acta Mathematica, 68 (1937), 145-254. 

14 J. H. Redfield, The Theory of Group-Reduced Distributions, American Journal of Mathematics, 
49 (1927), 433-455. 
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for the permutation of {1, 2, 3, 4, 5, 6,7, 8} that sends 1 to 6, 6 to 3, 3 to 5, and 5 to 1, 
and that fixes the remaining integers. IS Thus, 

[1 6 3 5] = (1 2 3 4 5 6 7 8) 
6 254 378' 

The digraph corresponding to the permutation [1 6 3 5] is the digraph consisting of 
the directed cycles 

1 ....... 6 ....... 3 -> 5 ....... 1, 2 ....... 2, 4 ....... 4, 7 -> 7, 8 ....... 8. 

We call such a permutation, in which certain of the elements are permuted in a cycle 
and the remaining elements, if any, are fixed, a cycle permutation or, more briefly, a 
cycle. If the number of elements i~ the cycle is k, then we call it a k-cycle. Thus, 
[1635] is a 4-cycle. The other directed cycles in the partition of Df give the following 
cycles: 

[287] and [4]. 

We now observe that the partition of Df into directed cycles corresponds to a factor­
ization (with respect to the composition 0) of f into permutation cycles: 

( 12345678) f = 6 8 5 4 1 3 2 7 = II 6 3 5] 0 [2 8 7j 0 [4]. (14.12) 

The reason is that each integer in the permutation f moves in, at most, one of the 
cycles in the factorization. 

We make two observations about this factorization. The first is that it doesn't 
matter in which order we write the cycles. 16 This is because each element occurs in 
exactly one cycle. The second is that the I-cycle [4] is just the identity permutation!? 
and thus could be omitted in (14.12) without affecting its validity. But we choose to 
leave it there since, for our counting problems, it is useful to include all I-cycles. 0 

Let f be any permutation of the set X. Then, generalizing from the previous ex­
ample, we see that, with respect to the operation of composition, f has a factorization 

(14.13) 

into cycles, where each integer in X occurs in exactly one of the cycles. We call (14.13) 
the cycle factorization of f. The cycle factorization of f is unique, apart from the order 

15The notation is a little ambiguous because we cannot determine from it the set of elements beinjl 
permuted. All we can conclude is that the set at least contains 1,3,5, and 6. But there should be nu 
confusion, since the the set will be implicit in the particular problem treated. 

16That is, "disjoint cycles" satisfy the commutative law. 
"Recall what [4J means here: 4 goes to 4, and every other integer is fixed. This means that every 

integer, including 4, is fixed, and hence we have the identity permutation. If the permutation f ill 
this example were the identity permutation, then we would write f = [lJ 0 [2J 0·" 0 [8J. 
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in which the cycles appear, and this order is arbitrary. In the cycle factorization of a 
permutation of X, every element of X occurs exactly once. 

Example. Determine the cycle factorization of each permutation in the dihedral 
group D4 of order 8 (the corner-symmetry group of a square). 

The permutations in D4 were computed in Section 13.1. The cycle factorization 
of each is given in the next table: 

D4 Cycle Factorization 

p~ = L [1] 0 [2] 0 [3] 0 [4] 

P4 [1234] 

p~ [1 3J 0 [2 4] 

p~ [1432] 

71 II] 0 [2 4] 0 [3] 

72 [1 3] 0 [2] 0 [4] 

73 [12] 0 [3 4] 

74 [1 4J 0 [2 3] 

Notice that, in the cycle factorization of the identity permutation L, all cycles are 
I-cycles. This is in agreement with the fact that the identity permutation fixes all 
elements. In the cycle factorizations of the refiections 71 and 72, two I-cycles occur, 
since each of these refiections is about a line joining two opposite corners of the square, 
and these corners are thus fixed. For 73 and 74 we get two 2-cycles, since these are 
refiections about the line joining the midpoints of opposite sides. The refiections in 
the corner-symmetry group of a regular n-gon with n even behave similarly. Half of 
them have two I-cycles and ((n/2) - 1) 2-cycles, and half have (n/2) 2-cycles. 0 

Example. Determine the cycle factorization of each permutation in the dihedral 
group D5 of order 10 (the corner-symmetry group of a regular 5-gon). 

The permutations in D5 were computed in Section 13.1. The cycle factorization 
of each is given in the following table: 



562 CHAPTER 14. P6LYA COUNTING 

D5 Cycle Factorization 

p~ = ~ [1] 0 [2] 0 [3] 0 [4] 0 [5] 

P5 [12345] 

pg [13524] 

p~ [1 4 2 53] 

p~ [15432] 

71 [1] 0 [2 5] 0 [3 4] 

72 [1 3] 0 [2] 0 [4 5] 

73 [1 5] 0 [3] 0 [2 4] 

74 ' [1 2] 0 [3 5] 0 [4] 

75 [1 4] 0 [2 3] 0 [5] 

Notice that, in the cycle factorizat~ons of the refiections 7i, exactly one I-cycle occu·rs 
since each such refiection is about a line joining a corner to the midpoint of the opposite 
side, and hence only the one corner is fixed. The refiections in the corner-symmetry 
group of a regular n-gon with n odd behave similarly. Each has one I-cycle and 
(n - 1) /2 2-cycles. 0 

The importance of the cycle decomposition in counting nonequivalent colorings is 
illustrated by the next example. 

Example. Let f be the permutation of X = {I, 2, 3, 4, 5, 6, 7, 8, 9} defined by 

( 41 2 3 456 7 8 9) 
9 176 538 2 . 

The cycle factorization of f is 

f = [1 4 7 3] 0 [2 9] 0 [5 6] 0 [8]. 

Suppose that we color the elements of X with the colors red, white, and blue, and let 
C be the set of all such colorings; What is the number ICU)I of colorings in C that an' 
left fixed by f? 
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Let c be a coloring such that f * c = c. First, consider the 4-cycle [1473]. This 
4-cycle moves the color of 1 to 4, the color of 4 to 7, the color of 7 to 3, and the color 
of 3 to 1. Since the coloring c is fixed by f, following through on this cycle, we see 
that 

color of 1 = color of 4 = color of 7 = 

color of 3 = color of 1. 

This means that 1, 4, 7, and 3 have the same color. In a similar way, we see that the 
elements 2 and 9 of the 2-cycle [2 9] have the same color, and the elements 5 and 6 
of the 2-cycle [5 6] 'have the same color. There is no restriction placed on 8, since it 
belongs to a 1-cycle. So how many colorings c are there which are fixed by f-that is, 
which satisfy f * c = c? The answer is clear: We pick anyone of the three colors red, 
white, and blue for {1, 4, 7, 3} (three choices), any of the three colors for {2,9} (three 
choices), any of the three colors for {5,6} (three choices), and any of the three colors 
for {8} (three choices), for a total of 

colorings. Note that the exponent 4 in the answer is the number of cycles of f in its 
cycle factorization, and the answer is independent of the sizes of the cycles. 0 

The analysis in the preceding example is quite general. It can be used to find the 
number of colorings fixed by any permutation no matter what the number of colors 
available is. We record the result in the next theorem. We denote by 

#(f) 

the number of cycles in the cycle factorization of a permutation f. 

Theorem 14.3.1 Let f be a permutation of a set X. Suppose we have k colors 
available with which to color the elements of X. Let C be the set of all colorings of X. 
Then the number of colorings that are fixed by f satisfies 

o 

Example. How many nonequivalent ways are there to color the corners of a square 
with the colors red, white, and blue? 

Let C be the set of all 34 = 81 colorings of the corners of a square with the colors 
red, white, and blue. The corner-symmetry group of a square is the dihedral group 
D 4 , the cycle factorization of whose elements was already computed. We repeat the 
results in the following table, with additional columns indicating #(f) and the number 
IC(f)1 of colorings left fixed by f for each of the permutations f in D 4 • 
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fin D4 Cycle Factorization #(1) ICU)I 

p~ = ~ [1] 0 [2] 0 [3] 0 [4] 4 34 = 81 

P4 [1234] 1 31 = 3 

P~ [13] 0 [2 4] 2 32 = 9 

P~ [1432] 1 31 = 3 

71 [1] 0 [2 4] 0 [3] 3 33 = 27 

72 [1 3] 0 [2] 0 [4] 3 33 = 27 

73 [12] 0 [3 4] 2 32 = 9 

74 [14] 0 [2 3] 2 32 = 9 

Hence, by Theorem 14.2.3, the number of nonequivalent colorings is 

N(D4,C) = 
81 + 3 + 9 + 3 + 27 + 27 + 9 + 9 

8 
= 2l. 

0 

Theorems 14.2.3 and 14.3.1 give us a method to compute, in the presence of a 
group G of permutations of a set X, the number of nonequivalent colorings in the set 
C of all colorings of X with a given set of colors. This method requires that we be 
able to compute the cycle factorization (or at least the number of cycles in the cycle 
factorization) of each permutation in G. To compute the number of nonequivalent 
colorings for more general sets C of colorings, we introduce a generating function for 
the number of permutations in G whose cycle factorizations have the same number of 
cycles of each size. 

Let f be a permutation of X where X has n elements. Suppose that the cycle fac­
torization of f has ell-cycles, e2 2-cycles, ... , and en n-cycles. Since each element of 
X occurs in exactly one cycle in the cycle factorization of f, the numbers e1, e2, ... , en 
are nonnegative integers satisfying 

1e1 + 2e2 + ... + nen = n. (14.14) 

We call the n-tuple (ell e2, .. . , en) the type of the permutation f and write 
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Note that the number of cycles in the cycle factorization of f is 

Different permutations may have the same type, since the type of a permutation 
depends only on the size of the cycles in its cycle factorization and not on which 
elements are in which cycles. Since we now want to distinguish permutations only by 
type, we introduce n indeterminates 

where Zk corresponds to a k-cycle (k = 1,2, ... , n). To each permutation f with 
type(J) = (el,e2,"" en), we associate the monomial of f: 

Notice that the total degree of the monomial of f is the number #(J) of cycles in the 
cycle factorization of f. 

Let G be a group of permutations of X. Summing these monomials for each fin 
G, we get the generating function 

L mon(J) = L z~' Z;2 ... z!n (14.15) 
leG feG 

for the permutations in G according to type. If we combine like terms in (14.15), the co­
efficient of Z~l Z;2 ... z~n equals the number of permutations in G oftype (el' e2, ... , en). 
The cycle index . 

R ( ) 1 ~ e, €2 -"n 
,G Zl, Z2,··· ,Zn = TGf L...... zl z2 ... <On 

feG 

of G is this generating function divided by the number IGI of permutations in G. 

Example. Determine the cycle index of the dihedral group D4. 

In the example just after Theorem 14.3.1, we gave a table that included the cycle 
factorization of each permutation in D4. Using those factorizations, we give the type 
of each permutation and its associated monomial in the following table: 
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D4 Cycle Factorization Type Monomial 

p~ = ~ [1) 0 [2) 0 [3) 0 [4) (4,0,0,0) ztz~zgz2 = zt 

P4 [1234) (0,0,0,1) z~z~zgzl = Z4 

P~ [1 3) 0 f2 4) (0,2,0,0) z~z~zgz~ = z~ 

P~ [1432) (0,0,0,1) zr~zgzl = z4 

71 [1) 0 [2 4) 0 [3) (2,1,0,0) zrzJzgz2 = Z~Z2 

72 [1 3) 0 [2J 0 [4) (2,1,0,0) ziz~zgz2 = ZIZ2 

73 [12) 0 [3 4) (0,2,0,0) zrz~zgz2 = z~ 

74 [14) 0 [23) (0,2,0,0) . z~ z~zgz2 = z~ 

The cycle index of D4 is 

1 4 2 2) 
PD4 (Zl, z2, z3, Z4) = 8 (zl + 2Z4 + 3z2 + 2Z1 Z2 . 

0 

We can now determine the number of nonequivalent colorings among all the color­
ings of a set X, using a specified set of colors, provided that we know the cycle index 
of the group G of permutations of X. 

Theorem 14.3.2 Let X be a set of n elements, and suppose we have a set of k colors 
available with which to color the elements of X. Let C be the set of all kn colorings 
of X. Let G be a group of permutations of X. Then the number of nonequivalent 
colorings is the number . 

N(G,C) = PG(k, k, ... , k) 

obtained by substituting Zi = k, (i = 1, 2, ... , n) into the cycle index of G. 

Proof. This theorem is a consequence of Theorems 14.2.3 and 14.3.1. The cycle index 
of G is the average 
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of the sum of the monomials associated with the permutations f in G. By Theorem 
14.3.1, the number of colorings in C that are fixed by f equals 

where (el, e2, ... , en) is the type of f. By Theorem 14.2.3, the number of nonequivalent 
colorings is 

N(G, C) = I~I L ke'ke2 .•• ken = PG(k, k, ... , k). 
lEG 

o 

Example. We are given a set of k colors. What is the number of nonequivalent ways 
to color the corners of a square? 

The cycle index of the dihedral group D4 has already been determined· to be 

, 1 4 2 2 
PD.(Zl,Z2,Z3,Z4) = S(ZI + 2Z4+ 3Z2 +2Z1z2). 

Hence, by Theorem 14.3.2, the number of nonequivalent colorings is 

P (k k k k) _ k4 + 2k + 3k2 + 2k2 k _ k4 + 2k3 + 3k2 + 2k 
D. , ,,- 8 - 8 . 

If the number of colors is k = 6, then the number of nonequivalent colorings is 

o 

Theorem 14.3.2 gives a satisfactory way to count the number of nonequivalent 
colorings in C, provided that C is the set of all colorings possible with k given colors. 
The formula in the theorem requires that we know the number of permutations of 
each type in the group G of permutations, and so can be difficult to apply. But it is 
as simple as we could expect, given that G can be any permutation group on the set 
X of objects being colored. Our final concern is with more general sets C of colorings. 
Recall that, in Theorem 14.2.3, the only restriction on C is that for every coloring c 
in C and every permutation f in G, f * c is also in C, that is, each permutation f in 
G takes a coloring c of C to another coloring f * c of C. Under these more general 
circumstances, the most we might expect is to have some formal way to determine the 
nonequivalent colorings. 

We now show how the cycle index of G can be used to determine the number of 
nonequivalent colorings where the number of times each color is used is specified. 

Let C be the set of all colorings of X in which the number of elements in X of 
each color has been specified. For each permutation f of X and each coloring c in 
C, the number of times a particular color appears in c is the same as the number of 



568 CHAPTER 14.' POLYA COUNTING 

times that color appears in f * c. Put another way, permuting the objects in X along 
with their colors does not change the number of colors of each kind. This means that 
any group G of permutations of X acts as a permutation group on such a set C of 
colorings. 

ExaJ;Ilple. How many nonequivalent colorings are there of the corners of a regular 
5-gon in which three corners are colored red and two are colored blue? 

Let C be the set of all colorings of the corners of a 5-gon with three corners colored 
red and two colored blue. The number of colorings in C is 10, since we can select three 
corners to be colored red in 10 ways and then color the other two corners blue. The 
corner-symmetry group D5 acts as a permutation group on C. We have previously 
computed the cycle factorization of each permutation in G. In the following table, we 
again list those factorizations, along with the number of colorings in C fixed by the 
permutatiohs in D5. 

D5 Cycle Factorization 
Number of Fixed 

Colorings 

P~ = t [1] 0 [2] 0 [3] 0 [4] 0 [5] 10 

P5 [12345] 0 

pg [13524] 0 

p~ [14253) 0 

pt [15432] 0 

71 11] 0 f2 5] 0 [3 4] 2 

72 [1 3] 0 [2] 0 [4 5) 2 

T3 [1 5] 0 [3] 0 [2 4] 2 

74 [2] 0 {3 5] 0 !4] 2 

75 [1 41 0 [2 3] 0 [5] 2 

The reason that none of the rotations different from the identity fixes any coloring 
is that, for such a rotation to fix a coloring, all colors in the coloring must be the same 
(and so we do not have three red and two blue colors as specified). Each reflection 
fixes two colorings in C. This is because, for the 5-gon, each of the reflections has 
type (1,2,0,0,0). To have two blue corners in a fixed coloring, we must color blue the 
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corners in one of the two 2-cycles in the factorization. Applying Theorem 14.2.3, we 
find that the number of nonequivalent colorings of the type being counted is 

10+0+0+0+0+2+2+2+2+2 
-------10------ = 2. 

This answer can easily be arrived at directly, the two nonequivalent colorings are the 
one with two blue corners that are consecutive and the other with two blue corners 
that are not consecutive. 0 

To apply Burnside's theorem to determine the number of nonequivalent colorings 
when the number of occurrences of each color is specified, we must be able to determine 
the number of such colorings fixed by a permutation. Let J be a permutation of the 
set X, and suppose that 

and 

Thus, J has el I-cycles, e2 2-cycles, ... , and en n-cycles in its cycle factorization. To 
keep our discussion simple initially, suppose we have only two colors: red and blue. 
Let 

Cp,q 

denote the set of all colorings of X with p elements colored red and q = n - p elements 
colored blue. A coloring in Cp,q is. fixed by J if and only if, for each cycle in the cycle 
factorization of J, all of the elements have the same color. Thus, to determine the 
number of colorings in Cp,q fixed by J, we can think of assigning colors to cycles in 
such a way that the number of elements that get assigned the color red is p (and hence 
the number assigned the color blue is n - p = q). Suppose that tl of the I-cycles get 
assigned red, t2 of the 2-cycles get red, ... , and tn of the n-cycles get red. For the 
number of elements assigned red to be p we must have 

(14.16) 

Hence, the number ICp,q(f) I of colorings in Cp,q -that are fixed by f is obtained as 
follows: Choose a solution of (14.16) in integers tl, t2,"" tn satisfying 

(14.17) 

(to determine how many cycles of each length are assigned the color red), and then 
multiply such a solution by 

G~) G:) ... G:) 
(to determine which cyclei'! of each of the lengths 1,2, ... , n are assigned the color red). 
Now, consider the color red as a variable r and the color blue as a variable b that we 
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can manipulate algebraically in the usual way. Then the number of solutions of (14.16) 
satisfying (14.17) is the coefficient of rPbq in the expression 

obtained by making the substitutions 

(14.18) 

in the monomial of f. The cycle index of a permutation group G is the average of 
the monomials of the permutations f in G. Hence, by Theorem 14.2.3, the number of 
nonequivalent colorings in C(p, q) equals the coefficient of rPbq.in the expression 

(14.19) 

obtained by making the substitutions (14.18) in the cycle index of G. This means that 
(14.19) is a two-variable generating function for the number of none qui valent colorings 
in C(p, q) with a specified number of elements colored with each color. 18 

The preceding discussion applies for any number of colors, and it enables us to 
give a generating function for the number of nonequivalent colorings in which the 
number of colors of each kind is specified. This provides us with the final theorem in 
this book.19 This theorem is commonly called P6lya's theorem, and its motivation, 
derivation, and application have been the primary purpose of this chapter. 

As with the case of two colors, we need to think of the colors as variables UI, U2, ... , u 
to be manipulated algebraically. The only change in the preceding argument is the 
change from two colors to any number k of colors. 

Theorem 14.3.3 Let X be a set of elements and let G be a group of permutations of 
X. Let {Ul, U2,' .. ,ud be a set of k colors, and let C be a set of all colorings of X. 
Then the generating function for the number of nonequivalent colorings of C according 
to the number of colors of each kind is the expression 

PC(UI + .. , +uk,ui + ... +ut,··· ,ul + ... +Uk), (14.20) 

18The two variables in the generating function are r and b. We could get a one-variable generating 
function by setting b = 1. /Ii othing is lost by doing so, since as we have already remarked, once the 
number of reds is specified, the number of blues is whatever is left. However, since we are about to 
write down the generating function for any number of colors where we cannot reduce the generating 
function to one variable, it is better .here to use two variables. 

19If you started on page 1 and worked your way here doing many of the exercises, then congratula­
tions! You know a lot about combinatorics and graph theory. But there is a lot more to know, and 
the amount of information increases every day. Research articles on the wide variety of topics within 
combinatorics and graph theory continue to be published in journals at a substantial rate. But that is 
not too surprising since, as I hope that you have discovered, the subject is exciting, fascinating, and 
indeed fun. In addition, its applicability in the biological and physical world is increasing. Following 
the exercises· for this chapter, we include a list of books for further study. 
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obtained from the cycle index PC(Zl, Z2, ... ,zn) by making the substitutions 

Zj = u{ + ... + u{ (j = 1,2, ... ,n). 

In other words, the coefficient of 

in (14.20) equals the number of nonequivalent (XJlorings in C with PI elements of X 
colored UI, P2 elements colored U2, ... , Pk elements colored Uk· 

Substituting Ui = 1 for i = 1,2, ... ,k in (14.20), we get the sum of its coefficients 
and hence the total number of nonequivalent colorings of X with k available colors. 
Since this substitution yields 

Pc(k, k, ... , k), 

it follows that Theorem 14.3.3 is a refinement of Theorem 14.3.2. Theorem 14.3.3 
contains more detailed information than Theorem 14.3.2, which is subsequently lost 
upon replacing each Ui with 1. 

Example. Determine the generating function for the number of nonequivalent color­
ings of the corners of a square with two colors and also those with three colors. 

The cycle index of D 4 , the corner-symmetry group of the square, has been previ­
ously computed to be 

Let the two colors be r and b. Then the generating function is 

Hence, we have 

(14.21) 

Thus, there is one nonequivalent coloring with all corners red and one with all corners 
blue. There is also one with three corners red and one blue, and one with one corner 
red and three blue. Finally, there are two with two corners of each color. The total 
number of nonequivalent colorings, the sum of the coefficients in (14.21), is 6. 
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Now suppose that we have three colors r, b, and g. The generating function for 
the number of nonequivalent colorings is 

1 
= 8 ((r + b + g)4 + 2(r4 + b4 + g4) + 3(r2 + b2 + g2)2 + 2(r + b + gnr2 + b2 + g2)) . 

This expression can be calculated using the multinomial theorem in Chapter 5. For 
instance, the coefficient of r 1b2g1 equals 

1 
8(12+0+0+4)=2. 

Thus, there are 2 nonequivalent colorings that have one red, two blue, and one green 
corner(s). The total number of nonequivalent colorings equals 

PD, (3,3,3) = 21. 

o 

Example. Determine the generating function for the number of nonequivalent col­
orings of the corners of a regular 5-gon with two colors and also those with three 
colors. 

From our previous calculations, the cycle index of D5 is 

Notice that neither Z3 nor Z4 appear in any nonzero term in the cycle index. This is 
because no permutation in D5 has either a 3-cycle or 4-cycle in its cycle factorization. 
Suppose that we have two colors rand b. Then the generating function for the number 
of nonequivalent colorings is 

= ~((r + b)5 + 4(r5 + b5) + 5(r + b)(r2 + b2)2) 
·10 

= r5 + r4b + 2r3b2 + 2r2b3 + rb4 + b5. 

The total number of nonequivalent colorings equals 

1 + 1 + 2 + 2 + 1 + 1 = 8. 

The generating function for the number of nonequivalent colorings for three colors 
is 
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The total number of nonequivalent colorings equals 

:0 

Example. Coloring the corners and faces of a cube. Determine the symmetry group 
of a cube and the number of nonequivalent ways to color the corners and faces of a 
cube with a specified number of colors. 

There are 24 symmetries of a cube, and they are rotations of four different kinds: 

(1) The identity rotation ~ (number is 1). 

(2) The rotations about the centers of .the three pairs ,of opposite faces by 

(a) 90 degrees (number is 3}. 

(b) 180 degrees (number is 3). 

(c) 270 degrees (number is 3). 

(3) The rotations by 180 degrees about midpoints of opposite edges (number is 6). 

(4) The rotations about opposite corners by 

(a) 120 degrees (number is 4). 

(b) 240 degrees (number is 4). 

The total number of symmetries of a cube is 24. 

In the next table, we give the type of each symmetry as both a permutation of 
its eight corners (as a member of the corner-symmetry group of the cube) and as a 
permutation of its six faces (as a member of the face-symmetry group of the cube). In 
this table, we refer to the classification of the symmetries previously given. 

Kind of 
Number of Corner Type Face Type 

Symmetry 
(i) 1 (8,0,0,0,0,0,0,0) (6,0,0,0,0,0) 

(ii)(a) ,3 (0,0,0,2,0,0,0,0) (2,0,0,1,0,0) 
(ii)(b) 3 (0,4,0,0,0,0,0,0) (2,2,0,0,0,0) 
(ii)(c) 3 (0,0,0,2,0,0,0,0) (2,0,0,1,0,0) 
(iii) 6 (0,4,0,0,0,0,0,0) (0,3,0,0,0,0) 

(iv) (a) 4 (2,0,2,0,0,0,0,0) (0,0,2,0,0,0) 
(iv)(b) 4 (2,0,2,0,0,0,0,,0) (0,0,2,0,0,0) 

From the table, we. see that the cycle index of the corner-symmetry group Gc of 
the cube is 
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and that of the face-symmetry group G F is 

PCF(ZI, Z2,···, Z6) = ;4 (z¥ + 6ZrZ4 + 3ziz~ + 6z~ + 8z~). 
The generating function for the number of nonequivalent colorings of the corners 

of a cube with the colors red and blue is 

= 2~ «r + b)8 + 6(r4 + b4)2 + 9(r2 + b2)4 + 8(r + b)2 (r3 + b3 )2). 

For the faces of the cube, the generating function is 

PCF(r + b,r2 + b2, ... ,r6 + b6) = 

1 : 
24 «r + b)6 + 6(r + bnr4 + b4) + 3(r + b)2(r2 + b2)2 + 6«r2 + b2 )3 + B(r3 + b3 )2). 

Some algebraic calculation now shows that the generating function for the number of 
nonequivalent colorings of the corners is 

r8 + r7b + 3r6b2 + 3r5b3 + 7r4b4 + 3r3b5 + 3r2b6 + rb7 +b-s 

and, for the faces, is 

The total number of nonequivalent colorings for the corners is 23, and for the faces 
the total number is 10. 

If we have k colors, the number of nonequivalent corner colorings is 

and the number of nonequivalent face colorings is 

~(k6 + 6k2k + 3k2k2 + 6k3 + 8k2) = ~(k6 + 3k4 + 12k3 + 8k2) U U . 
o 

In our final example we illustrate how Theorem 14.3.3 can be applied to determine 
the number of nonisomorphic graphs of order n with a specified number of edges. 

Example. Determine the number of nonisomorphic graphs of order 4 with each 
possible number of edges. 

The number 4 is small enough for us to solve this problem without recourse to 
Theorem 14.3.3. But our purpose in this example is to illustrate how to apply Theorem 
14.3.3 to count graphs. 
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Let 94 be the set of all graphs of order 4 with vertex set V = {I, 2, 3, 4}. We seek 
the generating function for the number of nonisomorphic graphs in 94 with a specified 
number of edges. The set E of edges of a graph HI = (V, EI) in 94 is a subset of the 
set 

x = {{I,2},{I,3},{I,4},{2,3},{2,4},{3,4}}. 

We can think of HI as a coloring of the edges in the set X, with two colors "yes" (or 
y) and "no" (or n), where the edges in EI get the color yes and the edges not in EI get 
the color no. Let C be the set of all colorings of X with the two colors y and n. Thus, 
the graphs in 94 are exactly the colorings in C. This is the first important observation 
for obtaining our solution. 

Let H2 = (V, E2 ) be another graph in 94. Then HI and H2 are isomorphic if and 
only if there is a permutation I of V = {I, 2, 3, 4} (so, a permutation in S4), such 
that {i,j} is an edge in EI if and only if {f(i), IU)} is an edge in E2 . Each of the 24 
permutations I in S4 also permutes the edges in X, using the rule 

{i,j} -> {f(i),jU)} ({i,j} in X). 

For example, let 

Then I permutes the edges as follows: 

( {I,2} {I,3} {1,4} {2,3} {2,4} {3,4}) 
{2,3} {3,4} {I,3} {2,4} {I,2} {I,4} . 

Let si2) be the group of permutations of X obtained in this way from S4. 20 Our 
second important observation is that two graphs in 94 are isomorphic if and only if, 
as colorings of X, they are equivalent. This observation is an immediate consequence 
of the definitions of isorporphic graphs and equivalent colorings. 

We have thus reduced our problem to counting the number of colorings in C that are 
nonequivalent with respect to the permutation group si2), according to the number of 
y's and n's. This is exactly the setup of Theorem 14.3.3. It only remains to compute 
the cycle index of si2 ). To do this we must compute the type of each of the 24 
permutations in si2 ). The results are summarized in the following table. 

20Since 84 is a group of permutations, it follows readily that 812) is also a group of permutations. 

84 and 812) are isomorphic as abstract groups but not as permutation groups. 
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Type Monomial 

(6,0,0,0,0,0) z~ 
(2,2,0,0,0,0) ziz~ 
(0,0,2,0,0,0) z§ 
(0,1,0,1,0,0) Z2Z4 

The cycle index of si2) is 

Number of Permutations 
. S(2) 
III 4 

1 
9 
8 
6 

p si2) (ZI, Z2, Z3, Z4, Z5, Z6) = 214 (z~ + 9ziz~ + 8z§ + 6Z2Z4). (14.22) 

By Theorem 14.3.3, the generating function for the number of nonequivalent colorings 
in C is obtained by making the substitutions 

Zj = yj + n j (j = 1,2,3,4,5,6) 

in (14.22). A little calculation shows that the result is 

y6 + y5n + 2y4n2 + 3y3n3 + 2y2n4 + yn5 + n6. 

Remembering that the number of y's equals the number of edges, we see that the 
number of non isomorphic graphs of order 4, according to the number of edges, is given 
as follows: 

Number of 
Edges 

6 
5 
4 

3 
2 
1 
o 

Number of Nonisomorphic 
Graphs 

1 
1 
2 
3 
2 
1 
1 

In particular, the total number of nonisomorphic graphs of order 4 equals 11. 

14.4 Exercises 

1. Let 

1=(6123456) d (123456) 
4 2 5 3 an 9 = 3 5 6 2 4 1 . 

Determine 
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(a) fog and go f 

(b) r 1 and g-l 

(c) f2, f5 

(d) /ogo/ 

(e) g3 and /0 g3 0 r 1 

2. Prove that permutation composition is associative: (f 0 g) 0 h = /0 (g 0 h). 
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3. Determine -the symmetry group and corner-symmetry group of an equilateral 
triangle. 

4. Determine the symmetry group and corner-symmetry group of a triangle that is 
isoeeles but not equilateral. 

5. Determine the symmetry group and corner-symmetry group of a triangle that is 
neither equilateral nor isoeeles. 

6. Determine the symmetry group of a regular tetrahedron. (Hint: There are 12 
symmetries. ) 

7. Determine the corner-symmetry group of a regular tetrahedron. 

8. Determine the edge-symmetry group of a regular tetrahedron. 

9. Determine the face-symmetry group of a regular tetrehedron. 

10. Determine the symmetry group and the corner-symmetry group of a rectangle 
that is not a square. 

11. Compute the corner-symmetry group of a regular hexagon (the dihedral group 
D6 of order 12). 

12. Determine all the permutations in the edge-symmetry group of a square. 

13. Let / and 9 be the permutations in Exercise 1. Consider the coloring c 
(R, B, B, R, R, R) of 1,2,3,4,5,6 with the colors Rand B. Determine the fol­
lowing actions on c: 

(a) f *C 

(b) /-1 *C 

(c) 9 * c 

(d) (g 0 f) *C and (f 0 g) *C 

(e) (g2 0 f) * c 
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14. By examining all possibilities, determine the number of nonequivalent colorings 
of the corners of an equilateral triangle with the colors red and blue. (Then do 
so with the colors red, white, and blue.) 

15. By examining all possibilities, determine the number of nonequivalent colorings 
of the corners of a regular tetrahedron with the colors red and blue. (Then do 
so with the colors red, white, and blue.) 

16. Characterize the cycle factorizations of those permutations I in Sn for which 
1-1 = I, that is, for which 12 = L. 

17. In Section 14.2 it is established that there are eight nonequivalent colorings of the 
corners of a regular pentagon with the colors red and blue. Explicitly determine 
eight nonequivalent colorings. 

18. Use Theorem 14.2.3 to determine the number of nonequivalent colorings of the 
corners of a square with p colors. 

19. Use Theorem 14.2.3 to determine the number of nonequivalent colorings of the 
corners of an equilateral triangle with the colors red and blue. Do the same with 
p colors (cf. Exercise 3). 

20. Use Theorem 14.2.3 to determine the number of nonequivalent colorings of the 
corners of a triangle that is isoceles, but not equilateral, with the colors red and 
blue. Do the same with p colors (cf. Exercise 4). 

21. Use Theorem 14.2.3 to determine the number of nonequivalent colorings of the 
corners of a triangle that is neither equilateral nor isoceles, with the colors red 
and blue. Do the same With p colors (cf. Exercise 5). 

22. Use Theorem 14.2.3 to determine the number of nonequivalent colorings of the 
corners of a rectangle that is not a square with the colors red and blue. Do the 
same with p colors (cf. Exercise 10). 

23. A (one-sided) marked domino is a piece consisting of two squares joined along an 
edge, where each sq)lare on one side of the piece is marked with 0, 1,2,3,4,5, or 6 
dots. The two squares of a marked domino may receive the same number of dots. 

(a) Use Theorem 14.2.3 to determine the number of different marked dominoes. 

(b) How many different marked dominoes are there if we are allowed to mark 
the squares with 0,1, ... ,p - 1, or p dots? 

24. A two-sided marked domino is a piece consisting of two squares joined along 
an edge, where each square on both sides of the piece is marked with 0,1,2,3, 
4,5, or 6 dots. 
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(a) Use Theorem 14.2.3 to determine the number of different two sided marked­
dominoes. 

(b) How many different two-sided marked dominoes are there if we are allowed 
to mark the squares with 0,1, ... ,p - 1, or p dots? 

25. How many different necklaces are there that contain three red and two blue 
beads? 

26. How many different necklaces are there that contain four red and three blue 
beads? 

27. Determine the cycle factorization of the permutations I and 9 in Exercise 1. 

28. Let I be a permutation of a set X. Give a simple algorithm for finding the cycle 
factorization of 1-1 from the cycle factorization of f. 

29. Determine the cycle factorization of each permutation in the dihedral group D6 
(cf. Exercise 11). 

30. Determine permutations f and 9 of the same set X such that f and 9 each have 
two cycles in their cycle factorizations but fog has only one. 

31. Show that the number of nonequivalent colorings of the corners of a regular 
5-gon with p colors is 

p(p2 + 4)(p2 + 1) 
10 

32. Determine the number of nonequivalent colorings of the corners of a regular 
hexagon with the colors red, white and blue (cf. Exercise 29). 

33. Prove that a permutation and its inverse have the same type (cf. Exercise 28). 

34. Let el, e2, ... ,en be nonnegative integers such that leI + 2e2 + ... + nen = 
n. Show how to construct a permutation I of the set {1,2, ... ,n} such that 
type(f) = (el' e2,·· . ,en)' 

35. Determine the number of nonequivalent colorings of the corners of a regular 
6-gon with k colors (cf. Exercise 29). 

36. Determine the number of nonequivalent colorings of the corners of a regular 5-
gon with the colors red, white, and blue in which two corners are colored red, 
two are colored white, and one is colored blue. 

37. Determine the number of nonequivalent colorings of the corners of a regular 8-
gon with colors red, white, and blue under the action of the corner symmetry 
group of the 8-gon. 
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38. A two-sided triomino is a 1 by 3 board of three squares with each square (six in 
in all because of the two sides) colored with one of the colors red, white, blue, 
green, and yellow (squares on opposite sides may be colored differently). How 
many nonequivalent two-sided triominoes are there? 

39. A two-sided 4-omino is a I-by-4 board of four squares with each square (eight in 
in all because of the two sides) colored with one of the colors red, white, blue, 
green, and yellow (squares on opposite sides may be colored differently). How 
many nonequivalent two-sided 4-ominoes are there? 

40. A two-sided n-omino is a I-by-n board of n squares with each square (2n in in all 
because of the two sides) colored with one of p given colors (squares on opposite 
sides may be colored differently). How many nonequivalent two-sided n-ominoes 
are there? 

41. Determine the cycle index of the dihedral group D6 (cf. Exercise 29). 

42. Determine the generating function for nonequivalent colorings of the corners of 
a regular hexagon with two colors and also with three colors (cf. Exercise 41). 

43. Determine the cycle index of the edge-symmetry group of a square. 

44. Determine the generating function for nonequivalent colorings of the edges of 
a square with the colors red and blue. How many nonequivalent colorings are 
there with k colors (d. Exercise 43)? 

45. Let n be an odd prime number. Prove that each of the permutations, Pn, P~, ... , P~ 
of {I, 2, ... , n} is an n-cycle. (Recall that Pn is the permutation that sends 1 to 
2, 2 to 3, ... , n - 1 to n, and n to 1.) 

46. Let n be a prime number. Determine the number of different necklaces that can 
be made from n beads of k different colors. 

47. The nine squares of a 3-by-3 chessboard are to be colored red and blue. The 
chessboard is free to rotate but cannot be flipped over. Determine the generating 
function for the number of nonequivalent colorings and the total number of 
nonequivalent colorings. 

48. A stained glass window in the form of a 3-by-3 chessboard has nine squares, 
each of which is colored red or blue (the colors are transparent and the window 
can be looked at from either side). Determine the generating function for the 
number of different stained glass windows and the total number of stained glass 
windows. 

49. Repeat Exercise 48 for stained glass windows in the form of a 4-by-4 chessboard 
with 16 squares. 
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50. Find the generating function for the different necklaces that can be made with 
p beads each of color red or blue if p is a prime number (cf. Exercise 46). 

51. Determine the cycle index of the dihedral group D2p , where p is a prime number. 

52. Find the generating function for the different necklaces that can be made with 
2p beads each of color red or blue if p is a prime number. 

53. Ten balls are stacked in a triangular array with 1 atop 2 atop 3 atop 4. (Think 
of billiards.) The triangular array is free to rotate. Find the generating function 
for the number of nonequivalent colorings with the colors red and blue. Find the 
generating function if we are also allowed to turn over the array. 

54. Use Theorem 14.3.3 to determine the generating function for nonisomorphic 
graphs of order 5. (Hint: This exercise will require some work and is a fitting last 

exercise. We need to obtain the cycle index of the group S~2) of permutations of 
the set X of 10 unordered pairs of distinct integers from {I, 2, 3, 4, 5} (the possible 
edges of a graph of order 5). First, compute the number of permutations f of 
S5 of each type. Then use the fact that the type of f as a permutation of X 
depends only on the type of f as a permutation of {I, 2,3,4, 5}.) 
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Answers and Hints to Exercises 

We give partial solutions, solutions, or hints to selected exercises. 

Chapter 1 Exercises 

3. No. 

4. f(n) = f(n - 1) + f(n - 2); f(12) = 233. 

5. 11. 

9. Use a 5-by-6 board with 2-by-3 pieces. 

15. No. 

20. Since each pair of the three countries 1, 2, and 10 have a common border, three 
colors are necessary. There are 12 different colorings using the colors red, white, 
and blue. 

21. No. The common line sum would have to be (1 + 2 + ... + 7)/3, but this number 
is not a whole number. 

26. Simple experimentation is usually successful. 

29. Balanced. Player II should remove 14 coins from the heap of size 22. 

31. Hint: Consider the units digit. 

34. Second player. Think of 5s. 

35. First player. 

36. 105. 

38. Hint: Consider a pairing in which the total length of the n line segments is as 
small as possible. 

39. Hint: n must be even. Color the squares black and white with all squares in 
columns 1,3, ... , n - 1 black and all squares in columns 2,4, ... , n white, giving 
an equal number of black and white squares. The L-tetrominoes on the board 
are of two types: either they cover three black squares and one white square, or 
they cover three white squares and one black square. 

43. Hint: Consider the cube in the center. 
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1. ({a, b}) 48. 

2. 4!(13!)4. 

3. 52 x 51 x 50 x 49 x 48; (552). 

4. (a) 5x3x7x2; (c) 121. 

5. (a) 12. 

6. Partition the integers according to the number of digits they contain. 

8. 6!5!. 

10. C22) x C30) + C32) x C20) + C42) x (\0) + C52). 

11. e30) - 2 x 17 - 17 x 16 - 18. 

13. (a) e~~) G~)· 

15. (a) 20!/5!; (b) G~)(ig)lO!' 

17. 6!; 6!(~). 

27. G) 2 4! + 72 (~) 23!. 

30. 2(5!)2. 

36. (nl + 1)(n2 + 1) ... (nk + 1). 
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39'. If six nonconsecutive sticks are removed, we are left with a solution in integers of 
the equation Xl +X2 + ... +X7 = 14, where Xl ,X7 2:: 0, and Xi> 0 for i = 2, ... 6). 

41. 3 x en. 
43. (rt~;2) + Ct~;3). 

47. Hint: Use the subtraction principle. First, count the total number of ways to 
put the books on the shelves. Then count the number of ways in which one shelf 
has more books than the other two (so ~hat shelf has at least n + 1 books). 
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58. Hint: There are Ci)45 poker hands containing 5 different ranks. 

Chapter 3 Exercises 

2. See D. O. Shklarsky, N. N. Chentzov, and 1. M. Yaglom, The USSR Olympiad 
Problem Book, Freeman, San Francisco, 1962, 169-171. 

4. Partition the integers {I, 2, ... ,2n} into the pairs {I, 2}, {3,4}, ... , {2n-l, 2n}. 

7. See D. O. Shklarsky, N. N. Chentzov, and 1. M. Yaglom: The USSR Olympiad 
Problem Book, Freeman, San Francisco, 1962, 169-171. 

8. What are the possible remainders when an integer is divided by n? 

9. The number of sums that can be formed with 10 numbers is 210 - 1. No sum 
can exceed 600. 

14. 45 minutes. 

15. Hint: Consider remainders when an integer is divided by n. 

18. Partition the square into four squares of side length 1. 

19. (a) Partition the triangle into four equilateral triangles of side length 1/2. 

20. Consider one point and the line segments to the other 16 points. At least six of 
these line segments have the same color. 

27. For each set A, consider the set B of elements not in A. 

28. Hint: First show that there is a way to choose the dance lists that works with 
al + a2 + ... + alQO = 1620 (= 20 + 80·20). Then show, by using an averaging 
argument (for i = 1,2,. " ,20, let bi be the number of lists that contain the ith 
woman and average these numbers), that there is no arrangement with a sum of 
1619 that works. 

Chapter 4 Exercises 

1. 35124 (before or after?). 

2. {3,7,8}. 

4. Hint: 1 is never mobile. 

6. (a) 2,4,0,4,0,0,1,0. 
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7. (a) 48165723. 

11. (a) 00111000; (b) 1010101; (c) 01000000. 

15. (a) {X4,X2}; (b) {X7,X5,X3,XO}. 

16. (a) {X4,Xr}; (b) {X7,X5,X2,X1,XO}. 

17. 150th is {X7,X4,x2,xI}. 

23. (a) 0101O011l. 

24. (a) 010100010. 

28. 2,3,4,7,8,9 immediately follows 2,3,4,6,9,10; 2,3,4,6,8,10 immediately precedes 
2,3,4,6,9,10. 

34. (a) 12·· ·r, 12··· (r -1)(r + 1), ... , 12··· (r -1)n. 

36. The number of relations on X is 2n2; the number of reflexive relations is 2n(n-1). 

41. Hint: Consider transitivity. 

48. Hint: Something very familiar. 

50. 48. 

6. _35213 e:); O. 

7. E~=o G)rk = (1 + r)n . 

. 8. Hint: 2 = 3 - 1. 

Chapter 5 Exercises 

lO. Hint: Think of choosing a team with one person designated as captain. 

15. Differentiate the binomial formula and then replace x by -1. 

16. Integrate the binomial formula, but watch out for the constant of integration. 

20. To find a, b, and c, multiply out and compare coefficients. 

() 24! . () 15!. () (91)2 
23. a 10114!' b 4!5!61' C 4l5l(3ip. 

24 45! 
. 10115!20!' 



586 Answers and Hints to Exercises 

28. Hint: Consider a set of n boys and n girls, and form committees of size n in 
which a boy is the leader. 

30. First show that an antichain of size 6 cannot contain a 3-subset. 

34. Hint: Number of chains with only one subset is 

(In/2J) - (r(n+~)/21)' 
37. Replace all the Xi'S with 1. 

39. 1O! 
3!4!2! . 

1. 5334. 

Chapter 6 Exercises 

3. 10,000 - (100 + 21) + 4 = 9883. 

4. 34. 

7. 456. 

9. Use the change of variable YI = Xl - 1, Y2 = X2, Y3 = X3 - 4, and Y4 = X4 - 2. 

11. 8! - 4 x 7! + 6 x 6! - 4 x 5! + 41. 

12. (~)D4. 

15. (a) D7; (b) 7! - D7; (c) 7! - D7 - 7 X D6. 

16. Hint: Partition the permutations according to the number of integers in their 
natural position. 

17. 3!~:2! - (~+ 37~! + &,) +(~ + ~ +~) - 31. 

21. Dl = 0 and D2 = 1. Now use induction and one of the recurrences for Dn-

24. (b) 6! - 12 x 5! + 54 x 41, - 112 x 3! + 108 x 2! - 48 + 8. 

28. 8! - 32 x 6! + 288 x 4! - 768 x 2! + 384. (The number 32 arises as follows: The 
original seating pairs up the boys. The number of seating arrangements in which 
the boys in exactly one of the pairs are opposite each other is obtained as follows: 
We can choose one pair in four ways, choose the two seats that they occupy in 
four ways, and then seat them in two ways. We have 4 x 4 x 2 = 32.) 

30. 3!~:2! - (~+ 37~! + &,) +(~ + ~ +~) - 3!. 
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32. Hint: Let Ai be the set of integers between 1 and n that are divisible by Pi. 

36. The answer is 6, but this is the hard way to do this problem. It's easier just to 
list all the solutions. 

Chapter 7 Exercises 

1. (a)hn; (b) hn+1 - 1. 

2. Hint: Show that the absolute value of Js (1-2i5) n is 'less than 1/2. 

3. (a) fn = fn-I + fn-2 = 2fn-2 + fn-3' Now use induction. 

(b) fn = 3fn-3 + 2fn-4. Now use induction. 

6. First prove by induction on m that fa+b = fa-db + fafb+l. Now let m = nk 
and prove that fm is divisible by fn by induction on k. 

7. Let m = qn + r. Then, by the partial solution given for Exercise 6, fm = 
fqn-dr + f qnfr+1' Since, by Exercise 6, fqn is divisible by fn, the QCD of fm 
and fn equals the GCD of fqn-dr and fn. Now use the standard algorithm for 
computing GCD (cf. Section \D.l): 

8. hn =hn - I + hn -2. 

9. hn = 2hn - 1 + 2hn - 2 . 

12. Hint: Use n = (n - 1) + 1 and compute n 3 using the binomial theorem. 

13. (a) I!cx; (d) eX. 

() x4 • () I+x 14. a (I-x2)" C (l-x)2' 

15. Start with the series 1/ (1 - x) = 1 + x + x 2 + ... and differentiate, mUltiply by x 
and differentiate, mUltiply by x and differentiate again, and finally mUltiplying 
by x again. 

I ' 
17. (l-x)2, and so hn = n + 1. 

19. Hint: hn = ~(n2 - n). 

20. Write hn as a cubic polynomial in n. 

22. 1/(1 - x). 

24. (a) (x + x3/3! +x5/5! + .. . )k; (b) (eX -1- x -x2/2! - x 3/3!)k; (d) (1 +x)(1 + 
x + x 2/2!) .. · (1 + x + ... + xk/k!). 
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25. hn = 4n - 1 if n ;::: 1 and ho = O. 

27. Hint: The exponential generating function is (ex:J;e-x - 1 ?e3x . 

31. 2n- 2 _ (_2)n-2. 

32. (n + 2)!. 

35. ~ - ~n +!( _2)n. 

38. (a) 3n ; (c) (_1)n2+1+l. 

39. hn = hn-l + hn - 3 , (n ;::: 3), with ho = 1, hI = 1, h2 = 2 .. 

41. See Exercise 1 of Chapter 8. 

43. 4n+l - 3 x 2n. 

45. 3 x 2n - n - 2. 

48. (a) hn = 0 if n is even and = 4(n-I)/2 if n is odd; (c) hn = -h (-3+4x 3n - (_3)n); 
(e) hn = 11 - ~tn + 1) +!( _2)n. 

Chapter 8 Exercises 

1. Let the number of ways for 2n points be an. Choose one of the points and call 
it P. Then P must be joined to a point Q such that there is an even number of 
points on either side of the line PQ. This leads to the recurrence relation 

an = aoan-l + alan-2 + ... + an-laO, aO = 1. 

This is the same recurrence relation satisfied by the Catalan numbers (see equa­
tion (8.7)). 

2. Hint: Consider the sequences aI, a2, ... , a2n of +ls and -Is obtained by taking 
aj to b~ + 1 if j is in the first row of the array and -1 if j is in the second row. 

5. Generalize the proof of Theorem 8.1.1. 

6. 2:k=ohk = 3(nil) + (ntl) +4(n11). 

9. Use induction on k. 

10. Use the fact that (~) is a polynomial of degree kin n. Thus, Cm must be chosen 
so that Cm/m! is the coefficent of nm in hn . 

12. (b) S(n,2) is the number of partitions of an n ;::: 2 element set into two indis­
tinguishable boxes so that no box is empty. There are 2n - 2 partitions into 
nonempty distinguishable boxes. 
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13. Hint: The inverse images of an onto function give a partition into k nonempty 
distinguishable boxes. 

15. Partition the partitions according to the number of boxes that are nonempty. 

19. (a) s(n, 1) is the same as the number of circular permutations of an n-element 
set. 

26. (a) 12=4+3+2+2+1. 

Chapter 9 Exercises 

3. Any family of sets in which there is at least one set that contains more than four 
elements. 

5. Hint: Place the dominoes vettically column by column unless you are forced to 
place a horizontal domino. 

7. Largest number is 5. 

8. The number of different SDBs is 2 (for all n). 

10. Delete x (if present) from each of A2 , . •. ,An and show that the resulting n - 1 
sets satisfy the marriage condition. 

12. Hint: Suppose the number of black squares equals the number of white squares. 
Show that there are two consecutive squares, either in the same row or in the 
same column, such that removing those squares leaves a board of the type in the 
exercise. Now proceed by induction. 

18. Hint: A woman's kth choice is a man whose (n + 1 - k)th choice is that woman. 
If p < k, then n + 1 - P > n + 1 - k. 

19. In both cases, we get the stable complete marriage A ..... c, B ..... d, C ..... a, D ..... b. 

20. Since (n2 - n)/n =, n - 1, it follows that after n 2 - n + 1 proposals, some woman 
has been rejected n - 1 times and every man has received at least one offer. 

21. Hint: Introduce fictitious woman to have an equal number of men and women 
with each man putting the fictitious women on the bottom of his list. 

24. Hint: .Construct the family of sets (AI, A2 ,.··, An), where A = {j : aij l' O}, 
and show that this family has an SDR. . 

Chapter 10 Exercises 

6. Use Exercise 5 and the fact that a - b = a + (-b). 
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9. ~3 =17, -7 = 13, -8 = 12, -19 = 1. 

10. 1-1 = 1,5-1 = 5,7-1 = 7, 11-1 = 11. 

11. 4,9, and 15 do not have multiplicative inverses. 
11-1 = 11,17-1 = 17,23-1 = 23. 

12. The GCD of n - 1 and n is 1. 

14. (a) GCD=1. 

15. The multiplicative inverse of 12 in Z31 is 13. 

17. (a) i2 ; (c) 1 +i2 ; (e) i. 

Answers and Hints to Exercises 

19. No: If there were such a design then A = r(k - 1)/(k - 1) = 80/17. 

21. Its parameters are b' = v' = 7, k' = r' = 4, and A' = 2. 

23. Each is obtained from the other by replacing Is with Os and Os with Is. 

27. A = v. 

29. No. 

33. There is a Steiner system of index 1 with three varieties. Now apply Theorem 
10.3.2 t - 1 times. 

37. Interchanging rows and columns does not change the fact that the rows and 
columns are permutations. 

40. Take n = 6, r = 1, and r' = 5. 

43. Use Theorem 10.4.3. 

44. To construct two MOLS of order 9, we can use the construction in the proof of 
Theorem 10.4."6, or we can use the product construction, introduced to verify 
Theorem lOA. 7, starting with two MOLS of order 3. To construct three MOLS 
of order 9, we should first construct a field of order 9, starting with a polynomial 
with coefficients in Za which has no root in Z3 (e.g., x 2 + x + 2). Then apply 
the construction used to verify Theorem 10.4.4. . 

45. Take two MOLS Al and A2 of order 3 and two MOLS BI and B2 of order 5. 
Then Al 0 BI and A2 0 B2 are two MOLS of order 15. 

47. The n positions in A that are occupied in B by Is give a set of n nonattacking 
rook positions. 
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55. One completion is 
3 2 0 4 5 1 
2 0 3 5 1 4 
0 3 2 1 4 5 
4 5 1 2 3 0 
5 1 4 3 0 2 
1 4 5 0 2 3 

57. Take one completion. Another is obtained by interchanging the last two rows. 

60. The positions of the Os in the last n - 1 rows and columns pair up each integers 
in {I, 2, ... , n - I} with another integer in the set. Hence, n - 1 is even. 

Chapter 11 Exercises 

1. 1, 2, and 4, respectively. 

3. No. 

4. No; Yes. 

5. See Exercise 16 of Chapter 3. Not true for multigraphs. 

6. Hint: Try loops. 

7. Hint: Put in as many loops as you can. 

8. Hint: For any set U of k vertices, how many edges can have at least one of their 
vertices in U? 

11. Only the first and third graphs are isomorphic. 

14. No. 

15. No. 

19. Neither connectedness nor planarity depends on loops or the existence of more 
than one edge joining a pair of vertices. 

21. If C is connected, then surely C* is. The two vertices x and y must be in the 
same connected component of C (Why?). Hence, if C* is connected, then C 
must have been connected. 

29. The second, but not the first, has an Eulerian trail. 

32. 5. 
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39. Hint: First construct a graph of order 5, four of whose vertices have degree 3 and 
the other of which has degree 2. Now use three copies of this graph to construct 
the desired graph. 

48. No, but yes if we delete the loops. 

49. (a) For {a, b} to be an edge, either a and b are both even, or else they are both 
odd. From this it follows that the answers are (a) No; (b) No; (c) No; (d) No. 

50. 4 (to get K 2,3, which has six edges). 

54. Only the tree whose edges are arranged in a path. 

55. Again, only the tree whose edges are arranged in a path. 

56. There are 11. 

57. Hint: Use induction on n. At least one of the di equals 1. 

59. If there were more than two trees, then putting the edge back could not result 
in a connected graph. 

64. Hint: Try a "broom." 

66. Just one. 

68. The graphs in Figure 11.42 give positive, neutral, and positive games, respec­
tively. 

71. Hint: Otherwise could the edge cut be minimal? 

75. (c) A BFS-tree is a tree whose edges are arranged in a path with the root "in 
the middle" of the path. 

76. (c) A DFS-tree is a tree whose edges are arranged in a path with the root at one 
of the end vertices of the path. 

78. Hint: Consider a pendent vertex and use induction on n. 

86. Hint: Consider two spanning trees of minimum weight and the smallest number 
p such that one of the trees has an edge of weight p and the other doesn't. 

Chapter 12 Exercises 

4. If n is odd, en is not bipartite, and it is easy to find a 3-coloring. 

5. 2, 3, and 4, respectively. 
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8. (a) All of the null graphs obtained 'by applying the algorithm for computing the 
chromatic polynomial have at least one vertex; hence, their chromatic polyno­
mials are of the form kP for some p ~ 1. (b) G is connected if and only if one of 
the null graphs obtained has order 1. (c) To get a null graph of order n -1, one 
edge has to be contracted and the other edges have to be deleted. 

9. Use the results of Exercise 8. 

10. n - 1. 

12. n - 1. 

13. n - 2. 

15. Hint: Remove an edge and get a bipartite graph. 

21. Hint: Put the lines in one at a time and use induction. 

23. Hint: Examine the proof of the inequality (12.5). 

26. Hint: Theorem 12.2.2. 

27. Hint: Examine the proof of Theorem 12.2.2. 

29. Hint: Choose a longest path xo, Xl, ... ,Xk. To which vertices can Xo be adjacent? 

33. Hint: A tree is bipartite. 

37. 2. 

38. [n/3l 

42. Hint: If G is a graph of intervals, then any induced graph is the graph of some 
of the intervals. 

44. Hint: A chordal bipartite graph cannot have a cycle. 

49. Hint: Suppose there were two different perfect matchings. 

56. min{m,n}. 

57. Hint: Assume that G is not connected. What does this imply about the degree 
sequence of G? 

58. (a) [(n - 1)/21-
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Chapter 13 Exercises 

5. Hint: In a digraph without any directed cycles, there must be a vertex with no 
arc entering it. 

7. Hint: There is a Hamilton path. 

9. Hint: A strongly connected tournament has at least one directed cycle. Show 
that the length of the directed cycle can be increased until it contains all vertices. 

11. Hint: Open trails. 

16. If not, then tl would pull out of the allocation, and hence the allocation would 
not be a core allocation. 

18. Just check the 6 possible allocations. The core allocation produced by the algo­
rithm is the one in which each trader gets the item he or she ranks first. 

19. Otherwise he or she would pull out of the allocation. 

Chapter 14 Exercises 

( 1 2 3 4 5 6). 1-1 = (1 2 3 4 5 6) 
1. log= 2 5 3 4 1 6 ' 4 3 6 2 5 1 . 

5. The symmetry group contains only the identity motion. The corner-symmetry 
group contains only the identity permutation of the three corners. 

10. The symmetry group of a rectangle that is not a square contains four motions: 
the identity, a rotation by 180 degrees about the center of the rectangle, and the 
reflections about the two lines joining midpoints of opposite sides. 

13. (a) (R,B,R,B,R,R); (b) (R,R,B,R,R,B). 

14. 4 (10). 

16. If I(i) = j, then l(j) = i. The cycle factorization of I contains only I-cycles 
and 2-cycles. 

p4+3p2 
22. 4 

23. (a) Label the two squares A and B. The number of marked dominoes equals 
the number of nonequivalent colorings of {A, B} with the colors 0,1,2,3,4,5,6, 
under the action of the group G of the two possible permutations of {A, B}. 
Hence, by Theorem 13.2.3, the number of different marked dominoes equals 
72 +7 - 28 2 - . 
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24. (a) The group of permutations now consists of four permutations of thre four 
squares to be marked. This gives 74t~x72 = 637. 

25. There are a total of 10 ways to color the corners of a regula.r 5-gon in which 
three corners are colored red and two are colored blue. Under the action of the 
dihedral group D5 , the number of nonequivalent colorings is lOt5~~t4XO = 2. 

26. 35t7~~t6xO = 4. 

27. f = [1 6324] 0 [5]. 

28. By reversing the order of the elements in each cycle of the cycle factorization of 

f· 
31. 

33. See Exercise 28. 

36 30t5x2t4xO - 4 
. 10 -. 

45. If p~, (k = 1,2, ... ,n - 1) contains a t-cycle, then by symmetry the cycle factor­
ization of p~ contains only t-cycles, implying that t is a factor of n. Since n is a 
prime, t = 1 or t = n. Since t = 1 implies that p~ is the identity permutation, 
we have t == n; that is, p~ is an n-cycle. . 

.. k n tnxk(n+l)/2t(n-l)k 
46. Usmg ExercIse 45, we get 2n 

47. The cycle index of the group of permutations is 

Hence the number of nonequivalent colorings is 

53. The cycle index ·for the group G of three rotations is 

The generating function for nonequivalent colorings is 
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